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Linear gyrokinetic theory for kinetic magnetohydrodynamic eigenmodes
in tokamak plasmas
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A two-dimensional~2D! numerical solution method is developed for the recently derived linear
gyrokinetic system which describes arbitrary wavelength electromagnetic perturbations in tokamak
plasmas. The system consists of the gyrokinetic equation, the gyrokinetic Poisson equation, and the
gyrokinetic moment equation. Since familiar magnetohydrodynamic~MHD! results can be
recovered entirely from this gyrokinetic model, and all interesting kinetic effects are intrinsically
included, this gyrokinetic system offers an approach for kinetic MHD phenomena which is more
rigorous, self-consistent, and comprehensive than the previous hybrid models. Meanwhile, drift type
microinstabilities can be also investigated systematically in this theoretical framework. The linear
gyrokinetic equation is solved for the distribution function in terms of the perturbed fields by
integrating along unperturbed particle orbits. The solution is substituted back into the gyrokinetic
moment equation and the gyrokinetic Poisson equation. When the boundary conditions are
incorporated, an eigenvalue problem is formed. The resulting numerical code, KIN-2DEM, is
applied to kinetic ballooning modes, internal kink modes, and toroidal Alfve´n eigenmodes~TAEs!.
The numerical results are benchmarked against the well-established FULL code@G. Rewoldt, W. M.
Tang, and M. S. Chance, Phys. Fluids25, 480~1982!#, the PEST code@J. Manickam, Nucl. Fusion
24, 595 ~1984!#, and the NOVA-K code@C. Z. Cheng, Phys. Rep.211, No. 1 ~1992!#. More
importantly, kinetic effects on MHD modes can be investigated nonperturbatively. In particular, the
kinetic effects of the background plasma on internal kink modes and the hot particle destabilization
of TAEs are studied numerically. ©1999 American Institute of Physics.
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I. INTRODUCTION

Recent experimental and theoretical studies have dem
strated that a kinetic description for electromagnetic mo
in tokamak plasmas is important for the understand
of electromagnetic drift waves and kinetic-magn
ohydrodynamic~MHD! phenomena. Finiteb effects for the
electrostatic drift wave were first addressed by Rosenb
and Sloan.1 Tang2 pointed out three physical mechanism
due to the finite plasmab that are important: the diamagnet
or ‘‘self-dug’’ well generated by plasma pressure, t
Shafranov shift of flux surfaces, and the coupling betwe
drift waves and shear Alfve´n waves. While the diamagneti
well and the Shafranov shift are equilibrium effects whi
can be incorporated by using realistic MHD equilibrium s
lutions, the coupling between drift waves and Alfve´n waves
is a dynamic effect. To investigate this coupling, we have
use an electromagnetic equation system. The finiteb effect
on drift modes is generally found to be stabilizing. For e
ample, examination of electromagnetich i modes in slab
geometry3 and in toroidal geometry4,5 revealed that increas
ing plasmab can provide a stabilizing effect, especial
when finite Larmor radius~FLR! effects for ions become
important.

As tokamaks approach ignition conditions, the physi
effects due to energetic particles become more and m
prominent. It has been discovered in the past two deca
that the interplay between the kinetic effects described by
Vlasov–Maxwell system and the fluid modes determined
the MHD model produces a new breed of instabilities
2541070-664X/99/6(6)/2544/19/$15.00
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kinetic MHD modes. The fishbone mode is probably the fi
kinetic MHD mode observed in tokamak plasmas.6 The ob-
served fishbone bursts are strongly correlated with losse
injected energetic beam ions. The study of fishbone mode
of practical interest because the losses of energetic beam
reduce the plasmab significantly. Experimental evidenc
also showed the dominant mode structure to be a (m,n)
5(1,1) mode. Chenet al.7 first used a kinetic MHD mode
to explain theoretically the fishbone oscillations. It w
found that trapped energetic particles can destabilize the
ternal kink mode.

Another well-known example of kinetic MHD modes
the toroidal Alfvén eigenmode~TAE!.8 TAEs can be desta
bilized by alpha particles and other energetic particles w
the pressure of energetic particles is high enough.9,10 This
conclusion could have serious implications for ignited fusi
reactors. Unstable TAE modes, driven by energetic partic
can induce significant energetic particle losses which ma
turn reduce plasmab and damage the reactor wall. Bot
experimental and theoretical studies confirmed that T
modes can lead to 80% of the energetic particle transpo
present tokamaks.11

The well-studied kinetic ballooning mode~KBM ! also
falls into the category of kinetic MHD modes. Kinetic ba
looning mode theory in general geometry was introduced
Tanget al.12 and Friemanet al.13 as a systematic procedur
for studying the influence of kinetic effects on the stability
MHD ballooning modes. A numerical analysis for the kine
ballooning mode was performed by Rewoldtet al.4 The ki-
4 © 1999 American Institute of Physics
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netic ballooning modes can be driven unstable by kine
effects such as trapped particles and temperature grad
when the plasmab is above some critical value. Therefor
study of kinetic ballooning modes is important in unde
standing the plasmab limit imposed by it.

The interaction between energetic particles and sawto
crashes is also a current topic in kinetic MHD theory. T
sawtooth instability can often result in major disruptio
which terminate plasma discharges. It limits the current d
sity on the magnetic axis and produces large-scale trans
in the core plasma. Recent experiments in Joint Europ
Torus~JET! discovered that energetic particles heated by
Cyclotron Resonance Frequency~ICRF! waves have a strong
stabilizing effect on the resistive internal kink mode.14 The
JET results were confirmed numerically by Whiteet al., us-
ing a kinetic MHD simulation.15

The current methods used for kinetic MHD instabiliti
are mostly hybrid ones,7,10,16,17and are generally perturbativ
extensions to MHD models. There, energetic particles
assumed to have a much smallerb than the bulk plasma
Energetic particles interact with the bulk plasma through
¹P term in the MHD equation, that is, replacing¹P by
¹(P1Ph), where Ph is the pressure of ‘‘hot’’ particles
which is solved for from the gyrokinetic equation or the dr
kinetic equation in terms of the perturbed electromagn
field. In many applications, the coupled equation system
not solved self-consistently.10,18–20 Especially in analytical
calculations,7 eigenfrequencies are often not calculated s
consistently from the eigenequations, but rather are estim
from a kinetically modified version of the usual MHD energ
integral. Moreover, kinetic effects are usually assumed to
small and the mode structures are assumed to be no diffe
than those of the corresponding pure MHD modes. Only
eigenfrequencies are perturbed. A standard hybrid kin
MHD model is dominantly a MHD model with small kineti
perturbations. Different kinetic MHD models differ in how
the MHD system is kinetically perturbed. The mathemati
validity of such approaches cannot be justified rigorous
even though the physics insight is very productive.

Hybrid models have some serious limitations, all
which are related to the basic assumption that kinetic effe
are small perturbations for the MHD modes. Since kine
effects enter only through the¹P term in the MHD equa-
tions, the basic characteristics of the MHD model are
changed. With the introduction and increased use of h
power auxiliary heating techniques such as neutral beam
jection and ion cyclotron resonant heating, modern tokam
contain large number of energetic particles. Inevitably, fut
ignited fusion reactors will involve many more energetic p
ticles. It is generally agreed that these energetic parti
cannot be described by the MHD model. The large num
of energetic particles and their strong interaction with
bulk plasma may prohibit the use of the MHD descripti
even for the bulk plasmas.

