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Abstract

Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually
originates from both the vector operations themselves and the underlying coordinate systems. A computer algebra package
for symbolic vector analysis in general coordinate systems, GeneralVectorAnalysis (GVA), is developed using Mathematica.
The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the
vector calculus operations in general coordinate systems. Besides the basic vector analysis functions, the package provides
asymptotic capabilities, 2D vector analysis notation, and a simple interface for users to define their own coordinate systems.
These features will benefit physicists and applied mathematicians in their research where complicated vector analysis in
complicated coordinate systems is required. Several applications of this symbolic vector analysis package to plasma physics

are also given. (© 1999 Elsevier Science B.V.
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Title of program: General VectorAnalysis
Catalogue identifier: ADJP

Program Summary URL:
http:/ /www.cpc.cs.qub.ac.uk/cpc/summaries/ ADJP

Program obtainable from: CPC Program Library, Queen’s Univer-
sity of Belfast, N. Ireland

Computers: Platform independent

Operating systems under which the program has been tested:
Win95, Unix, and Linux

Progranuming language used: Mathematica 3.0

Memory required to execute with typical data: 10-20 M

No. of bytes in distributed program, including test data, etc.:
36241

Distribution format: ASCII
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Mathematica

Nature of physical problem

The analytical calculations using vector calculus that appear in
plasma physics, fluid dynamics, and other fields sometimes can
become extremely complex. The complexity usually originates
from both the vector operations themselves and the underlying
coordinate systems.

Method of solution
To implement automatic symbolic vector analysis in general co-
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ordinate systems, we need a simple and systematic mathematical
framework. The modern viewpoint of 3D vector calculus, differ-
ential forms on 3-manifolds, is utilized for this purpose. On the
other hand, a well-developed high level programming language
with a symbolic computation capability is also necessary. To the

Mathematica 3.0 on a Pentium II 150 MHZ PC with 48 M mem-
ory, it takes about 2 second CPU time to carry out a single vector
differential operation to the second order of the inverse aspect ra-
tio in the large aspect ratio circular concentric tokamak coordinate
system.

end, we chose Mathematica by Wolfram Research Inc.

Unusual features of the program

Asymptotic capabilities, 2D vector analysis notation, and a simple
interface for users to define their own coordinate systems.

Typical running time
The running time is problem and machine dependent. Running

LONG WRITE-UP

1. Introduction

The analytical calculations using vector calculus that appear in plasma physics, fluid dynamics, and other
fields sometimes can become extremely complex. Even though there are no difficulties in principle in performing
these complicated calculations by human brain-power, practically it is often too involved to get the right result
in an affordable amount of time.

The complexity usually originates from both the vector operations themselves and the underlying coordinate
systems. An example would be the linearized ideal MHD (magnetohydrodynamics) motion equation for a
magnetized plasma [1],

~w’p =F(£), (n
where the linear operator F acting on a displacement vector £ is given by
1 1
F(&) =V(ypoV-&+&-Vpo) + 4—7—T(V x @) x By + 4—7;(V x Bo) x @, (2)
and
0=V x(£xBy). (3)

By here is a given magnetic field, and p is a scalar pressure. They both are functions of spatial position. The
spectrum of F determines a wide range of physical phenomena, from the waves propagating in interplanetary
space to the instabilities of fusion devices. In the simplest situation where By is uniform, the computation
required to obtain the spectrum of operator F is already considerable. For a general By field, the number of
terms involved in the process of obtaining the expression for F can be of the order of 500. In a realistic
inhomogeneous By field such as that in a fusion device like a tokamak, the task of finding the spectrum is
too herculean to be analytically doable when the underlying coordinate system is chosen to be either flux
coordinates or Shafranov coordinates. This much needed calculation has never been done analytically, not
because it is analytically impossible, but rather because it is too algebraically involved. Even for the simpler
case where the magnetic flux surfaces are assumed to be circular and concentric, the only available result is the
instability criterion analysis using the energy principle by Bussac et al. [2] in 1975. More complicated vector
calculus computations can be found in plasma kinetic theory.

