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H. Qin, W. M. Tang, and G. Rewoldt
Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

(Received 15 January 1999; accepted 17 March 1999

A two-dimensional(2D) numerical solution method is developed for the recently derived linear
gyrokinetic system which describes arbitrary wavelength electromagnetic perturbations in tokamak
plasmas. The system consists of the gyrokinetic equation, the gyrokinetic Poisson equation, and the
gyrokinetic moment equation. Since familiar magnetohydrodynatMéiD) results can be
recovered entirely from this gyrokinetic model, and all interesting kinetic effects are intrinsically
included, this gyrokinetic system offers an approach for kinetic MHD phenomena which is more
rigorous, self-consistent, and comprehensive than the previous hybrid models. Meanwhile, drift type
microinstabilities can be also investigated systematically in this theoretical framework. The linear
gyrokinetic equation is solved for the distribution function in terms of the perturbed fields by
integrating along unperturbed particle orbits. The solution is substituted back into the gyrokinetic
moment equation and the gyrokinetic Poisson equation. When the boundary conditions are
incorporated, an eigenvalue problem is formed. The resulting numerical code, KIN-2DEM, is
applied to kinetic ballooning modes, internal kink modes, and toroidal Altigenmode$TAEs).

The numerical results are benchmarked against the well-established FUL[Gogewoldt, W. M.

Tang, and M. S. Chance, Phys. Flufs 480(1982], the PEST codgl]. Manickam, Nucl. Fusion

24, 595 (1984], and the NOVA-K cod€C. Z. Cheng, Phys. Re®211, No. 1(1992]. More
importantly, kinetic effects on MHD modes can be investigated nonperturbatively. In particular, the
kinetic effects of the background plasma on internal kink modes and the hot particle destabilization
of TAEs are studied numerically. @999 American Institute of Physics.
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I. INTRODUCTION kinetic MHD modes. The fishbone mode is probably the first

Recent experimental and theoretical studies have demorlfinetic MHD mode observed in tokamak plasfiahe ob-

perim - : served fishbone bursts are strongly correlated with losses of

strated that a kinetic description for electromagnetic modes . : . ) :

. o . _Tnjected energetic beam ions. The study of fishbone modes is
in tokamak plasmas is important for the understandmgo L . ;

f practical interest because the losses of energetic beam ions

of electromagnetic drift waves and kinetic-magnet- S . .
ohydrodynamiog MHD) phenomena. Finit@ effects for the reduce the plasm@ significantly. Experimental evidence
ﬁﬂSO showed the dominant mode structure to bemanj

electrostatic drift wave were first addressed by Rosenblut
4 =(1,1) mode. Cheret al.” first used a kinetic MHD model

and Sloarl. Tang pointed out three physical mechanisms lain th ically the fish ilati
due to the finite plasmg that are important: the diamagnetic to explain theoretically t e s ,bO”e oscl atlon_s: It was
or “self-dug” well generated by plasma pressure thefound that trapped energetic particles can destabilize the in-

Shafranov shift of flux surfaces, and the coupling betweerieMal kink mode. o .
drift waves and shear Alfrewaves. While the diamagnetic Another well-known example of8k|net|c MHD modes is
well and the Shafranov shift are equilibrium effects whichthe toroidal Alfven eigenmod&TAE).” TAESs can be desta-
can be incorporated by using realistic MHD equilibrium so-bilized by alpha particles and other energetic particles when
lutions, the coupling between drift waves and Alfvwaves the pressure of energetic particles is high enotighThis
is a dynamic effect. To investigate this coupling, we have tgeonclusion could have serious implications for ignited fusion
use an electromagnetic equation system. The figitffect ~ reactors. Unstable TAE modes, driven by energetic particles,
on drift modes is generally found to be stabilizing. For ex-can induce significant energetic particle losses which may in
ample, examination of electromagnetiz modes in slab turn reduce plasmg and damage the reactor wall. Both
geometry and in toroidal geometfy revealed that increas- €xperimental and theoretical studies confirmed that TAE
ing plasmag can provide a stabilizing effect, especially modes can lead to 80% of the energetic particle transport in
when finite Larmor radiugFLR) effects for ions become present tokamaks.
important. The well-studied kinetic ballooning mod&BM) also