The restrictions of the MHD model include the lack
kinetic resonances and the inaccuracy in its description
parallel dynamics. Kinetic resonances, such as Lan
damping, are obviously important. For the fluid model to
valid, there must be some kind of force to ‘‘glue’’ particle
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
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together so that a group of nearby particles can be treate
a fluid element. In a collisionless plasma, the Lorentz fo
acts as such a ‘‘glue’’ in the perpendicular directions. Ho
ever, in the parallel direction, the particles are almost fr
streaming. A fluid model is not valid in the parallel directio
This inaccuracy in the MHD model is partially manifested
the fact that, for MHD modes,Ei50. As we know, parallel
dynamics are controlled by kinetic resonances and para
accelerations. Since kinetic resonances are not included
standard fluid model, the parallel acceleration must van
This results in an infinite conductivity in the parallel dire
tion when there are no Coulomb collisions.

All these shortcomings associated with the standard fl
model can be readily overcome by the Vlasov–Maxwell s
tem. A fully kinetic model naturally picks up all the kineti
effects. But in order to address the kinetic MHD problem
the kinetic system must be an electromagnetic system w
includes the kinetic equation and all of the Maxwell equ
tions. This could complicate the problem significantly, esp
cially in general geometry. This kind of complication is e
pected because the full Vlasov–Maxwell system essenti
covers almost all the interesting problems in tokamak pl
mas. The more general the model, the less tractable it is

Substantial progress in this area has been made sinc
1980s. An electromagnetic gyrokinetic equation was deriv
by Catto et al.,21 and Antonsenet al.22 Gyrokinetic theory
takes advantage of the fact that, in a strongly magneti
plasma, particles’ gyroradii are much smaller than the sc
length of the total magnetic field. The fast time scale gy
motion is averaged out from the system.~New developments
of gyrokinetic perpendicular dynamics which extend the g
rokinetic model to compressional Alfve´n modes and arbi-
trary frequency modes are reported in Ref. 23.! In the mean-
time, a fully kinetic model and a comprehensive numeri
code for high-n kinetic ballooning modes were
developed.4,12,13,24It represented the first fully kinetic mode
for low frequency electromagnetic instabilities. It was show
to be reducible to the MHD ballooning equation in som
reasonable limits. MHD results can be recovered comple
from the kinetic side. On the other hand, kinetic effects d
to trapped particles, temperature gradients, and Lan
damping were fully retained. The kinetic MHD phenome
in these modes were studied without using the MHD eq
tions.

The kinetic ballooning model circumvents the geome
problem by looking at only high mode number balloonin
modes. Because the mode wavelength is much shorter
the equilibrium scale length, some background variations
not important at all. This is not true for low mode numb
global modes, the study of which requires us to consider
possible background variations. Previous gyrokinetic eq
tions were mainly derived for the high mode number~i.e.,
short wavelength! modes,21,22,25–35for which some of the
background inhomogeneities are not important and are
out. However, the most crucial physical factors driving t
long wavelength modes, such as the toroidal Alfv´n
eigenmode8,9 and the internal kink mode,36–38 are the back-
ground inhomogeneities which include the inhomogenei
of the magnetic field, temperature, and density. Part of
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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inhomogeneity of the magnetic field enters through the c
rent distribution. For this purpose, we have to reexamine
basic gyrokinetic equation system as well. For the elec
magnetic drift waves, a comprehensive gyrokinetic syst
which can fully recover the MHD modes is needed to stu
the interaction between drift modes and Alfve´n waves. Such
a system only exists for high mode number balloon
modes.4,24

Furthermore, in magnetized plasmas there exist a lo
multi-scale-length modes. Actually, the well-known intern
kink mode is indeed a multi-scale-length mode. For an
stable internal kink mode, there is a boundary layer aro
the rational surface, inside which the scale length is m
shorter than that outside. FLR effects are important ins
the boundary layer, whereas, outside the boundary layer,
just a long wavelength MHD mode. Obviously this structu
cannot be described by the conventional approaches, ne
the long wavelength ideal MHD theory nor the short wav
length kinetic theory. An arbitrary wavelength kinetic a
proach will provide us with a tool for this kind of multi
scale-length structure.

Recently, we derived a linear gyrokinetic system for
bitrary wavelength electromagnetic perturbations using
phase space Lagrangian Lie perturbation method which
lows us to treat the background variations and kinetic effe
rigorously.39,40 The system consists of the gyrokinetic equ
tion, the gyrokinetic Poisson equation, and the gyrokine
moment equation. Background variations are fully retain
in this model, and therefore the usual MHD model can
recovered from the gyrokinetic system when the kinetic
fects are neglected. Since familiar MHD modes can be
covered entirely from the kinetic side, and all kinetic effec
are intrinsically included, this gyrokinetic system offers
approach for kinetic MHD phenomena which is more rigo
ous, self-consistent, and comprehensive than the prev
hybrid models. Meanwhile, drift type microinstabilities an
their associated transport can also be investigated syste
cally in this theoretical framework. This gyrokinetic syste
is an arbitrary wavelength approach. It can be used to st
high mode number modes, global modes~low mode number
modes!, and intermediate mode number modes. It is the
fore suitable for those multi-scale-length structures. Not o
do we recover the existing results such as the electros
limit,41,42 the long wavelength limit,43 and the ballooning
limit, but also we can explore many new problems, for e
ample, the intermediate wavelength regime and the coup
between drift waves and shear Alfve´n waves.

In this paper, we describe the solution method for
linear eigenvalue problem and apply it to kinetic ballooni
modes, internal kink modes, and TAEs. The gyrokine
equation is solved for the perturbed distribution function
integrating along the unperturbed orbits. Substituting this
lution back into the gyrokinetic Poisson equation and
gyrokinetic moment equation yields the eigenmode equat
The eigenvalue problem is then solved by using a Fou
decomposition in the poloidal direction and a finite elem
method in the radial direction. A computer algebra packa
for symbolic vector analysis was developed as well in or
to efficiently deal with the complicated vector analysis. T
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
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resulting numerical code, KIN-2DEM, has been system
cally benchmarked against well-established codes in ap
priate parameter regimes. In the analysis of kinetic ballo
ing modes in the short wavelength limit~high-n with n being
the toroidal mode number!, numerical results from the KIN-
2DEM code are found to be in reasonable agreement w
those from the well known high-n FULL code.4 When ap-
plied to the internal kink mode, KIN-2DEM recovered MHD
results. Specially, numerical results from KIN-2DEM an
PEST code44 are consistent. When kinetic effects due
trapped ions are included, it is found that they can sign
cantly modify the growth rate~g! versus central safety facto
(q0) curve. Toroidal Alfvén eigenmodes~TAEs! were also
studied using the present gyrokinetic analysis. Both anal
and numerical results from the gyrokinetic model were fou
to agree very well with the MHD results. Destabilization
the TAEs by energetic particles are known to be vitally im
portant for ignition-class plasmas. For the test case w
Maxwellian energetic hydrogen ions, comparisons have
cordingly been made between the results from the pre
nonperturbative, fully kinetic calculation using the KIN
2DEM code and those from the perturbative hybrid calcu
tion with the NOVA-K code.9,10 The agreement varies with
hot particle thermal velocity. The discrepancy is mainly
tributed to the differences in the basic models.