However, in most cases the required analytic calculation can be finished in a finite number of steps through
a prescribed process. The total number of terms and basic computations needed could be as large as 10000,
yet it is still finite. It is this very fact that suggests the possibility of performing these complicated symbolic
calculations automatically on computers.
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The ideal of performing non-numerical scientific computations using computers is not new at all. However,
only in recent years has this field gained attention in the scientific community. A wide variety of applications
have been found in biology, chemistry, and physics. Important applications in physics include tensor calculations
in general relativity and the evaluation of Feynman diagrams. In plasma physics, computer algebra made its
debut in the analytical formalism of the PEST code [3]. Compared with scientific numerical computation,
scientific symbolic computation is still in a preliminary phase. More new applications are expected as advanced
system become available and efficient algorithms are discovered.

To implement automatic symbolic vector analysis in general coordinate systems, we need a simple and
systematic mathematical framework. The modern viewpoint of 3D vector calculus, differential forms on 3-
manifolds, is utilized for this purpose. On the other hand, a well-developed high level programming language
with a symbolic computation capability is also necessary. To the end, we chose Mathematica by the Wolfram
Research Inc. [4].

We have developed the GeneralVectorAnalysis (GVA) Mathematica package, and used it in the analytical
derivation of plasma gyrokinetic-MHD theory. Compared with the Calculus‘VectorAnalysis’ package provided
by Wolfram Research as a standard add-on package, our package GVA is more advanced and efficient. The
standard Calculus‘VectorAnalysis’ package works only on 14 standard right-handed orthogonal coordinate
systems, while our package GVA works on any mathematically well-defined coordinate system, including
all the standard right-handed orthogonal 3D coordinate systems as well as on non-standard, non-orthogonal
coordinate systems such as the magnetic flux coordinate system used extensively in fusion plasma calculations.
Moreover, users can define their own coordinate systems to work on. This unique ability will be appreciated
by researchers in different fields where non-standard coordinate systems are needed. Since mathematically a
modern viewpoint is used, the algorithm inside GVA is also more general and efficient. New features like
the asymptotic analysis capability and 2D vector analysis notation also make this package more applicable
to realistic physical and engineering problems. Similar comparison can be made with other existing computer
algebra packages for vector analysis, such as the VECT using MACSYMA [5] and the ORTHOVEC using
REDUCE [6,7]. Normally, these packages work for a set of predefined orthogonal coordinate systems.

GVA is designed for analytical study for complicated vector calculus in complicated coordinate systems.
A good example is the coordinate system for tokamak plasmas discussed in detail in Section 4. The small
expansion parameter, inverse aspect ratio, commonly used in tokamak physics is embedded in the definition of
the coordination system. The same parameter also exists in the equilibrium magnetic field. To facilitate the vector
analysis involved in the MHD model and plasma kinetic theory, the computer algebra package should provide
a simple mechanism for users to set up coordinate systems themselves for their special needs. For example,
one may want to incorporate a Shafranov shift model into the flux coordinate systems or keep different orders
in the expansion with respect to the inverse aspect ratio. It is simply impossible to predefine in the package
all possible coordinate systems that will be encountered by users. GVA provides the much needed interface
to let users to define any mathematically well-defined coordinate systems with (expansion) parameters, and
carries out vector analysis in the coordinate system accordingly. We note that the linalg package of Maple [8]
allows users to define new coordinate systems by providing the mapping between the new coordinate system
and the Cartesian coordinate system. For complicated coordinate systems, especially those coordinate systems
with (expansion) parameters, defining new coordinate systems by transformations could introduce some extra
complexities. In GVA, coordinate sysiem is defined in a much more transparent way. A coordinate system is
simply defined by itself through its metric matrix. In terms of user interface, we have for the first time build
the 2D conventional vector analysis notation into the GVA package.