As tokamaks approach ignition conditions, the physicalfalls into the category of kinetic MHD modes. Kinetic bal-
effects due to energetic particles become more and moreoning mode theory in general geometry was introduced by
prominent. It has been discovered in the past two decadekang et al? and Friemaret al® as a systematic procedure
that the interplay between the kinetic effects described by théor studying the influence of kinetic effects on the stability of
Vlasov—Maxwell system and the fluid modes determined byMHD ballooning modes. A numerical analysis for the kinetic
the MHD model produces a new breed of instabilities—ballooning mode was performed by Rewokdtal* The ki-
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netic ballooning modes can be driven unstable by kinetidogether so that a group of nearby particles can be treated as
effects such as trapped particles and temperature gradierdsfluid element. In a collisionless plasma, the Lorentz force
when the plasmg is above some critical value. Therefore, acts as such a “glue” in the perpendicular directions. How-
study of kinetic ballooning modes is important in under-ever, in the parallel direction, the particles are almost free-
standing the plasmga limit imposed by it. streaming. A fluid model is not valid in the parallel direction.
The interaction between energetic particles and sawtootfhis inaccuracy in the MHD model is partially manifested in
crashes is also a current topic in kinetic MHD theory. Thethe fact that, for MHD moded,=0. As we know, parallel
sawtooth instability can often result in major disruptionsdynamics are controlled by kinetic resonances and parallel
which terminate plasma discharges. It limits the current denaccelerations. Since kinetic resonances are not included in a
sity on the magnetic axis and produces large-scale transpostandard fluid model, the parallel acceleration must vanish.
in the core plasma. Recent experiments in Joint Europeamhis results in an infinite conductivity in the parallel direc-
Torus(JET) discovered that energetic particles heated by lortion when there are no Coulomb collisions.
Cyclotron Resonance Frequent¢RF) waves have a strong All these shortcomings associated with the standard fluid
stabilizing effect on the resistive internal kink mo#eThe  model can be readily overcome by the Vlasov—Maxwell sys-
JET results were confirmed numerically by Whéeal, us-  tem. A fully kinetic model naturally picks up all the kinetic
ing a kinetic MHD simulation®® effects. But in order to address the kinetic MHD problems,
The current methods used for kinetic MHD instabilities the kinetic system must be an electromagnetic system which
are mostly hybrid one&1%¢%7and are generally perturbative includes the kinetic equation and all of the Maxwell equa-
extensions to MHD models. There, energetic particles aréions. This could complicate the problem significantly, espe-
assumed to have a much smalj@rthan the bulk plasma. cially in general geometry. This kind of complication is ex-
Energetic particles interact with the bulk plasma through thepected because the full Vlasov—Maxwell system essentially
VP term in the MHD equation, that is, replacifgP by  covers almost all the interesting problems in tokamak plas-
V(P+Py), where P, is the pressure of “hot” particles mas. The more general the model, the less tractable it is.
which is solved for from the gyrokinetic equation or the drift Substantial progress in this area has been made since the
kinetic equation in terms of the perturbed electromagneticd980s. An electromagnetic gyrokinetic equation was derived
field. In many applications, the coupled equation system idy Catto et al.,?* and Antonseret al??> Gyrokinetic theory
not solved self-consistenty:*-2° Especially in analytical takes advantage of the fact that, in a strongly magnetized
calculations), eigenfrequencies are often not calculated selfplasma, particles’ gyroradii are much smaller than the scale
consistently from the eigenequations, but rather are estimatésngth of the total magnetic field. The fast time scale gyro-
from a kinetically modified version of the usual MHD energy motion is averaged out from the systefiNew developments
integral. Moreover, kinetic effects are usually assumed to bef gyrokinetic perpendicular dynamics which extend the gy-
small and the mode structures are assumed to be no differerdkinetic model to compressional Alfaemodes and arbi-
than those of the corresponding pure MHD modes. Only therary frequency modes are reported in Ref)28.the mean-
eigenfrequencies are perturbed. A standard hybrid kinetitime, a fully kinetic model and a comprehensive numerical
MHD model is dominantly a MHD model with small kinetic code for higha kinetic ballooning modes were
perturbations. Different kinetic MHD models differ in how developed:*?1324|t represented the first fully kinetic model
the MHD system is kinetically perturbed. The mathematicalfor low frequency electromagnetic instabilities. It was shown
validity of such approaches cannot be justified rigorouslyto be reducible to the MHD ballooning equation in some
even though the physics insight is very productive. reasonable limits. MHD results can be recovered completely
Hybrid models have some serious limitations, all of from the kinetic side. On the other hand, kinetic effects due
which are related to the basic assumption that kinetic effect® trapped particles, temperature gradients, and Landau
are small perturbations for the MHD modes. Since kineticdamping were fully retained. The kinetic MHD phenomena
effects enter only through th€P term in the MHD equa- in these modes were studied without using the MHD equa-
tions, the basic characteristics of the MHD model are untions.
changed. With the introduction and increased use of high The kinetic ballooning model circumvents the geometry
power auxiliary heating techniques such as neutral beam irproblem by looking at only high mode number ballooning
jection and ion cyclotron resonant heating, modern tokamaksodes. Because the mode wavelength is much shorter than
contain large number of energetic particles. Inevitably, futurehe equilibrium scale length, some background variations are
ignited fusion reactors will involve many more energetic par-not important at all. This is not true for low mode number
ticles. It is generally agreed that these energetic particleglobal modes, the study of which requires us to consider all
cannot be described by the MHD model. The large numbepossible background variations. Previous gyrokinetic equa-
of energetic particles and their strong interaction with thetions were mainly derived for the high mode numliee.,
bulk plasma may prohibit the use of the MHD descriptionshort wavelength modes?:?22>-35for which some of the
even for the bulk plasmas. background inhomogeneities are not important and are left
The restrictions of the MHD model include the lack of out. However, the most crucial physical factors driving the
kinetic resonances and the inaccuracy in its description ofong wavelength modes, such as the toroidal Alfve