The paper is organized as follows. In Sec. II, the ba
theoretical and numerical formalism is presented. Then,
kinetic ballooning mode is studied numerically in Sec. I
The internal kink mode and the TAE and their kinetic effec
are studied in Sec. IV and Sec. V, respectively. In the l
section, we summarize and discuss possible future work

II. BASIC FORMALISM

Most of the important long wavelength electromagne
modes in tokamak plasmas are shear Alfve´n waves, that is,
the parallel magnetic perturbation is much smaller than
perpendicular magnetic perturbation. Kink modes and TA
fall into this category. The gyrokinetic system for the she
Alfvén wave,39,40 previously derived using the phase spa
Lagrangian Lie perturbation method,28–35consists of the gy-
rokinetic equation, the gyrokinetic Poisson equation, and
gyrokinetic moment equation. We start from Littlejohn
guiding center phase space Lagrangian for magnetos
equilibrium. When the time-dependent electromagnetic p
turbation is introduced into the system, the phase space
grangian is perturbed accordingly. A symplectic gyrocen
transformation, which transfers the guiding center coor
nates into the gyrocenter coordinates,33–35 is then introduced
in such a way that in the new gyrocenter coordinates,
perturbed phase space Lagrangian has the same symp
structure as the unperturbed one. This effectively trans
the perturbation into the perturbed Hamiltonian while kee
the dynamic structure unperturbed. Consequently, the eff
of electromagnetic perturbation show up in the pull-ba
transformation as well, which are necessary for the corr
form of Maxwell’s equations in the gyrocenter coordinate
The physics associated with the pull-back transformati
first discovered in the form of polarization term in the gyr
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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kinetic Poisson equation by Lee,28 plays an important role in
the gyrokinetic formalism for the shear Alfve´n mode. Fol-
lowing the detailed algebra in Refs. 39 and 40, we can de
the gyrokinetic equation as

]g

]t
1~Ub1vd!•¹g5S cb

eB
3¹F0•¹2

]F0

]e

]

]t DH1 , ~1!

with

f 5g1H1

]F0

]e
,

~2!
H15eJ0f~X!2

e

c
J0UAi~X!5eJ0f~X!2

eU

iv
¹ iJ0c i ,

whereg is nonadiabatic part of the distribution function,H1

is the perturbed Hamiltonian, andF0 is the equilibrium dis-
tribution function which is assumed to be Maxwellian.
addition, we have replacedAi by another field variablec i ,
which is defined by

Ai5
c

iv
~¹c i! i . ~3!

The gyrokinetic Poisson equation takes the form of qua
neutrality condition,

(
j

eF E J0f d3v1
e

m
¹'

n0

V2
¹'f1

3e

4m

v t
2

V2

n0

V2
¹'

4 fG50.

~4!
Besides the gyrokinetic Poisson equation, we normally n
the parallel Ampere’s law to complete the system. Instead
using the parallel Ampere’s law directly, we combine it wi
the zeroth moment of the gyrokinetic equation to get
gyrokinetic moment equation~GKM! and use it as the third
equation in our equation system. This equation is often
ferred as the gyrokinetic moment equation, in spite of
fact that it is distinct from the gyrokinetic equation becau
Ampere’s law has been utilized to derive it. Without repe
ing the derivation in Refs. 39, 40, we have the gyrokine
moment equation as

2
]

]t F c2

4p
¹•S 1

VA
2

¹'f D G1
c

4p
~B•¹!

~¹3¹3A!•B

B2

1~¹Ai3b!•¹
j 0i

B

52(
j
E ~evd•¹ f ! j d3v1

1

4p

c2

vA
2 S 3v t

2

4V2D
i

¹'
4 ]f

]t

1B•¹F 1

B (
j

S e2n

mc

v t
2

2V2D
j

¹'
2 AiG1b

3(
j

¹S cen0v t
2

2BV2 D
j

•¹¹'
2 f, ~5!

where the e*vd•¹ f d3v is evaluated in (X,U,m,j)
coordinates.33–35,39,40In (X,e,m,j) coordinates, it should be
replaced by*(vd•¹ f 1mvd•¹B] f /]e)d3v, where e is ki-
netic energy. This gyrokinetic system provides a fully kine
description for shear Alfve´n modes and drift modes. It recov
ers familiar MHD modes entirely from the kinetic side, an
intrinsically includes all the kinetic effects, and therefore o
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
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The basic solution method is to solve the linear gyro
netic equation for the perturbed distribution function in term
of field variables, and substitute the solution back into the
quasi-neutrality condition and the gyrokinetic moment eq
tion. When combined with boundary conditions, an eige
value problem is formed. The equation system is finally
duced to a coupled Ordinary Differential Equation~ODE!
system in the radial direction, which is solved by a fin
element method. Cubic B-spline functions are chosen as
basis functions. The eigenvalue searching algorithm by T
and Rewoldt43 is used. This method has been successfu
applied to the kinetic theory of both short wavelength ele
tromagnetic modes4,24 and long wavelength electrostat
modes.41–43,45,46In the latter case, of course, the quasine
trality condition itself will complete the system; the gyrok
netic moment equation is not used.

We will assume the simplest tokamak geometry—
magnetic torus with circular concentric flux surfaces. T
coordinates used arer, u, andz, shown in Fig. 1.

The equilibrium magnetic field is given by

B5
B0

a~u! S ez1
r

q~r !R0
euD , ~6!

where

a~u![11e cosu, e[
r

R0
. ~7!

Since the toroidal direction is homogeneous, the toroi
mode number is a good quantum number for linear mo
and there is no toroidal coupling. We can assume the gen
2D expansion2

~f,c i!5(
m

~fm~r !,c im~r !!einz2 imu2 ivt. ~8!

We start from the gyrokinetic equation, Eq.~1!.
Introducing47

g5h2Fe
]F0

]e
2

c

ivB
¹F0•~b3¹!GJ0c i , ~9!

we obtain another gyrokinetic equation in terms ofh, for
which we will solve,

FIG. 1. Circular concentric tokamak coordinate system.
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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]h

]t
1~Ub1vd!•¹h

5S cb

eB
3¹F0•¹2

]F0

]e

]

]t D J0Ff2S 12
vd

v Dc iG , ~10!

where

vd[
1

i
vd•¹. ~11!

We adopt the method used by Marchandet al.41,42 to inte-
grate the electromagnetic gyrokinetic equation along unp
turbed orbits. The original method of Marchandet al. was
applied to electrostatic perturbations. Here, extra effor
needed to include the shear Alfve´n component.

Expandingf,c i in poloidal harmonics, we rewrite th
gyrokinetic equation forh as
dh

dt
52

ie

T
F0e2 ivt(

m
ei (nz2mu)H v2v* F11hS e

T
2

3

2D G J
3J0Ffm~r !2S 12

vd

v Dc im~r !G . ~12!

The solution forh is obtained by integrating fromt852`
to t85t along the unperturbed orbit in phase spa
(x8,v8)(t8) with (x8,v8)(t85t)5(x,v).

h~ t !5h̃ei (nz2vt), ~13!

h̃52
ie

T
F0(

m
E

2`

t

dt8ei [n(z82z)2m(u82u)2v(t82t)]

3e2 imuH v2v* F11hS e

T
2

3

2D G J J0Ffm~r 8!

2S 12
vd~u8!

v Dc im~r 8!G . ~14!

To be concise, we will not include here the detailed calcu
tion of the orbit integral. The final result is included in Ap
pendix A.

The left hand side of the gyrokinetic moment equation
a complicated function offm andc im . A newly developed
symbolic vector analysis package—General Vector Analy
~GVA!48—is used to calculate the analytic expression for
GVA can perform symbolic vector calculations in any ma
ematically well-defined coordinate system. In addition, a
calculation can be carried out in terms of an asymptotic
pansion to any order of a small parameter.

For the tokamak geometry, Eq.~6!, and the general 2D
expansion, Eq.~8!, the left hand side of the gyrokinetic mo
ment equation contains more than 100 terms.

2
]

]t F c2

4p
¹•S 1

VA
2

¹'f D G1
c

4p
~B•¹!