The main difference between our package GVA and the Calculus‘VectorAnalysis’ package by Wolfram
Research and other similar packages is the methodology. Our methodology is to look at the problem from a
higher viewpoint; thus a systematic treatment is possible. Modern concepts and systematic treatment inside the
GVA package provide us with more freedom and new utility, by which research time can be saved, accuracy
can be improved, analytic derivations otherwise impossible can be carried out, and thus researchers are able to
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concentrate on the meaningful physical results of their problems.

Computer algebra package for tensor analysis, such as Mathtensor [9] and Ricci [10] in Mathematica and
Riemann [11] and Tensor [8] in Maple, normally can deal with differential forms. Therefore, in principle,
these packages can also be used to perform vector analysis. However, the basic functions provided in these
packages are often too general for vector analysis in R?. For example, the Vx operations is usually not defined
in general dimension. On the other hand, GVA makes use of the mathematical simplicity of the differential
form viewpoint, but is specialized for the 3D vector analysis. This enables us to build into the system more
efficient functions, such as the asymptotic capability and the interface for users to define their own coordinate
systems.

In Section 2, the basic mathematical formulas are summarized in the framework of differential forms on
a 3-manifold. The advantages of the modern viewpoint will also be discussed. The realization of the basic
algorithm using Mathematica is discussed in Section 3. In Section 4, several applications of this GVA package
to plasma physics are given.

2. The mathematics of vector calculus in general coordinate systems

In this section we briefly summarize the theory of vector calculus using the language of differential forms
on 3-manifolds [12,13]. Basics vector calculus formulas are derived in this framework.

A vector field space is isomorphic with a 1-form space (i.e., its dual space, or 7§ tensor space) after
introducing the Riemann metric tensor. In a 3-manifold, the Hodge star operator maps a 1-form space one-one
onto a 2-form space, and a 0-form space one-one onto a 3-form space. If a vector field is viewed as a 1-form,
and a scalar field as a O-form, then all the elementary vector calculus operations can be expressed in terms of
the exterior product and the exterior derivative of differential forms.

Actually all physical vector fields can more naturally be treated as 1-forms. Let us demonstrate this idea
by considering the magnetic field B, for example. All the information we can get about the B field is from
first-hand experimental measurements. What we can directly measure is the strength of B in any given direction.
Usually the strengths along different directions are different. In another words, what we can really measure as
the B field is nothing but a function of the spatial direction. We can confirm that this function is linear from
the measurement data. Therefore, B is indeed a 1-form. Only after the introduction of a metric (the Riemann
metric tensor), can this 1-form be identified with a vector field [14].

In R3, a well-defined coordinate system is given by three independent scalar functions, x'(r), x2(r), and
x3(r) with Vx!' - (Vx? x Vx*) nonvanishing everywhere. A coordinate system is uniquely determined by its
Riemann metric matrix g;;, or the inverse of the Riemann metric matrix g¥, defined by

gij=¢€-ej, 4
gl=e e =Vx Vi, (5)

where the e; and e’ are the basis and the dual basis, respectively.
A vector field is specified by (a;(x),az(x),a3(x)), in the form of a 1-form,

A=a dx' + aydx* + az dx’. (6)
The Hodge star operator maps it into a 2-form,
*A=J(d dx' dx* + a' dx? dx® + a* dxP dx") (7
where J = \/det|g;;], a' = g”a;, i, j = 1,2,3. The image of *A under the Hodge star operator is 4 itself, i.e.,
*x A=A. (8)
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A scalar field f is viewed as a 0-form, on which the Hodge star operator is
xf=Jfdx"dx*dx’. (9)
Also, we have

xx f=f. (10)

The 1-form of a vector field is its covariant representation; on the other hand, the 2-form of the same vector
field is its contravariant representation. Similarly, the O-form of a scalar field is its covariant representation
while the 3-form of it is its contravariant representation.