parallel dynamics. Kinetic resonances, such as Landasigenmod&® and the internal kink mod&, 28 are the back-
damping, are obviously important. For the fluid model to beground inhomogeneities which include the inhomogeneities
valid, there must be some kind of force to “glue” particles of the magnetic field, temperature, and density. Part of the
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inhomogeneity of the magnetic field enters through the curresulting numerical code, KIN-2DEM, has been systemati-
rent distribution. For this purpose, we have to reexamine theally benchmarked against well-established codes in appro-
basic gyrokinetic equation system as well. For the electropriate parameter regimes. In the analysis of kinetic balloon-
magnetic drift waves, a comprehensive gyrokinetic systening modes in the short wavelength linfitigh-n with n being
which can fully recover the MHD modes is needed to studythe toroidal mode numbgrnumerical results from the KIN-
the interaction between drift modes and Alfveaves. Such 2DEM code are found to be in reasonable agreement with
a system only exists for high mode number ballooningthose from the well known high-FULL code? When ap-
modes*?* plied to the internal kink mode, KIN-2DEM recovered MHD
Furthermore, in magnetized plasmas there exist a lot ofesults. Specially, numerical results from KIN-2DEM and
multi-scale-length modes. Actually, the well-known internal PEST codé&' are consistent. When kinetic effects due to
kink mode is indeed a multi-scale-length mode. For an unitrapped ions are included, it is found that they can signifi-
stable internal kink mode, there is a boundary layer aroungantly modify the growth ratéy) versus central safety factor
the rational surface, inside which the scale length is muctfdg) curve. Toroidal Alfven eigenmodesTAES) were also
shorter than that outside. FLR effects are important insidstudied using the present gyrokinetic analysis. Both analytic
the boundary layer, whereas, outside the boundary layer, it i@nd numerical results from the gyrokinetic model were found
just a long wavelength MHD mode. Obviously this structureto agree very well with the MHD results. Destabilization of
cannot be described by the conventional approaches, neithtre TAEs by energetic particles are known to be vitally im-
the long wavelength ideal MHD theory nor the short wave-portant for ignition-class plasmas. For the test case with
length kinetic theory. An arbitrary wavelength kinetic ap- Maxwellian energetic hydrogen ions, comparisons have ac-
proach will provide us with a tool for this kind of multi- cordingly been made between the results from the present
scale-length structure. nonperturbative, fully kinetic calculation using the KIN-
Recently, we derived a linear gyrokinetic system for ar-2DEM code and those from the perturbative hybrid calcula-
bitrary wavelength electromagnetic perturbations using th&ion with the NOVA-K code’*® The agreement varies with
phase space Lagrangian Lie perturbation method which ahot particle thermal velocity. The discrepancy is mainly at-
lows us to treat the background variations and kinetic effectributed to the differences in the basic models.
rigorously®®#° The system consists of the gyrokinetic equa-  The paper is organized as follows. In Sec. II, the basic
tion, the gyrokinetic Poisson equation, and the gyrokinetidheoretical and numerical formalism is presented. Then, the
moment equation. Background variations are fully retainedkinetic ballooning mode is studied numerically in Sec. lll.
in this model, and therefore the usual MHD model can belhe internal kink mode and the TAE and their kinetic effects
recovered from the gyrokinetic system when the kinetic ef-are studied in Sec. IV and Sec. V, respectively. In the last
fects are neglected. Since familiar MHD modes can be resection, we summarize and discuss possible future work.
covered entirely from the kinetic side, and all kinetic effects
are intrinsically included, this gyrokinetic system offers an
approach for kinetic MHD phenomena which is more rigor-
ous, self-consistent, and comprehensive than the previous Most of the important long wavelength electromagnetic
hybrid models. Meanwhile, drift type microinstabilities and modes in tokamak plasmas are shear Aifweaves, that is,
their associated transport can also be investigated systematiite parallel magnetic perturbation is much smaller than the
cally in this theoretical framework. This gyrokinetic system perpendicular magnetic perturbation. Kink modes and TAEs
is an arbitrary wavelength approach. It can be used to studfall into this category. The gyrokinetic system for the shear
high mode number modes, global modksv mode number ~ Alfvén wave3®%° previously derived using the phase space
modes, and intermediate mode number modes. It is theretagrangian Lie perturbation methd®;>°consists of the gy-
fore suitable for those multi-scale-length structures. Not onlyokinetic equation, the gyrokinetic Poisson equation, and the
do we recover the existing results such as the electrostatigyrokinetic moment equation. We start from Littlejohn’s
limit,*242 the long wavelength limit? and the ballooning guiding center phase space Lagrangian for magnetostatic
limit, but also we can explore many new problems, for ex-equilibrium. When the time-dependent electromagnetic per-
ample, the intermediate wavelength regime and the couplinturbation is introduced into the system, the phase space La-
between drift waves and shear Alfvevaves. grangian is perturbed accordingly. A symplectic gyrocenter
In this paper, we describe the solution method for thetransformation, which transfers the guiding center coordi-
linear eigenvalue problem and apply it to kinetic ballooningnates into the gyrocenter coordinatés®®is then introduced
modes, internal kink modes, and TAEs. The gyrokineticin such a way that in the new gyrocenter coordinates, the
equation is solved for the perturbed distribution function byperturbed phase space Lagrangian has the same symplectic
integrating along the unperturbed orbits. Substituting this sostructure as the unperturbed one. This effectively transfers
lution back into the gyrokinetic Poisson equation and thethe perturbation into the perturbed Hamiltonian while keeps
gyrokinetic moment equation yields the eigenmode equatiorthe dynamic structure unperturbed. Consequently, the effects
The eigenvalue problem is then solved by using a Fourieof electromagnetic perturbation show up in the pull-back
decomposition in the poloidal direction and a finite elementtransformation as well, which are necessary for the correct
method in the radial direction. A computer algebra packagdéorm of Maxwell's equations in the gyrocenter coordinates.
for symbolic vector analysis was developed as well in ordeiThe physics associated with the pull-back transformation,
to efficiently deal with the complicated vector analysis. Thefirst discovered in the form of polarization term in the gyro-