~¹3¹3A!•B

B2

1~¹3A!'•¹
j 0i

B

5
c2

iv4p (
m

einz2 imu2 ivtS O2

R0
2

1
O3

R0
3

1
O4

R0
4 D , ~15!

where
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O35D1eiu1U1e2 iu, ~16!

O45D2e2iu1U2e22iu1SC, ~17!

where O2 , O3 , O4 , etc. are differential operators actin
upon every pair ofc im(r ) and fm(r ). O2 , O3 and O4 are
O(e0), O(e1) andO(e2), respectively. TheO3 term can be
separated intoD1 which couples downward by one poloida
harmonic, andU1 which couples upward by one poloida
harmonic; theO4 term can be separated intoD2 which
couples downward by two poloidal harmonics,U2 which
couples upward by two poloidal harmonics, andSCwhich is
the self-coupling term.SC can be divided further into the
self-coupling term from a straight tokamakSCs and that
from toroidicity SCt, i.e., SC5SCs1SCt. Inside every
term, there are terms related toc i representing by subscrip
‘‘ c’’ and terms related tof representing by subscript ‘‘f.’’
For example,SCs5SCc

s 1SCf
s . The detailed expression

for O2 , O3 , O4 , and etc. are listed in Refs. 39, 40, and 4
Substituting the solution for the distribution function an

the result of symbolic vector analysis in the quasineutra
condition and the gyrokinetic moment equation, we obt
the follow ordinary differential equations,

(
m

e2 imuS Am
QNf Am

QNc

Am
Jf1Am

Ff Am
Jc1Am

FcD S fm9 ~r !

c im9 ~r !
D

1S Bm
QNf Bm

QNc

Bm
Jf1Bm

Ff Bm
Jc1Bm

FcD S fm8 ~r !

c im8 ~r !
D

1S Cm
QNf Cm

QNc

Cm
Jf1Cm

Ff Cm
Jc1Cm

FcD D fm~r !

c im~r !
D 50, ~18!

where superscriptsQN, J, andF refer to the quasineutrality
condition, terms on the gyrokinetic moment equation rela
to the current kink, and terms in the gyrokinetic mome
equation involving the distribution function, respectively.A,
B, andC are functions ofr andu. Since we have expandedf
andc i in poloidal harmonics, it is desirable to have an ord
nary differential system in terms of poloidal harmonics. O
erating with 1/2prdu exp@ipu# on the above equation, w
obtain a coupled ordinary differential equation system of
form

S Apm
QNf Apm

QNc

Apm
Jf 1Apm

Ff Apm
Jc 1Apm

Fc D S fm9 ~r !

c im9 ~r !
D

1S Bpm
QNf Bpm

QNc

Bpm
Jf 1Bpm

Ff Bpm
Jc 1Bpm

Fc D S fm8 ~r !

c im8 ~r !
D

1S Cpm
QNf Cpm

QNc

Cpm
Jf 1Cpm

Ff Cpm
Jc 1Cpm

Fc D S fm~r !

c im~r !
D 50. ~19!

The matrix elements are listed in Appendix B.
The eigenvalue problem for the coupled ODE system

solved using the finite element method. Cubic B-splines
used as the basis functions. After choosing the partition
the radial direction

D5$xL5x1,x2•••xN21,xN5xR%, ~20!
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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wherexL andxR are the left and right boundaries, andN is
number of radial knots, we expand the eigenfunctionsfm

and c im in terms of the basis functionsjk(x), (k
51,2,•••,N12),

fm5 (
k51

N12

gm
k jk~x!,

~21!

c im5 (
k51

N12

gm1M
k jk~x!,

wherem51,2, . . . ,M ; M is the number of poloidal harmon
ics kept in the system.

The coefficients of the couple ODEs are also expan
in the same manner.41–43,45,46The boundary conditions are

fm50 and c im50, for all m at x5xL ,xR . ~22!

For the cubic B-splines, there is only one nonzero basis fu
tion at either boundary. Therefore, the boundary conditi
are

jm
1 50 and jm

N1250 for all m. ~23!

After some algebra, the eigenvalue problem is fina
reduced to solving for the eigenfrequenciesv which are
roots of

f ~v!5DetuGmm8
i j

~v!u. ~24!

We use the Newton method to search for the roots. Howe
f (v) is an extremely complicated function on the compl
plane. It is not practical to use the Newton method direc
on f (v). Tang and Rewoldt43 used a much more efficien
eigenvalue searching method. This method is based on
fact that,

f ~v!5DetuGmm8
i j

~v!u5P i 51
2M (N12)ei~v!, ~25!

where ei(v) are the ordered eigenvalues of the mat
Gmm8

i j (v),

ue1~v!u,ue2~v!u,•••,ue2M (N12)~v!u. ~26!

It is obvious that whenf (v)→0, e1(v)→0. The Newton
method is applied toe1(v). Sincee1(v) is a much simpler
function thanf (v), we expect much faster convergence.
implement this method, the eigenvalues of the ma
Gmm8

i j (v) have to be solved for, for each guess forv, and the
matching betweene1(v) and e1(v1dv) has to performed
interactively.

For a standard setup with 100 radial nodes, and 5 po
dal harmonics for bothf and c i , the dimension for the
matrix Gmm8

i j (v) is 102031020. Running the NAG routine
f 02gb f on a DEC Personal Workstation 500 a.u. to solve
the eigenvalues and eigenvectors ofGmm8

i j (v) takes about 8
minutes CPU time. Normally, we need less than 10 iterati
to get a converged solution. The numerical code is nam
KIN-2DEM, which can be run either in a global mode or
a radially local mode on a chosen flux surface.
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III. KINETIC BALLOONING MODE

To understand theb limit for stability in toroidal sys-
tems is an important problem in the area of magnetic c
finement. In this respect, high mode number electromagn
ballooning modes have been an issue for many years,
cause they are normally unstable for sufficient largeb. The-
oretical estimates were first obtained for the ideal MHD b
looning mode.49,50 The kinetic MHD ballooning mode was
first introduced by Tanget al.12 to investigate kinetic effects
for MHD modes. The kinetic ballooning formalism wa
shown to be able to recover the MHD ballooning model
certain limits. Moreover, the interaction between kinetic
fects and Alfvén waves significantly enriches the physics f
the kinetic ballooning mode. Rewoldtet al.4,24 and Tang
et al.51 have numerically implemented the kinetic MHD ba
looning theory and carried out extensive numerical stud
The implemented one-dimensional numerical code using
high- n ballooning representation is called the FULL code

To leading order, the ballooning mode is a local mo
on a chosen flux surface, with short perpendicular and lo
parallel wavelength. Usually, the ballooning mode is stud
by using the WKB type of ballooning representation,

S f

f

c i

D 5S f̃

f̃

c ĩ

D eix, ~27!

wherex carries the short wavelength structure in the perp
dicular direction, andb•¹x50. f̃ , f̃, andc ĩ, on the other
hand, contain only slow variation structure. In toroidal g
ometry, f, f, and c i actually represent a ‘‘quasimode,’’52

whose domain in the extended poloidal angle is (2`,
1`).

In our two-dimensional calculation, we do not use t
ballooning representation. But the ballooning mode can
represented by radially local modes in the two-dimensio
analysis. By keeping a wide enough poloidal spectrum c
tered atm5nq(r ), we are able to describe the basic featu
of ballooning modes. First, the kinetic ballooning mode
indeed a localized mode around some flux surface; sec
b•¹x50, the basic feature of the kinetic ballooning mode,
equivalent to the conditionm'nq(r ); and the slow variation
along the field line is included by the poloidal spectrum.