The correspondence between vector calculus operations and differential forms operations can be summarized
as following:

Ax B &> x(AB) = (Ax B)"=(e;AiB))/J, (11)
A-B <= *x(A(xB))=> (A -B)=AB’, (12)
Vf <= xdf = (V[)i=df/ox', (13)
V.-A < xd(xA) = V- -A=(3JA/ax')/J, (14)
V x A<= xdA = (V x A)X = (ey;dA! fox') /] . (15)

The third column in the above equations constitutes the basic formulas which will appear in the GVA
package. The derivations of these equations are trivial from the corresponding differential forms representations
in the second column. The advantage of the differential forms formalism for 3D vector calculus is obvious by
comparing the derivations of the basic formulas given here and the derivations which do not using this modern
technique [15].

The differential form formalism of 3D vector calculus also makes it possible to perform coordinate inde-
pendent vector analysis using the computer, because the basic vector calculus identities can be unified and
systemized in the language of differential forms. As we know,

V(fe)=fVg+gVf, (16)

V-(fA)=fV-A+A-Vf, 17

Vx(fA)=fVXxA+VfxA, (18)
and

V- (AxB)=B - VxA-A-VxB, (19)

are nothing but the chain rule for differential forms,
d(w8) = (dw)f + (—1)% “wd8. (20)

The formulas V-V x A =0 and V x (V f) =0 are nothing but dde = 0.

The viewpoint of differential form is productive as evident from the following example. We prove the
existence of the Clebsch magnetic coordinates {16] as following: because *B is closed (i.e. d(xB) = 0),
in a starshaped region there exists an A such that *B = dA (Poincare lemma). According to the Darboux
theorem [17], there exist three independent scalar functions «, 8, and v such that A = @ d8 + 7y, and therefore
*B = dadB; a and B are thus the Clebsch coordinates for the magnetic field.
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B Automatic Symbolic Vector Analysis ( demo 1) j

Load in the GeneralVectorAnalysis package j

In[1}:= << ~/mathematica/General VectorAnalysis.m jq

Conventional vector analysis notation is built in. 3

Inf[2]:= FullForm/@{a-(b+c), (a+d}x(bxc)} 37
]

Out[2]= {DotProduct[a, Plusfb, c]], CrossProduct{Plus[a, d], CrossProduct[b, c]]}

In{3):= FullForm/@{V x(a + ax(bxc)), V -(a+ bxd)}
Qut[3]= [Curl{Plus{a, CrossProductfa, CrossProduct[b, c]}}l,
Div{Plus{a, CrossProduct[b, d]11}

L

At

In[4]:= FullForm/@{V? (f g), A, |B|, Jr])
Out[4}= {Laplacian[Times{f, g]], UnitVector[A], AbsoluteValue[B], Jacobian[r]}

[

i A Lt

Vector calculations independent of coordinate system.

In[5):= DeclareVector[A, By, B,C, D, E,F, G, H, ], £, QJ; j
DeclareScalar{a, b, ¢, d, ¢, f, g, h]
In[6]:= {AxA, A-(AxC), Vx(Vf), V-(VxA), VectorExpand[A x(BxC)]}
Out[6]= {0.0,0,0,-CA-B+BA-C} i
In[7]:= VectorExpand/@{Ax(BxC)+Bx(CxA)+ Cx(AxB), (AxB)x(CxD),
V - (f(AxB + ¥xC))}

Out[7]= {0, =D A-(BxC) + C A-(BxD),
~fA-(VxB)+[B-(VxA)+(AxB)- (V) +(VxC)- (V)

An example from ideal magnetohydrodynamics

HE NEET R

In[8:= V-(By)=0; Q=Vx({xBp), J=VxQ
Out[8]= V x(V x(£x(By))

In[9]:= VectorExpand[J}
Out[9]= ~(V(V-£)x(By) =V x((£-V)(By)) +Vx((Bp)-V)E) -V x(By) V - £

A A A 4
)

Fig. 1. Mathematica notebook GVA.demol.nb.