Il. BASIC FORMALISM
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kinetic Poisson equation by Lé&plays an important role in
the gyrokinetic formalism for the shear Alfaemode. Fol-
lowing the detailed algebra in Refs. 39 and 40, we can derive
the gyrokinetic equation as

ag cb dFq 0

E+(Ub+vd)-Vg= e_BXVFO.V_IE (1)
with

n, e
=g 150

)

e eU
Hi= eJO¢(X) B EJOUAH(X) = eJqu(X) - EV”JO% ’ FIG. 1. Circular concentric tokamak coordinate system.

whereg is nonadiabatic part of the distribution functidf;

is the perturbed Hamiltonian, ark€, is the equilibrium dis-
tribution function which is assumed to be Maxwellian. In
addition, we have replacedl, by another field variabley,
which is defined by

fers an approach for kinetic MHD phenomena which is more
rigorous, self-consistent, and comprehensive than the previ-
ous hybrid models.
The basic solution method is to solve the linear gyroki-
A= (V'M\)n 3 : . SR Lo
netic equation for the perturbed distribution function in terms
The gyrok|net|c Poisson equation takes the form of quasiof field variables, and substitute the solution back into the the

neutrality condition, quasi-neutrality condition and the gyrokinetic moment equa-
2 tion. When combined with boundary conditions, an eigen-
e no 3e vt no . . Do
2 e j Jof dv+ —V, —V, o+ — ¢, value problem is formed. The equation system is finally re-
i m Q0?2 4m 02 duced to a coupled Ordinary Differential Equatig@DE)

(4)  system in the radial direction, which is solved by a finite
Besides the gyrokinetic Poisson equation, we normally needlement method. Cubic B-spline functions are chosen as the
the parallel Ampere’s law to complete the system. Instead obasis functions. The eigenvalue searching algorithm by Tang
using the parallel Ampere’s law directly, we combine it with and Rewoldt® is used. This method has been successfully
the zeroth moment of the gyrokinetic equation to get theapplied to the kinetic theory of both short wavelength elec-
gyrokinetic moment equatiofGKM) and use it as the third tromagnetic modé$* and long wavelength electrostatic
equation in our equation system. This equation is often remodes*~#3454®|n the latter case, of course, the quasineu-
ferred as the gyrokinetic moment equation, in spite of therality condition itself will complete the system; the gyroki-
fact that it is distinct from the gyrokinetic equation becausenetic moment equation is not used.
Ampere’s law has been utilized to derive it. Without repeat-  We will assume the simplest tokamak geometry—a
ing the derivation in Refs. 39, 40, we have the gyrokineticmagnetic torus with circular concentric flux surfaces. The

moment equation as coordinates used are 4, and{, shown in Fig. 1.
J| c? 1 c (VXVXA)-B The equilibrium magnetic field is given by
Cat|an ViVLd)) Ta S T B=—" <e+ - ®)
o a()\ ™ a(nRy
+(VAXD)- Vo where
2 r
:_2 f(evd vh), d30+ 1 C_Z(%) Vi% a(6)=1+ € cosb, =R 7)
Since the toroidal direction is homogeneous, the toroidal
1 e?n vtz , mode number is a_good qua_ntum number for linear modes
+B-V B 2 ( e 292 ViA | +b and there Is no toroidal coupling. We can assume the general
2D expansioh
X; \Y CzeBr?;;) .va(b, (5) (d’a‘//u):% (ﬁbm(r)y'J/\\m(r))eingiimﬁiiwt- (8

We start from the gyrokinetic equation, Ed1).

where the efvy-Vid3 is evaluated in X,U,u,&) Introducing”

coordinates3—3%%%40n (X e, u, &) coordinates, it should be
replaced by[(vq- Vf+ uvy- VBf/de)d3v, wheree is ki- IFy ¢©

netic energy. This gyrokinetic system provides a fully kinetic ~ 9=h—|e—=——2VFo (bXV)Joyy, C)
description for shear Alfuemodes and drift modes. It recov-

ers familiar MHD modes entirely from the kinetic side, and we obtain another gyrokinetic equation in terms roffor
intrinsically includes all the kinetic effects, and therefore of-which we will solve,
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oh 0z;=D,e'+U,e '’ (16)
E+(Ub+vd)Vh ) .
0,=D,e?+U,e 27+ SC, (17
= EXvFO.V_a_FOi)JO[Qg_(l_ﬁ) '/ﬂ}, (100 Wwhere O,, Oz, Oy, etc. are differential operators acting
eB de dt o upon every pair ofif;,(r) and ¢n(r). O,, O3 andO, are
where 0O(€%), O(€') andO(€?), respectively. Thé@, term can be
1 separated int®, which couples downward by one poloidal
Wy= i—Vd'V. (ll)

harmonic, andU,; which couples upward by one poloidal

We adopt the method used by Marchaetdal “442 to inte- harmonic; theO, term can be separated infd, which
grate the electromagnetic gyrokinetic equation along unpelp-OUples downward by two _poI0|daI ha_rmonlds,z vyh|c_h
turbed orbits. The original method of Marchaetlal. was ~ cOuPles upward by two poloidal harmonics, &G which is

applied to electrostatic perturbations. Here, extra effort ign€ Self-coupling termSC can be divided further into the

needed to include the shear Alfveomponent. self-coupling term from a straight tokama#kC® and that
Expanding¢, ¢, in poloidal harmonics, we rewrite the from toroidicity SC, i.e., SC=SCG+SC‘.. Inside every
gyrokinetic equation foh as term, there are terms related g representing by subscript
dh ie c 3 “ " and terms related tap representing by subscriptg.”
= — —Fpe ety ei(nime)(w_w 1+ 7 ___”] For example,SC’=SC;+SC;. The detailed expressions
dt T 0 * T 2 ) .
m for O,, Oz, O4, and etc. are listed in Refs. 39, 40, and 48.