We have calculated the local eigenmode using the K
2DEM code for Tokamak Fusion Test Reactor~TFTR! shot
No. 49982S05 att54.00 seconds, and benchmarked the
sult against the high-n ballooning results from the FULL
code. It is found from the FULL code calculation that th
maximum growth rate is located atr /a50.54. We therefore
have performed the radially local calculations at the sa
flux surface using the KIN-2DEM code. The equilibrium
profiles for density,q, and temperature are plotted in Fig.
In order to obtain a substantial growth rate, the plasma d
sity has been scaled up by a factor of 13.75 such t
b52.44% atr /a50.54.

In Fig. 3, we plot the real parts of the eigenfrequenc
v r and the growth ratesg against the toroidal mode numbe
n. It can be seen from the figures that the KIN-2DEM co
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 2. Equilibrium profiles for TFTR Shot No. 49982S05 att54.00.
e re is
st

al
results agree with the FULL code results reasonably w
The best agreement is for mediumn, i.e.,n515;45. This is
the consistent with the fact that for lown the KIN-2DEM
code is more accurate, while for high-n the FULL code is
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
ll.more accurate. However, for this case it appears that the
no region of overlap inn where both codes are at their mo
accurate.

Plotted in Fig. 4 is the mode structure in the poloid
FIG. 3. Kinetic ballooning mode. Real frequency and growth rate are plotted againstn for TFTR shot No. 49982S05 att54.00, r /a50.54, andb52.44%.
Results from the KIN-2DEM code and the FULL code are compared.~a! Real Part.~b! Growth Rate.
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FIG. 4. Kinetic ballooning mode structure inu. The ballooning structure is evident from the plots off andc i calculated by the KIN-2DEM forn530. The
equilibrium is for TFTR shot No. 49982S05 att54.00, r /a50.54, andb52.44%.~a! f. ~b! c i .
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direction calculated by the KIN-2DEM code. The toroid
mode numbern is 30. The ballooning structure is evide
from the plot: the mode is strong aroundu50 and weak
aroundu5p.

IV. INTERNAL KINK MODE

The internal kink mode in tokamaks is driven by th
equilibrium inhomogeneities, particularly the current dens
gradient. It has been studied extensively for many ye
While the ideal MHD internal kink mode in a straight tok
mak ~screw pinch! is well-known,36,37,53 the internal kink
mode in toroidal geometry is a quite subtle problem. In 19
Bussacet al.38 concluded that toroidicity is a stabilizing fac
tor and that the internal kink mode is stable whenb is suf-
ficiently low. One year latter, Pao54 obtained the opposite
conclusion that unstable (m51, n51) internal kink modes
in a screw pinch are also unstable in toroidal geometry w
even greater growth rates. Galvaoet al.55 in 1978 showed
that toroidicity can be either stabilizing or destabilizing
different parameter regions. Numerical results by Ker
et al.,56 using circular flux surfaces and parabolic press
profiles, agreed with Bussacet al.’s conclusion. Extensive
numerical studies, including all the important geometri
effects, were conducted by Manickam.44

Moreover, Pao pointed out that the linear growth ra
from the classical MHD model for the internal kink mode
a screw pinch is 4–7 times greater than the experime
observation.54 Investigation of the internal kink mode usin
other models than MHD provoked more interests. Stra
concluded that, in circular tokamaks, the internal kink mod
are stable or marginally stable in his reduced MHD mod
and these modes are favorable for confinement.57,58Only in a
straight tokamak with a rectangle wall did Strauss find
internal kink mode to be unstable. Naitouet al.59 reached the
same conclusion from a gyrokinetic particle simulation. U
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ing their reduced model, Hazeltine and Meiss60 found that
there are no unstable kink modes for a cylindrical mo
with a conducting wall.

Such subtleties arise from the fact that the growth r
for the internal kink mode isO(e2) smaller than that for the
external kink mode. For the same reason, the pure M
internal kink mode may not be important after all. The inte
nal kink mode is interesting only because of its potential
interact with other kinetic components existing in the tok
mak plasma. The kinetic components in a modern tokam
include both the energetic particles and the kinetic effects
the background plasma. The fishbone mode, strongly co
lated with losses of injected energetic beam ions, is do
nantly an (m,n)5(1,1) mode destabilized by the trappe
energetic ions.7

An analytical study of internal kink modes using th
gyrokinetic model developed here has been carried ou
Refs. 39 and 40. Even though analytic calculations can b
us some physical insight, numerical analysis is indispensa
for the internal kink mode in toroidal geometry. In this p
per, we focus on numerical results from the KIN-2DE
code, and especially investigate the kinetic effects due to
background plasma on the internal kink modes. We h
compared numerical results from the KIN-2DEM code a
the PEST code for a test case. Growth rates are calculate
a family of equilibria generated by the PEST code. Differe
equilibrium profiles are characterized by differentq0[q(r
50). The plasma density, pressure, andq profiles for the
equilibrium withq050.90 are plotted in Fig. 5. Other plasm
parameters areB054.605 T,R05245 cm, anda524.5 cm.
Also plotted in Fig. 5 is the mode structure for the intern
kink mode calculated by the KIN-2DEM code.

In Fig. 6, the growth rates calculated by the PEST co
and the KIN-2DEM code are plotted againstq0 . In this cal-
culation, all the kinetic effects inside the KIN-2DEM cod
are turned off. From Fig. 6, the KIN-2DEM code resul
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 5. Equilibrium profiles and mode structure for the caseq050.9. ~a! Density.~b! Pressure.~c! q(r ). ~d! Mode structure,f(r )5c i(r ).
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agree with the PEST code results. The small discrepancy
be mainly attributed to the Shafranov shift neglected in
model equilibrium assumed by the KIN-2DEM code. In th

FIG. 6. Growth rates vsq0 . KIN-2DEM code agrees with the PEST cod
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
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e
case, the relative Shafranov shift calculated by the PE
code is about 20%.

The q0 dependence of the growth rateg can be ex-
plained by the basic features of the internal kink mode.61 g
peaks aroundq050.85, andg increases asq0 increases when
q0,0.85. This is because, whenq0 increases,r s decreases,
and the effective toroidicityr s /R0 decreases. Since toroidic
ity is generally stabilizing, the growth rate increases. Ho
ever, this trend has to be reversed somewhere becaus
q0.1, the mode is stable to leading order. Thus, after so
critical value, whenq0 approaches 1, the growth rate d
creases. This critical value forq0 is where the growth rate
reaches its maximum. In the current case, the critical poin
q050.85. From another point of view, this descending fe
ture of theg versusq0 curve whenq0.0.85 is also related to
the r s variation. Whenq→1, r s→0, thenv2;dW→0, be-
cause the trial function vanishes whenr .r s .

As discussed before, the internal kink mode is intere
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 7. Kinetic effects on internal kink mode. Trapped ions flatten theg vs q0 curve, and bring significant real parts into the eigenfrequencies.~a! Growth
rates.~b! Real frequencies.
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ing only because of its potential to interact with the kine
components existing in the tokamak plasma. In this sect
we present our numerical results on the kinetic effects du
the background plasma.
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
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In Fig. 7, the growth rates and the real parts of the eig
frequencies are plotted for cases with no kinetic effects, w
only kinetic effects due to circulating particles, and with k
netic effects due to both circulating and trapped particl
c effects
FIG. 8. Kinetic effects on internal kink mode. The mode structure is not significantly affected by the circulating particles, but is modified by the kineti
due to trapped ions.~a! f(r ) with circulating particles only.~b! c i(r ) with circulating particles only.~c! f(r ) with circulating and trapped particles.~d! c i(r )
with circulating and trapped particles.
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The equilibria are the same as in the previous section.
mode structures under the influence of the kinetic effects
the caseq050.9 are illustrated in Fig. 8.