3. The realization of automatic symbolic analysis in general coordinate systems in the context of
Mathematica

In the context of Mathematica, the realization of symbolic vector analysis in general coordinate systems is a
Mathematica add-on package, GeneralVectorAnalysis (GVA), which provides users with about 20 functions to
perform vector operations.

We have for the first time built the 2D conventional vector analysis notation into our system. For examples,
instead of calling the function Curl[A], we can use V x A; to call the function CovariantDerivative[ A, B],
we can just use (A-V)B. When the CoordinateSystem is set to “None”, GVA will perform coordinate
independent vector analysis. VectorExpand[ ] will expand a vector expression into the canonical form, using all
the known vector identities (see Fig. 1). A coordinate system is defined by the inverse Riemann metric matrix.
Frequently used coordinate systems such as the Cartesian coordinate system, the cylindrical coordinate system,
and the spherical coordinate system are built into GVA. A coordinate system has to be chosen before any vector
operations can be correctly performed. To choose a coordinate system, use the function SetCoordinateSystem[ ].
For example,

SetCoordinateSystem [ “Cartesian”] [x, v, 7 |
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s

v

Fig. 2. Circular concentric tokamak coordinate system.
chooses the Cartesian coordinates, and uses x, y, and z as the three coordinates. Users can easily define their
own coordinate systems by providing the corresponding inverse Riemann metric matrices. For instance,

DefineCoordinateSystem[*“Tokamak™] [ Ry, €][r, 8, {']

s(6 2 g 2.2
H{I,0,0}, {0,772,0},{0,0, Ry™2 — 2’“]’:(3 e CO;(4) 4 0(6)3}}]
o 0

defines the usual circular concentric coordinate system for tokamak geometry with expansion to O(€?), where
€ is the inverse aspect ratio. As is obvious from this example, asymptotic analysis is supported in GVA. The
Riemann metric matrix can be a series expansion to any order. All the vector operations will consequently be
carried out to the same order. This is an extremely powerful feature of this package. In practice, the coordinate
systems could be complicated, and asymptotic treatment is often required. This is what happens in the coordinate
system for fusion devices like tokamaks. For the purpose of applications to fusion plasma physics, the “straight”
tokamak coordinate system and several other tokamak coordinate systems are built in as well. We can use

SetCoordinateSystem [ “TKCircular”,Ro, €] [ 7.8, {']

to choose the conventional coordinate system for a large aspect-ratio tokamak with circular, concentric flux
surfaces as shown in Fig. 2. The parameter € will be used as the small asymptotic expansion parameter.
All vector operations can be carried out to a chosen order of e. In the GVA package, a vector object has
the form Vector[{a), a2, a3}, {a',a*,a’}]. {a,az, a3} are the covariant components, and {a', a2, @’} are the
contravariant ones. Since a vector is not a simple scalar function, it must be created by the DefineVector[ ]
function, or as a result of vector operations. The following two functions first set up the cylindrical coordinate
system and create a vector A using its covariant components:

SetCoordinateSystem[ “Cylindrical”] [r,0,z],
Alr,0,z] = DefineVector[ 1, A,[r,0,2],Ap[r,0,2],A,[r.0,2]].

To create a vector using its contravariant components, we use the constant 2 as the first argument of Defin-
eVector{ ] instead:

B[r,9, z] = DefineVector[2, B"[r,8,2],B%[r. 8,21, B*[r,8,2]] .

The vector operation functions of GVA are easy to use. To calculate the cross product of A and B and name
the result as C, for instance, we execute
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Clr,8,z] =A[r,0,z] x B[r,8,2].
The command

D(r,8,z]1 =A[r,0,z] xV x B[r,0,z]

gives the result of the cross product between A and V x B as D.

The elementary functions provided by GVA are listed below:

- DefineCoordinateSystem[ “Coordsys”,p1, p21[cl1,c2,c3][g] defines a “Coordsys” coordinate with coordi-
nates cl, ¢2, c3, parameters p1l, p2, and metric matrix g.