Substituting the solution for the distribution function and
, (120  the result of symbolic vector analysis in the quasineutrality

Wy
¢m(f)—(1—;>¢m(r) €S =Ctol ( _
s _ s _ ) ) condition and the gyrokinetic moment equation, we obtain
The solution forh is obtained by integrating from'=—c= the follow ordinary differential equations,
to t'=t along the unperturbed orbit in phase space:

x Jo

(< W) () with (X' V) (1 =t) = (x,V). S o imo AN AN ( ¢’n’1(r))
e 4
h(t)=hel(n¢-o), (13 M AY+AL AYHAL T\ ()
' QNg QNy )
T1=—EF D jt dt’ el —0-m(e’ = 0)- w(t’ -1)] Bm Bm Dm(r)
T % ) Tl Bl BEY B4+ BEY Pm(1)
m m m m IIm
. e 3 N N
xe M w—w, |1+ 9l =— =] |1 Jo| dm(r") CS‘ ’ C“Q“ ' bm(r)
T 2 + Jo Fo J Fi :01 (18)
Cm +Cm Cm +Cm l/l\lm(r)
6/
- ( 1- M) <p”m(r’)}. (14)  where superscript®N, J, andF refer to the quasineutrality
w

condition, terms on the gyrokinetic moment equation related
To be concise, we will not include here the detailed calculato the current kink, and terms in the gyrokinetic moment
tion of the orbit integral. The final result is included in Ap- equation involving the distribution function, respectivedy.
pendix A. B, andC are functions of and 6. Since we have expandef
The left hand side of the gyrokinetic moment equation isand ¢, in poloidal harmonics, it is desirable to have an ordi-
a complicated function oé,, and ¢,,. A newly developed nary differential system in terms of poloidal harmonics. Op-
symbolic vector analysis package—General Vector Analysi®rating with 1/2réddexdipd] on the above equation, we
(GVA)*—is used to calculate the analytic expression for it.obtain a coupled ordinary differential equation system of the
GVA can perform symbolic vector calculations in any math-form
ematically well-defined coordinate system. In addition, any "
calculation can be carried out in terms of an asymptotic ex( ( bm(T) )
pansion to any order of a small parameter. i)
For the tokamak geometry, E¢6), and the general 2D

QN¢ QNy
Apm Apm
Jo F¢ J F
Apm+ Apm Apdlm“l‘ Apml//

expansion, Eq(8), the left hand side of the gyrokinetic mo- BSm? Bon” ( $m(T) )
ment equation contains more than 100 terms. Bf)?;ﬁr B;rﬁ Bffrpﬁ BE% Pi(1)
g c? 1 c VXVXA)-B QNg QNy
- EV’(_ZVld) +E(B.V)% Com Com (¢m(r)):0 (19
Va B ChntChin Comt Cht) | (1)
@ The matrix elements are listed in Appendix B.
+(VXA), -V . .
B The eigenvalue problem for the coupled ODE system is
5 solved using the finite element method. Cubic B-splines are
__¢ E ging—imo—iot %+ % % (15) used as the basis functions. After choosing the partition in
iwldT R2 R RS ' the radial direction
where A={X =X1<Xz" " XN-1<XN=XR}, (20
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wherex, andxg are the left and right boundaries, ahdis  1ll. KINETIC BALLOONING MODE
number of radial knots, we expand the eigenfunctigns

and ¢, in terms of the basis functions(x), (K To understand thes limit for stability in toroidal sys-

=1,2;+-,N+2), tems is an important problem in the area of magnetic con-
finement. In this respect, high mode number electromagnetic
N+2 ballooning modes have been an issue for many years, be-

D= kzl 'ykmfk(x), cause they are normally unstable for sufficient lagy& he-

oretical estimates were first obtained for the ideal MHD bal-
N+2 (2D Jooning mode®®5° The kinetic MHD ballooning mode was
U= S A ), first introduced by Tangt gl.lzl to investigate kinetic effects
k=1 for MHD modes. The kinetic ballooning formalism was
) ) shown to be able to recover the MHD ballooning model in
wherem=1,2, ... M; M s the number of poloidal harmon-  ¢etain limits. Moreover, the interaction between kinetic ef-

ics kept in the system. fects and Alfve waves significantly enriches the physics for
The coefficients of the couple ODEs are also expandeghe kinetic ballooning mode. Rewoldit al*?* and Tang

H —43,45,4 e . . . I

in the same manné: °The boundary conditions are et 4151 have numerically implemented the kinetic MHD bal-
looning theory and carried out extensive numerical studies.
The implemented one-dimensional numerical code using the

For the cubic B-splines, there is only one nonzero basis fund2igh- n ballooning representation is called the FULL code.
tion at either boundary. Therefore, the boundary conditions 10 leading order, the ballooning mode is a local mode

¢m=0 and ¢;,=0, for all m at x=x_ ,xg. (22

are on a chosen flux surface, with short perpendicular and long
parallel wavelength. Usually, the ballooning mode is studied
£=0 and&NT?=0 for all m. (23) by using the WKB type of ballooning representation,
After some algebra, the eigenvalue problem is finally f f
reduced to solving for the eigenfrequencieswhich are ¢ |=| 3 |ex 27)
roots of _
y Y U
f(w)=DelG,] . (o)|. (24

wherey carries the short wavelength structure in the perpen-

We use the Newton method to search for the roots. Howeveflicular direction, and-Vx=0. f, ¢, and¢;, on the other
f(w) is an extremely complicated function on the complexha”dv contain only slow variation structure. In toroidal ge-
plane. It is not practical to use the Newton method directlyometry, f, ¢, and ¢; actually represent a “quasimode;”
on f(»). Tang and Rewold? used a much more efficient Whose domain in the extended poloidal angle is,
eigenvalue searching method. This method is based on the )

fact that, In our two-dimensional calculation, we do not use the
) ballooning representation. But the ballooning mode can be
f(w):DedG:]mr(w”:Hizi/ll(N+2)ei(w)* (25)  represented by radially local modes in the two-dimensional

analysis. By keeping a wide enough poloidal spectrum cen-
where e(w) are the ordered eigenvalues of the matrixtered atm=nq(r), we are able to describe the basic features