For the case we are studying, the kinetic effects due
circulating particles are small. The dominant kinetic effe
are from the trapped ions. This observation accords with
following estimates for the kinetic resonances. The ion te
perature for the equilibrium withq050.9 is Ti;25 keV.
Thus,

v t i;
v i

R0q
;63105/s@v;13105/s. ~28!

From Eq. ~B3! the kinetic resonances between wav
and the circulating particles are controlled by the factor

~v2v
* i
T !v

v22~n1S!2v t i
2

.

(n1S)2 is normally nonzero for anyn at most radial loca-
tions. Consequently, there are no effective kinetic resonan
for the circulating ions. However, for the trapped ions, t
physical picture is different. From Eqs.~B1!, ~B2!, and~B3!,
the trapped particle resonance is controlled by the factor

v2v
* i
T

v2vD
(0)2nvbi

.

The trapped ion resonances are much stronger by two
sons. First,

vbi;Aev t i;23105/s*v. ~29!

WhenvD
(0) is small, we expect strong kinetic resonances

tween the wave and the trapped ions. Second,
~30!

vdi;
r i

R0
v thi;33105 cm/s,

vD
(0);

vdi

r
;13105/s. ~30!

Whenn50, vbi does not enter, and the resonance facto
(v2v

*
T )/(v2vD

(0)). There is strong resonance between
wave and the time-averaged drift motion of the trapped io
This n50 resonance exists even whenvbi@v. In the cur-
rent case,vbi , vD

(0) , andv are comparable, and the trappe
ions’ drift motions resonate with the internal kink mode a
significantly modify the eigenfrequency and the mode str
ture. For electrons, the kinetic effects are not important
causevbe@v and v te@v. The trapped electrons can co
tribute to the kinetic resonances only whenn50, considering
the fact thatvDe

(0);vDi
(0);v. But for theA and B matrices,

the contribution from trapped electrons is much smaller th
that from trapped ions, because theA and B matrices are
proportional toru j

2 andru j , respectively.
The kinetic resonances due to the trapped ions a

change theq0 dependence of the growth rate. From Fig.
the peakedg versusq0 curve is flattened by the trapped io
resonances. In the previous section, we explained that
peakedg versusq0 curve is the result ofr s variation. When
the trapped ions are present in the system, the radial varia
is averaged out by the trapped ions because of their fi
banana width in the radial direction. Since the banana w
for ions is much bigger than that for electrons, this averag
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effect is only prominent for trapped ions. This trapped i
effect is evident from the real parts of the eigenfrequenc
as well. It is well-known that ideal MHD unstable modes d
not have real parts in their eigenfrequencies. We see
circulating particles do not change this characteristic v
much, whereas the trapped ions bring significant real p
into the eigenfrequencies.

From Fig. 8, it is clear that the mode structure is n
significantly affected by the circulating particles, but
modified by the kinetic effects due to the trapped ions. T
is consistent with the conclusion we draw from theg versus
q0 curve and thev r versusq0 curve. In addition, when only
the circulating particles are included,f(r )'c i(r ), that is
Ei'0. This is one of the basic features of ideal MHD. W
see that trapped ions change this feature and bring inEi .

V. TAE

It is found that TAEs can be destabilized by alpha p
ticles and other hot particles when their pressure is h
enough.9,10,62,63Experimental and theoretical studies show
that unstable TAEs, driven by energetic particles, can lea
80% of the energetic particle transport in some pres
tokamaks.11 Besides reducing the plasmab, loss of energetic
particle power through TAEs could result in serious w
damage, impurity flux, major operational control problem
and even a failure to sustain ignition. In this section, the n
gyrokinetic system developed will be used to study t
TAEs. This represents the first fully kinetic model for th
TAEs. More importantly, the destabilization of the TAE b
energetic particles and the background damping will be
vestigated nonperturbatively. Compared with previous
brid models anddW estimates for the growth rate and dam
ing mechanism,10,18–20 the fully kinetic model is more
comprehensive and self-consistent. In this section, the
merical results from the KIN-2DEM code and the NOVA-
code10,18–20will be compared.

First, we give a numerical example of the TAE calc
lated by the KIN-2DEM code, and compare the results w
the those of the NOVA-K code. We choose the followin
model equilibria:

R05300;500 cm, a590 cm, B055 T,
~31!

n~c!5n05531013/cm3, q~c!51.0510.6c,

where c is the normalized poloidal flux, withc50 at the
magnetic axis andc51 at the plasma boundary. For th
equilibrium model with circular concentric flux surface
there is an one–one relationship betweenc and minor radius
r, which is the radial coordinate used in the KIN-2DE
code. In particular, for the family ofq profiles q(c)5q(0)

1q(1)c, the relation between the normalized minor radiur
andc is

r 2S 11
q(1)

3q(0)D 5c1
q(1)

3q(0)
c3. ~32!

The solution forc in terms ofr is

c~r !52S 2

b1cD 1/3

1
1

3a S b1c

2 D 1/3

,

license or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 9. Shear Alfve´n continuum.~a! Continuum without coupling.~b! Continuum gap form52 andm53 harmonics.
the
M

t

b527a2~11a!r 2,

c5A108a31729a4~11a!2r 4, ~33!

a5
q(1)

3q(0)
.

Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
Background pressure is neglected, to be consistent with
circular concentric flux surfaces assumed by the KIN-2DE
code. We look atn52 modes. Shown in Fig. 9~a! is the
continuous spectrum given byv25vA

2ki
2 without toroidicity-

induced coupling for the case ofR05400 cm. The stronges
FIG. 10. Even TAE.~a! Eigenfrequency.~b! Mode structure, all harmonics.~c! Mode structure,m52. ~d! Mode structure,m53.
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 11. Odd TAE.~a! Eigenfrequency.~b! Mode structure, all harmonics.~c! Mode structure,m52. ~d! Mode structure,m53.
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toroidicity-induced coupling occurs at the flux surface whe
q(c)55/4 between them52 andm53 harmonics. Plotted
in Fig. 9~b! are the continua for them52 andm53 harmon-
ics without and with coupling.

Numerically, two TAEs are found in the gap. The o
with lower frequency has the same phase for the domin
m52 andm53 harmonics, and is called the even mode. T
other one with higher frequency has opposite phases for
dominantm52 andm53 harmonics, and is called the od
mode. In Figs. 10~a! and 11~a!, the eigenfrequencies from
the KIN-2DEM code and the NOVA-K code are plotte
againstR0 for both the even and the odd mode. The resu
from the KIN-2DEM and the NOVA-K codes agree wit
each other very well. Drawn in Figs. 10~b!, 10~c!, and 10~d!
are the mode structures of the even mode for the cas
R05400 cm. The counterparts for the odd mode are draw
Figs. 11~b!, 11~c!, and 11~d!. The characteristics of the eve
and odd modes are clear from the plots. The dominant
monics arem52 andm53, and the harmonics peak at th
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
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radial location whereq5 (1/n) (m1 1
2), as predicted in the

analytic model.
In the rest of this section, we study numerically the k

netic destabilization of the TAEs by energetic particles,
well as the damping due to the background plasma. Co
pared with the existing hybrid models,10,18–20 the fully ki-
netic approach developed here is more self-consistent
comprehensive. Compared with thedW calculation for the
growth rate and background damping widely used in the
brid models, the eigenvalue calculation is nonperturbat
and more accurate. To investigate the destabilization of
TAEs, we introduce a third species, of energetic hydrog
ions, into the system. The fast ions are assumed to be M
wellian with a constant temperature profile. The press
profile for the hot particles is

ph5p~0!e2c/0.09. ~34!