~ SetCoordinateSystem[ “Coordsys”,p1, p2}{cl,c2,c3] sets up a “Coordsys” coordinate with coordinates
cl,c2,c3 and parameters pl, p2.

- Metric[1][cl,c2, c3] is the metric matrix g;;;
Metric[2][cl,c2, 3] is the metric matrix g".

- Jacobian[cl, ¢2, c3] gives the Jacobian.

~ Christoffel[1][c1, ¢2,¢3] is the Christoffel symbol of the 1st kind;
Christoffel[2][c1, ¢2, ¢3] is the Christoffel symbol of the 2nd kind.

- DefineVector[1, Al, A2, A3] defines a vector with A1, A2, A3 as its covariant components;
DefineVector[2, Al, A2, A3] defines a vector with Al, A2, A3 as its contravariant components.

- DotProduct[ A, B] or A - B gives the dot product.

~ CrossProduct[ A, B] or A x B gives the cross product.

~ Grad] f] or V f gives the gradient of the scalar f.

~ Div[A] or V - A gives the divergence of the vector A.

- CurlfA] or V x A gives the curl of the vector A.

- CovariantDerivative[ A, x] or (A - V)x gives the directional derivative of x in the A direction. x is either a
scalar or a vector.

~ Laplacian[ f] or V2f gives the Laplacian of the scalar f.

- AbsoluteValue[A] or | A | gives the absolute value of the vector A.

— UnitVector[A] or A gives the normalized vector in the direction of A.

- Parallel[ A, B] gives the projection of A in the direction of B. It returns a scalar.

- Perp[ A, B] gives the perpendicular components of A with respect to B. It returns a vector.

~ VectorExpand[ A] expands the vector expression A into canonical form.

4. Applications to plasma physics

A lot of problems in theoretical plasma physics require substantial amount of vector analysis, as in the
example discussed in Section 1. In many situations, the real physics is camouflaged under the drudgery work
of algebra, What makes things worse is that quite often we have to make some assumptions to simplify the
algebra, with the risk of losing some important physical effects. We employ three examples here to demonstrate
how the GVA package can be used to facilitate tedious algebraic derivations such that we can focus directly on
the underlying physics.

4.1. Application I: ideal MHD waves in a homogeneous magnetized plasma

As the simplest application of the GVA package, we examine the ideal MHD waves in a homogeneous
magnetized plasma. With the help of GVA, the things we need to do are simply to set up a coordinate system
and field variables, and to define the linear force operator, as is done in the Mathematica notebook file wave.nb.
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m Ideal MHD Waves in a Magnetized Plasma

Load in the GeneralVectorAnalysis package, set up coordinate system and
field variables

In{1]:= << ~/mathematica/GeneralVectorAnalysis.m T
SetCoordinateSystem{"Cartesian"][x, y, z]; <
In[3}:= By = DefineVector(l, Bx, By, Bz ]. j
In[4):= &[x, y, z] = Expll(Kx x+ Ky y + Ky z)}DefineVector{l, &x, &, & ); j
Define the linear force operator: j
A
In(Sk= Fié_1:=(Q = ¥ x(xBo);
v B V x(B
(VxQ)x (Bo) R (Vx(BynxQ FVE-Tp +ypV -6 )
4 4n N
Create the matrix for the force operator, solve for the eigenvalues : j
Fl¢x, v, z]] N
In[6]:= force = Expand[~ P Expll (K x+ Ky y K3 2] ], |
In[7]:= matrix = j
Table[Coefficient[force[ 1, i], Switch[j, L, £x, 2, &v, 3, &z11, {i, 3}, {j, 311,
In{8]:= eigenfreq = FullSimplify[Expand(Eigenvalues[matrix]]] ‘14
(Bx Kx +By Ky +Bz Kz ) S
QOut[8]= { ,
4rp