G',Lm,(w), of ballooning modes. First, the kinetic ballooning mode is
indeed a localized mode around some flux surface; second,
ley(w)|<[ex(w)|<- - <[emn+2)(@)]. (26)  b-Vy=0, the basic feature of the kinetic ballooning mode, is

. _ equivalent to the conditiom~nq(r); and the slow variation
It is obvious that wherf(w)—0, €,(w)—0. The Newton 51004 the field line is included by the poloidal spectrum.
method is applied t@, (). Sincee, () is a much simpler We have calculated the local eigenmode using the KIN-
function thanf(w), we expect much faster convergence. TospEM code for Tokamak Fusion Test ReactBFTR) shot
implement this method, the eigenvalues of the matrixNO_ 49982S05 at=4.00 seconds, and benchmarked the re-
Gy () have to be solved for, for each guessdorand the g ;¢ against the high- ballooning results from the FULL
matching betweee; () ande,(w+ éw) has to performed  code. It is found from the FULL code calculation that the
interactively. maximum growth rate is located ata=0.54. We therefore

For a standard setup with 100 radial nodes, and 5 poloihave performed the radially local calculations at the same

dal harmonics for bothy and ¢, the dimension for the flyx surface using the KIN-2DEM code. The equilibrium
matrix G} (w) is 1020<1020. Running the NAG routine profiles for densityg, and temperature are plotted in Fig. 2.
f02gbf on a DEC Personal Workstation 500 a.u. to solve forin order to obtain a substantial growth rate, the plasma den-
the eigenvalues and eigenvectors(zﬁm,(w) takes about 8 sity has been scaled up by a factor of 13.75 such that
minutes CPU time. Normally, we need less than 10 iterationg8=2.44% atr/a=0.54.
to get a converged solution. The numerical code is named In Fig. 3, we plot the real parts of the eigenfrequencies
KIN-2DEM, which can be run either in a global mode or in w, and the growth ratey against the toroidal mode number
a radially local mode on a chosen flux surface. n. It can be seen from the figures that the KIN-2DEM code

Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



2550

Phys. Plasmas, Vol. 6, No. 6, June 1999

density (grid & spline)

Qin, Tang, and Rewoldt

q {(grid & spline)

64— ——————rr7 7.5 — ——
o2r p 7o F :
0 |- 1 3 3

[ ] 6.5F =
58 |- < F 3
56 |- ] .
54 - 4 _:
52 |- - _:

= N 4 1

% S0 E 3

4 L ] 3

2 4

v a9l 4 ]

o 3 1 4 E

¥ 46| 4 E

I ] 3

3 4l B ]

h [ ] ]

c 3
42 - - E
49 |- - E
38 - _:
3 _ E
34 E E
32| E
30 L. I 1 1 I I 1 TR . L

° 1 .2 3 4 5 .6 7 8 .9 1 1.6

(a) /a (b) ra

electron temperature (grid & spline) ion temperature {(grid & spline)
4.5 B B e S e S B ms p S B e B S B S 3.4 T T T T T T T T T T T
4.0 4
3.5 :
3.0 :

- 2.5 - 4

> > -

. .

£ =z J

- - 4

~2.0 - ]
15 ]
1.0 ]
B-] -

oL I 1 I ! L 1 ! L ° T B TR RS NS B
] 1 .2 3 4 .5 .6 7 8 .9 1.9 [} 2 .3 4 .5 6 .7 8 9 1.0
© a (d) e

FIG. 2. Equilibrium profiles for TFTR Shot No. 49982S05tat4.00.

results agree with the FULL code results reasonably wellmore accurate. However, for this case it appears that there is
no region of overlap im where both codes are at their most

The best agreement is for mediumi.e.,n=15~45. This is

the consistent with the fact that for low the KIN-2DEM

code is more accurate, while for highthe FULL code is

accurate.

Plotted in Fig. 4 is the mode structure in the poloidal

10.0[ T T T 10.0F T T T 7
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2 - \
8 g | —
> <
S rob S 1of E
R . A F
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FIG. 3. Kinetic ballooning mode. Real frequency and growth rate are plotted agaimsTFTR shot No. 49982S05 at4.00,r/a=0.54, andB=2.44%.
Results from the KIN-2DEM code and the FULL code are compa@dReal Part(b) Growth Rate.

Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



Phys. Plasmas, Vol. 6, No. 6, June 1999

-.8

=1

phi

real .

psi

: real,

Qin, Tang, and Rewoldt

imag, magn: i

o

imag, magn: i= 1
T

1N

-1

-1

.2

T T T T

5 4
3
g vi——
. 5

i

e "
===

2551

aloubinn lyitern st nibienlernilein lennelin e b i
-3.6 32 -25 28 18 1.0 -5 ¢ 3 10 1.5 2¢ 285 38 35

theta
FIG. 4. Kinetic ballooning mode structure &t The ballooning structure is evident from the plots¢gofind i calculated by the KIN-2DEM fon=30. The
equilibrium is for TFTR shot No. 49982S05 &t 4.00, r/a=0.54, and8=2.44%.(a) ¢. (b) ¢, .