The domains of variation for the hot particle thermal veloc
vh andbh at the magnetic axis are
license or copyright, see http://pop.aip.org/pop/copyright.jsp



2557Phys. Plasmas, Vol. 6, No. 6, June 1999 Qin, Tang, and Rewoldt
FIG. 12. Destabilization of TAE by hot particles. The even mode for the caseR05400 cm is destabilized by energetic particles with differentvh . ~a! Growth
rate.~b! Real frequency.
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vA
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To include the background damping, the background te
perature profile is assumed to be

Te5Ti50.5~12c!2 keV. ~36!

We will look at the destabilization of the even mode f
the caseR05400 cm. Shown in Fig. 12~a! is the growth rate
versus vh calculated by the KIN-2DEM code and th
NOVA-K code; in Fig. 12~b! is the change in the real fre
quency calculated by the KIN-2DEM code. Since t
NOVA-K code use a perturbativedW calculation, the per-
turbation in the eigenfrequency can only be pure imagin
or pure real. In the current case, only the growth rate
perturbed. The agreement between the KIN-2DEM code
the NOVA-K code varies withvh /vA . The best agreement i
at vh /vA50.5, while the difference reaches its maximum
vh /vA51.0. This discrepancy is mainly due to the differen
in the basic models. The NOVA-K code is based on a hyb
model, and assumes that the perturbation due to hot part
is small. The perturbation in eigenfrequency is obtained fr
dW using the unperturbed ideal MHD mode structure. T
KIN-2DEM code, on the other hand, is a fully kinetic, no
perturbative code. All plasma species are treated equally,
the eigenfrequency, containing both real and imaginary pa
is calculated by solving the eigenvalue problem. The eig
function is obtained self-consistently as well.
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In Fig. 13~a!, the growth rate is plotted againstbh for the
case ofvh /vA51.5. For the NOVA-K code,dWh is propor-
tional to the density of hot particles. Whenbh is increased by
increasing the hot particle density, the growth rate increa
linearly. Moreover, in the NOVA-K code, the backgroun
damping is fixed, and is represented by a negative of
whenbh50. In the KIN-2DEM code, the eigenvalue is ca
culated separately for eachbh value. Therefore it can used t
test the linear scaling ofg with respect tobh . From Fig.
13~a!, we see that the linear scaling is approximately va
An interesting observation is that the linear scaling is le
accurate for smallerbh where the background stabilization
comparable to the hot particle destabilization. This indica
that background damping is not just a simple offset of
growth rate, and the background stabilization and hot part
destabilization are indeed coupled together. It also refle
the fact that the underlying theory for thedW estimate—the
energy principal and the variational principle are not accur
for modes with relatively strong kinetic resonances.

VI. CONCLUSIONS AND FUTURE WORK

In 2D tokamak geometry, we have developed a num
cal solution method for the electro-magnetic gyrokinetic s
tem. The gyrokinetic equation is solved for the distributi
function in terms of the perturbed field by integrating alo
FIG. 13. Destabilization of TAE by hot particles. The even mode for the caseR05400 cm is destabilized by energetic particles withvh /vA51.5. The linear
scaling ofg with respect tobh is approximately valid.~a! Growth rate.~b! real frequency.
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unperturbed orbits. The solution is substituted back into
gyrokinetic moment equation and the gyrokinetic Poiss
equation. When the boundary conditions are incorporated
eigenvalue problem is formed. A newly developed compu
algebra package, General Vector Analysis, is used to
ciently carry out the complicated vector calculus. The eig
mode is Fourier decomposed in the poloidal direction, a
the coupled second order ODE system in the radial direc
is solved by a finite element method. The resulting numer
code, KIN-2DEM, can operate in a radially global mode
well as in a radially local modes on a chosen flux surface.
an example of such a local calculation, KIN-2DEM has
covered the kinetic ballooning mode, and the numerical
sults agree with those calculated by the high-n FULL code.
The KIN-2DEM code has also been applied to the inter
kink mode. This represents the first fully kinetic model f
the internal kink mode. Ideal MHD results for both a straig
tokamak and in toroidal geometry are recovered in validat
tests. The numerical results from the KIN-2DEM code ag
well with those from the well-established PEST code. It
also discovered that trapped ions can change the charac
tics of the growth rateg versus central safety factorq0 curve,
and introduce significant real parts into the eigenfrequenc
In addition, the TAE mode has been recovered from the n
gyrokinetic system of equations. As in the case for the in
nal kink mode, this represents the first fully kinetic model f
the TAE modes. The numerical results from the KIN-2DE
code and the NOVA-K code agree very well. It is found th
energetic~beam! hydrogen ions can destabilize the TA
modes. On this problem, the agreement between the K
2DEM code and the NOVA-K code varies withvh /vA . The
best agreement is atvh /vA50.5, while the difference
reaches its maximum atvh /vA51.0. This discrepancy is
mainly attributed to the differences in the basic models. T
linear scaling of the growth rateg with respect to the ho
particle bh assumed by the hybrid models is tested by
KIN-2DEM code. It is found that the linear scaling is a
proximately valid. However, it is less accurate when t
background damping is comparable to the hot particle de
bilization.

The current version of the KIN-2DEM code is an eige
value code for shear Alfve´n waves in a circular concentri
model equilibrium. It is of practical interest to extend th
code to general numerically calculated equilibria so that
tra geometric effects, such as the Shafranov shift, can
included in the analysis. Again, the computer algebra pa
age for vector analysis is expected to be a powerful too
the process of the extension. Adopting realistic equilib
will help the KIN-2DEM code to improve its accuracy i
addressing the kinetic MHD problems for real experimen
cases. Moreover, adding the compressional component o
magnetic perturbation and the perpendicular dynamics
extend the code to a wider range of modes, including co
pressional Alfve´n waves and cyclotron waves.23

A gyrokinetic model for an equilibrium with shear flow
has been an active research topic in tokamak physics
cently. Nonlinear gyrokinetic systems have been derived
Artun et al.,45,46 Brizard,64 and Hahm.65 Normally, the gyro-
kinetic equation is derived in the shear flow frame, whe
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extra inertial forces appear. An alternative approach is
represent the shear flow by a shifted equilibrium Maxwelli
distribution in the lab frame, where the functional form
the gyrokinetic equation is not affected by the shear flo
The latter point of view probably is more general, becau
besides the shear flow, we can put more equilibrium prop
ties into the equilibrium distribution function. This method
a special case of the Chapman–Enskog-like approach
posed by Callen,66–68 which separates the distribution func
tion into the dynamic Maxwellianf d and the kinetic distor-
tion F.

f ~x,v,t !5 f d1F, ~37!

where

f d5nS m

2pTD 3/2

e2
mu2

2T F11
2

v t
2

u•S 2
2

5nT
qDLG ,

~38!