1
W(p(4p7‘r7+B§( +BY +BI)(KE +K2 +K2)-

V{6® (& + K% +K5)(<16p 7y (Bx Kx +By Ky +Bz Kz)’ +
(4pny+B% +BY +B%‘)2 Ky +K§ +KD)
1
87 p?
(p@pmy+B% +B} +BL)(G +K} +K3) +

V(0 K& + K} +K2) (<16 pmy (Bx Kx +By Ky +B; Kz)? +

(4pry+Bk +B +B3) (K& +K} +K2)))

o

Fig. 3. Mathematica notebook waves.nb.

The rest of the file is pretty straightforward (see Fig. 3). It is easy to see that there are three eigenmodes; the
first one is the shear Alfven wave, the second one is the slow magnetosonic wave, and the last one is the fast
magnetosonic wave.

4.2. Application 1I: particle drift motions in tokamaks

In a large aspect ratio tokamak, the inverse aspect ratio € is usually used as the small parameter for asymptotic
approximation. The capability of asymptotic analysis is built into the GVA package. As a demonstration, we
calculate the particle drift velocity in tokamaks to the order O(€?). Again, the things we need to do are simple:
loading in the GVA package, setting up the coordinate system and B field, and defining the drift velocity. This
is all done in the Mathematica notebook file drift.nb (see Fig. 4). The physics is clear from the output. The
drift in the radial direction is caused by the toroidicity, and is of order O(e€),; the O(€) order poloidal drift is
a result of the toroidicity also, and the O(e®) order poloidal drift is the result of the weak poloidal field. The
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B Drift Motion in a Tokamak

Load in the GeneralVectorAnalysis package

In[l]:= << ~/mathematica/GeneralVectorAnalysis.m
Define the circular concentric coordinate system for a large aspect ratio
tokamak, keep terms up to the order O (€?).

In[2):= DefineCoordinateSystem|"Tokamak", Ry, €][r, 6, qp][{(l. 0, 0},

1 I 2(Cos[8he 312 Cos[d)? &
{o. ot 0}. {0. 0, 7 w + w

Set up the coordinate system for a large aspect ratio tokamak,

+0[el’ }}]

calculate every operation to the order O (¢?).

In{3]:= SetCoordinateSystem["Tokamak", Ry, €][r, 8. ¢];

In{4}:= Needs["Utilities‘Notation‘"]
Symbolize[ T, ] ; Symbolize[T. ]; Symbolize[B1];

Set up the model equilibrium
er? By
Ry qlr] (1 + - Cosl6))’

Define the guiding center drift velocity:

In[6]:= B = DefineVector|1, 0, Series| {6, 0,2)]. Bo Ro;

In[7):= b = Simplify[B];

" c2T,
m bx V{B|); Vc = mb x ((b-V)b);
Vd = FullSimplify[Vg + Vcl;

To the order O(e?), the covariant form of drift velocity is :

In{8]:= Vg =

In[9]:= Vd[1]
¢(2T, +T,)Sin[8) e 3 cr(2T, +T,)Cos[f)e
e LY [ +
ByeRy Bp eRg
cr? (2T, +T)qlr]~r T, ¢ [r]) € .\
Bo eqlrl’ R}
cr(2T, +T.)Cos[8] €
Bo eqfrl Rg

Outf9)= {-

3

Ole]”.

+O[el’}

Fig. 4. Mathematica notebook drift.nb.

drift in the toroidal direction is of order O(€?) and is caused by the toroidicity; this is the higher-order toroidal

precession.