Ry ST

Liarataiialaanaleiaale sy
1.5 2.0 25 30 3.8

i
H-

3.5 3.0 25 2.0 1.5 1.8 -5 2
(a) theta

direction calculated by the KIN-2DEM code. The toroidal ing their reduced model, Hazeltine and M&fstound that
mode numbem is 30. The ballooning structure is evident there are no unstable kink modes for a cylindrical model
from the plot: the mode is strong arourtd=0 and weak with a conducting wall.

aroundé=r. Such subtleties arise from the fact that the growth rate
for the internal kink mode i©(e?) smaller than that for the
external kink mode. For the same reason, the pure MHD
internal kink mode may not be important after all. The inter-

The internal kink mode in tokamaks is driven by the Nal kink mode is interesting only because of its potential to
equilibrium inhomogeneities, particularly the current densityinteract with other kinetic components existing in the toka-
gradient. It has been studied extensively for many yeargha@k plasma. The kinetic components in a modern tokamak
While the ideal MHD internal kink mode in a straight toka- include both the energetic particles and the kinetic effects of
mak (screw pinch is well-known3¢3753 the internal kink the background plasma. The fishbone mode, strongly corre-
mode in toroidal geometry is a quite subtle problem. In 1975/ated with losses of injected energetic beam ions, is domi-
Bussacet al3® concluded that toroidicity is a stabilizing fac- nantly an (n,n)=(1,1) mode destabilized by the trapped
tor and that the internal kink mode is stable wheiis suf-  energetic ions.
ficiently low. One year latter, Pad obtained the opposite An analytical study of internal kink modes using the
conclusion that unstablan(=1, n=1) internal kink modes gyrokinetic model developed here has been carried out in
in a screw pinch are also unstable in toroidal geometry witHRefs. 39 and 40. Even though analytic calculations can bring
even greater growth rates. Galvabal®® in 1978 showed us some physical insight, numerical analysis is indispensable
that toroidicity can be either stabilizing or destabilizing in for the internal kink mode in toroidal geometry. In this pa-
different parameter regions. Numerical results by Kerneper, we focus on numerical results from the KIN-2DEM
et al,*® using circular flux surfaces and parabolic pressurecode, and especially investigate the kinetic effects due to the
profiles, agreed with Bussaet al’s conclusion. Extensive background plasma on the internal kink modes. We have
numerical studies, including all the important geometricalcompared numerical results from the KIN-2DEM code and
effects, were conducted by Manickéfh. the PEST code for a test case. Growth rates are calculated for

Moreover, Pao pointed out that the linear growth ratea family of equilibria generated by the PEST code. Different
from the classical MHD model for the internal kink mode in equilibrium profiles are characterized by differeqg=q(r
a screw pinch is 4-7 times greater than the experimentaF0). The plasma density, pressure, angrofiles for the
observatior*® Investigation of the internal kink mode using equilibrium withq,=0.90 are plotted in Fig. 5. Other plasma
other models than MHD provoked more interests. Strausparameters arBy=4.605 T,Ry=245 cm, anda=24.5 cm.
concluded that, in circular tokamaks, the internal kink modesAlso plotted in Fig. 5 is the mode structure for the internal
are stable or marginally stable in his reduced MHD modelkink mode calculated by the KIN-2DEM code.
and these modes are favorable for confinemeérftOnly in a In Fig. 6, the growth rates calculated by the PEST code
straight tokamak with a rectangle wall did Strauss find theand the KIN-2DEM code are plotted agaimgt. In this cal-
internal kink mode to be unstable. Naitetial >® reached the culation, all the kinetic effects inside the KIN-2DEM code
same conclusion from a gyrokinetic particle simulation. Us-are turned off. From Fig. 6, the KIN-2DEM code results

IV. INTERNAL KINK MODE
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agree with the PEST code results. The small discrepancy catase, the relative Shafranov shift calculated by the PEST
be mainly attributed to the Shafranov shift neglected in thecode is about 20%.

model equilibrium assumed by the KIN-2DEM code. In this

FIG. 6. Growth rates vg,. KIN-2DEM code agrees with the PEST code.

v (10* /sec)

\ Kinetic (MHD terms only)

PEST

0.75 0.80 0.85 0.90

Do

The g, dependence of the growth rate can be ex-
plained by the basic features of the internal kink mbg.
peaks around,= 0.85, andyincreases ag, increases when
00<0.85. This is because, wheyy increasesr s decreases,
and the effective toroidicity /R, decreases. Since toroidic-
ity is generally stabilizing, the growth rate increases. How-
ever, this trend has to be reversed somewhere because, if
0o>1, the mode is stable to leading order. Thus, after some
critical value, whengy approaches 1, the growth rate de-
creases. This critical value fay, is where the growth rate
reaches its maximum. In the current case, the critical point is
0o=0.85. From another point of view, this descending fea-
ture of they versusq, curve whergy>0.85 is also related to
the r variation. Wheng—1, r¢—0, thenw?~ §W—0, be-
cause the trial function vanishes wherr.