L5
5

2
2

mu2

2T
, u5v2V,

andn, T, V, andq are functions ofx and t. F represents the
kinetic part of f beyond f d . A gyrokinetic equation forF
needs to be derived, whose solution will be used to calcu
the viscous stress tensorP(x,t) and the heat stress tens
Q(x,t) such that the fluid equations forn(x,t), T(x,t),
V(x,t), andq(x,t) can be closed.F is also needed to calcu
late the charge density and the current density in Maxwe
equations. Besides tokamak plasmas, the gyrokinetic sys
for general equilibria may have applications in oth
branches of plasma physics. For example, we notice
similarity between the particles’ trajectories in a cylindric
neutral plasma with flow in theeu direction and a cylindrical
nonneutral plasma confined radially by a magnetic field
theez direction.69 In both cases, the particles’ trajectories a
circular orbits in theeu direction, on top of which the fas
time scale gyromotions are added. For space plasmas,
brid, perturbative kinetic MHD is not applicable to man
interesting problems. One example is collisionless reconn
tion, which is thought to be relevant to magnetic storms
the magnetosphere. Recent magnetic reconnection ex
ments at the Princeton Plasma Physics Laboratory sugge
that ‘‘anomalous resistivity’’ could be the key to understan
ing magnetic reconnection phenomena.70 A fully kinetic
model is necessary to explain the observed ‘‘anomalous
sistivity,’’ which is much bigger than the classical resistivi
due to Coulomb collisions. Another example is the mec
nism of parallel acceleration for charged particles near
magnetic poles of the earth, which explains the aurora p
nomena. Perturbative kinetic MHD cannot describe the p
allel acceleration, because the ideal MHD Ohm’s la
adopted impliesEi50. Also, strong wave-particle interac
tion is expected to be important for the parallel accelerat
of charged particles.
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APPENDIX A: ORBIT INTEGRAL FOR DISTRIBUTION FUNCTION

The result of orbit integration forh and relevant definitions are as follows. Detailed calculations can be found in Re

h52 i
e

T
F0(

m
e2 imu@v2v

*
T ~r !#J0(

n
H Fanfm~r !2S an2an

G v̄D~r !

v
Dc im~r !GD~n!1Fanfm8 ~r !

2S an2an
G v̄D~r !

v
Dc im8 ~r !G(

n1

r n1
ein1vbt̂@D~n1n1!2D~n!#1Fanfm9 ~r !2S an2an

G v̄D~r !

v
D

3c im9 ~r !G 1

2 (
n1 ,n2

r n1
r n2

ei (n11n2)vbt̂@D~n1n11n2!2D~n1n1!2D~n1n2!1D~n!#J , ~A1!
where we have defined

D~n![
1

v2vD
(0)2~n1Hs iS!vb,t

, ~A2!

r n[H ruAYAeI n

pLb
, odd n,

0, even n,

~A3!

~A4!

an[5 e2 i [nSu2nvbt̂ ]
Ae

pLb
Jn,m , trapped,

e2 i [nSu2(n1s iS)v t t̂ ]
Ae

pLt
Kn,m,m , circulating,

an
G[5 e2 i [nSu2nvbt̂ ]

Ae

pLb
Jn,m

G , trapped,

e2 i [nSu2(n1s iS)v t t̂ ]
Ae

pLt
Kn,m,m

G , circulating,

t̂~u,s i![5
R0q

AYv th
E

0

u du

A12L/a~u!
, trapped,s i51,

tb

2
2 t̂~u,s i51!, trapped,s i521,

R0qs i

AYv th
E

0

u du

A12L/a~u!
, circulating,

~A5!

I n[E
0

u0
du cos~nvbt̂ !, ~A6!
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Jn,m[E
0

u0
duFcos2

np

2
cosSu cosnvbt̂

1sin2
np

2
sinSu sinnvbt̂ G ,

~A7!

Jn,m
G [E

0

u0
duG~u!Fcos2

np

2
cosSu cosnvbt̂

1sin2
np

2
sinSu sinnvbt̂ G ,

Kn,p,m[E
0

p du

A12L/a~u!
cos@Su2~n1s iS!v t t̂ #,

~A8!

Kn,p,m
G [E

0

p du

A12L/a~u!
G~u!cos@Su2~n

1s iS!v t t̂ #,

Lb[
Ae

p E
0

u0
du

du

A12L/a~u!
,

~A9!

Lt[
Ae

p E
0

p

du
du

A12L/a~u!
,

vD[nFdz

dt
2q~r 0!

du

dt G ,
vD

(0)[
1

t t,b
R vD dt, ~A10!

DvD[vD2vD
(0) ,

S5S~r 0![nq~r 0!2m, r 0[
1

t t,b
R r dt, ~A11!
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tb[
4R0q

AYv th
E

0

u0 du

A12L/a~u!
,

t t[
2R0q

AYv th
E

0

p du

A12L/a~u!
, ~A12!

vb,t[
2p

tb,t
,

G~u!5S 11
U2

v2 D cos~u!12
ŝ

e

~U2U (0)!U

v2
,

and

u0[cos21FL21

e G , Y[
e

T
, L[

mB

e
,

ru[v th

cm

eBu
, ŝ[

r

q

dq

dr
. ~A13!

Here, m is the magnetic moment;e is the kinetic energy;
s i51 for positiveU; ands i521 for negativeU. All other
symbols have their usual meaning.
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The following approximations forvD and U (0) will be
adopted:71

vD5v̄D

e

T
G~u!, ~A14!

with

v̄D5v
*
(m) Ln

R0

nq

m
, v

*
(m)5

cTm

LneBr
, Ln52S d ln n0

dx D 21

,

~A15!

and

U ~0!5 H 0,
U,

trapped,
circulating. ~A16!

APPENDIX B: EXPRESSIONS FOR MATRICES A, B,
AND C

The matrix elements involving the distribution functio
can be simplified using the methods described by March
et al.41 Other matrix elements are easily obtained by app
ing the GVA computer algebra program. Detailed calcu
tions are carried out in Ref. 40. Here we only list the fin
results:
S Apm
QNf Apm

QNc

Apm
Ff Apm

Fc D 5(
j

nj

ne
Zj

2 Te

Tj

e3/2ru j
2

2p9/2 E12e

11e

dL
1

Lb
3E0

`

dYY3/2e2Y(
n

v2v
* j
T

v2vD
(0)2nvb, j

(
n1 ,n2odd

I n1
I n2

3

¨

Jn,mJn1n11n2 ,p22Jn2n2 ,mJn1n1 ,p 2S Jn,m2
v̄d j
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YJn,m

G D Jn1n11n2 ,p

1Jn2n12n2 ,mJn,p 12S Jn2n2 ,m2
v̄d j

v
YJn2n2 ,m

G D Jn1n1 ,p

2S Jn2n12n2 ,m2
v̄d j

v
YJn2n12n2 ,m

G D Jn,p

2S rR0v

lec
D 2 v̄d j

v
Y[Jn,mJn1n11n2 ,p

G 2S rR0v

lec
D 2 v̄d j

v
YF2S Jn,m2

v̄d j
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YJn,m

G D Jn1n11n2 ,p
G
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©

,

~B1!

wherele[ Te /(4pnee
2) is the electron Debye length.
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QNf Bpm
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Ff Bpm

Fc D
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nj

ne
Zj
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31
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2 1S 0 0

0 Bpm
P D . ~B2!

We have neglected the contribution of circulating particles to theA and B matrices, because the radial excursions of th
circulating particles are much smaller than those of the trapped particles.
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Cpm
P 5x2H edp21,m@ P̄8~m2m2!2 P̄9mx#1edp11,m@ P̄8~2m

2m2!1 P̄9mx#1e2dp22,m@ P̄8 1
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q8x

q3 G J ; ~B7!

P̄85
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2

a2B0
2

dP
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,

~B8!

P̄95
4pR0

2

a2B0
2

d2P
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.

In the above equations, the independent variable in
radial direction isx[r /a, the normalizedr. The expressions
for O2 , U1 , D1 , U2 , D2 , and S are calculated by the
method of computer algebra, and can be found in Ref.
40, and 48.
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