4.3. Application Ill: analytic derivation of gyrokinetic-MHD formalism

The direct motivation for developing this GVA package is to automate the sophisticated vector analysis
appearing in the full gyrokinetic-MHD theory {18,19]. We have derived the gyrokinetic moment equation with

all the important physical factors as

LA
| T " S R Y I '

|
o 1

e b b AL A L A Ll Ad) A

A4

a [c? 1 c (VxVxA) By Joj
-2 [EV' (v_g‘w)] (B ) - +(TAy x ) - VL
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and the perturbed distribution functions f; for species j will be solved for as functions of ¢, ¢, and the
velocity space independent variables, E and u, from the gyrokinetic equation [18,19], where ¢ is the perturbed
electrostatic potential, | is defined by the perturbed vector potential Ay as A = cky¥)/w, E is the energy,
and u is the magnetic moment. The special case of this equation when all the kinetic effects are neglected can
also be derived from the ideal MHD equations. Many physics features are captured inside this equation. The
background inhomogeneity responsible for the TAE (Toroidal Alfven Eigenmode) modes, the kink instabilities,
and the density gradient instabilities are completely localized in the left-hand side, while the perturbed pressure
effects, the Landau damping effects, and the FLR (Finite Larmor Radius) effects appear on the right-hand
side of the equation. This equation will be a key to investigate systematically some bewildering questions in
today’s fusion plasma physics, such as the interaction between the hot kinetic particles produced in an ignited
tokamak and the long wavelength electromagnetic waves studied before using the ideal MHD theory. As one
can imagine, the lefi-hand side of this equation as a scalar function of ¢ and ¢ is extremely complicated
when applied to tokamak geometries. To study the TAE modes kinetically, we have to evaluate this equation
to order O(e). For internal kink modes, it has to be calculated to order O(€*). Even if assuming circular,
concentric flux surfaces, the total number of terms involved to order O(€?) is about 1000, which is obviously
problematic if calculating by hand. With the assistance of the GVA package, we can obtain the needed results
quickly with 100% accuracy. The simplest model equilibrium assumes circular concentric flux surfaces, and
uses the coordinates (r,8,¢) shown in Fig. 2.
The magnetic field is given by

BO r )
B=—2 (e, +——e ), (22)
h(8) ( TRy
where
h(O)=1+ecosf, e=—. (23)
Ro

Assuming the general 2D expansion

Wy #) = D _(Wn(r), dm(r)) me=mimier, (24)

we work out the left-hand side of the GKM equation in this coordinate system to the order O(e?). There are
more than 100 terms,

d [¢c? 1 c (VxVxA) B Jou

e o 0 0
- ind —imf —iwt 2 3 4
_Em:e" & < + 04>, (25)

RZ

where 0,, O3, O4, etc., are differential operators acting upon every pair of Y| m(r) and dm(r). Oz, Oz and O4
are O(€%), O(e') and O(€?), respectively. The expressions for these operators are printed out below:
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Some expressions similar to the right-hand side of Eq. (21) have been derived before to study TAE
modes [20-22]. Usually, only a few terms of the toroidal correction are kept. As we know from the ex-
pression for O3 above, there are 23 terms for the first order toroidat correction. Being aware of this problem,
Berk et al. {22] argued that keeping only the first order correction for the second derivative terms would be
sufficient to obtain the main features of the TAE modes. However, the instability criterion will be substantially
affected by other first order corrections. As for the internal kink modes, every term up to order O(€?) is
important.

5. Conclusions and future work

GVA has been tested and has proved to be reliable and efficient in doing automatic symbolic calculation in
general coordinate systems for those problems where the real physics contained in the basic starting equations
is Soscored vy e rompheriy o6 Yop DEvabeD D3Eree. 0> DSESOIRESS Y 1EUYIDR DOY 2SYIUDDNE IpEyss om
practical problems is greatly appreciated. In the field of fusion plasma physics, most of the important physics
phenomena happen in order O(€) and O(€?), or even O(€*). Many more applications of the GVA are expected
in this area. New functions such as SimplfyVector will be added in so that the capability of doing coordinate
independent vector calculus derivations will be enhanced. In the framework of the differential forms formalism,
we believe that there are no difficulties in principle in implementing these functions. Further documents related
to the GVA package are available at http://w3.pppl.gov/~hongqin/.
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