As discussed before, the internal kink mode is interest-
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FIG. 7. Kinetic effects on internal kink mode. Trapped ions flattenthes g, curve, and bring significant real parts into the eigenfrequenG@e&rowth
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ing only because of its potential to interact with the kinetic
components existing in the tokamak plasma. In this sectiorfrequencies are plotted for cases with no kinetic effects, with
we present our numerical results on the kinetic effects due tonly kinetic effects due to circulating particles, and with ki-

netic effects due to both circulating and trapped patrticles.

the background plasma.
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The equilibria are the same as in the previous section. Theffect is only prominent for trapped ions. This trapped ion
mode structures under the influence of the kinetic effects foeffect is evident from the real parts of the eigenfrequencies
the caseyy=0.9 are illustrated in Fig. 8. as well. It is well-known that ideal MHD unstable modes do

For the case we are studying, the kinetic effects due tmot have real parts in their eigenfrequencies. We see that
circulating particles are small. The dominant kinetic effectscirculating particles do not change this characteristic very
are from the trapped ions. This observation accords with thenuch, whereas the trapped ions bring significant real parts
following estimates for the kinetic resonances. The ion teminto the eigenfrequencies.

perature for the equilibrium withg,=0.9 is T;~25 keV. From Fig. 8, it is clear that the mode structure is not
Thus, significantly affected by the circulating particles, but is
v; modified by the kinetic effects due to the trapped ions. This

Wi~ R—Oq~6>< 10°/s> w~1Xx 10°/s. (28) is consistent with the conclusion we draw from theersus

o o curve and thew, versusqg curve. In addition, when only
From Eq.(B3) the kinetic resonances between wavesihe circulating particles are includegy(r)~y(r), that is

and the circulating particles are controlled by the factor E,~0. This is one of the basic features of ideal MHD. We
(w— 0w see that trapped ions change this feature and bririg in
w?—(n+S)%w?’ V. TAE
2 i R
(_n+S) is normally nonzero for any at. mo;t rqdlal loca It is found that TAEs can be destabilized by alpha par-
tions. Consequently, there are no effective kinetic resonances

for the circulating ions. However, for the trapped ions, the icles and other hot particles when their pressure is high

,10,62,63 ; ; ;
physical picture is different. From Eqe81), (B2), and(B3). enough® Experlmental and theo_retlcal_ studies shown

: : that unstable TAEs, driven by energetic particles, can lead to
the trapped particle resonance is controlled by the factor

80% of the energetic particle transport in some present
w— wIi tokamaks'! Besides reducing the plasngaloss of energetic
particle power through TAEs could result in serious wall
. damage, impurity flux, major operational control problems,
The trapped ion resonances are much stronger by two regyq even a failure to sustain ignition. In this section, the new
sons. First, gyrokinetic system developed will be used to study the
wpi~ Jewy~2Xx10°/s= w. (299  TAEs. This represents the first fully kinetic model for the
TAEs. More importantly, the destabilization of the TAE by
energetic particles and the background damping will be in-
o (30) vestigated nonperturbatively. Compared with previous hy-
Vi~ R—Ivthi~3>< 10° cm/s, _brld models gncﬁ;\ﬁ/s?zsglmates for th_e growth rate gnd damp-
ing mechanisn’ the fully kinetic model is more
Vi comprehensive and self-consistent. In this section, the nu-
o)~ - 11X 10°/s. (300 merical results from the KIN-2DEM code and the NOVA-K
_codé®8-20yjill be compared.
Whean1=O, Wpi (%?es not enter, and the resonance factor is  fjrst we give a numerical example of the TAE calcu-
(0= w,)/(o—wp’). There is strong resonance between theieq py the KIN-2DEM code, and compare the results with

wave and the time-averaged drift motion of the trapped ionsy,o those of the NOVA-K code. We choose the following
This n=0 resonance exists even whep;>w. In the cur-  ,14e| equilibria:

rent casewy;, w(DO), andw are comparable, and the trapped
ions’ drift motions resonate with the internal kink mode and ~ Ro=300~500cm, a=90cm, By=5T,
significantly modify the e|gen]‘requency and thg mode struc- N(¢)=ne=5x10%cr®, q()=1.05+0.6¢, (32)
ture. For electrons, the kinetic effects are not important be- _ _ _ _
causewy,> w and > w. The trapped electrons can con- Where ¢ is the normalized poloidal flux, withy=0 at the

tribute to the kinetic resonances only when 0, considering magnetic axis and)=1 at the plasma boundary. For the
the fact thatw(Dog~w(D°i)~w. But for the A and B matrices, €quilibrium model with circular concentric flux surfaces,
the contribution from trapped electrons is much smaller tharthere is an one—one relationship betweeand minor radius
that from trapped ions, because tAeand B matrices are T, which is the radial coordinate used in the KIN-2DEM
proportional top%; andpg; , respectively. COd?- In particular, for the family off profiles Q(}/f):q(o)_
The kinetic resonances due to the trapped ions alsd d"¢, the relation between the normalized minor radius

change they, dependence of the growth rate. From Fig. 7,and ¢ is

w— C!)(DO)_ Nwp;

When w(DO) is small, we expect strong kinetic resonances be
tween the wave and the trapped ions. Second,

the peakedy versusqg curve is flattened by the trapped ion (1) (1)
resonances. In the previous section, we explained that the 2{ 1+ q )=¢/;+ f . (32)
peakedy versusqgg curve is the result of ¢ variation. When 3q® 3q@

the trapped ions are present in the system, the radial variatiope gojytion fory in terms ofr is
is averaged out by the trapped ions because of their finite
banana width in the radial direction. Since the banana width
for ions is much bigger than that for electrons, this averaging

1/3 1
== m) 3

b+c\ 13
S
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Background pressure is neglected, to be consistent with the
circular concentric flux surfaces assumed by the KIN-2DEM
code. We look an=2 modes. Shown in Fig.(8) is the

b=27a%(1+a)r?
c=10&3%+72%*1+a)%r*

(33

1 . . . e
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FIG. 11. Odd TAE.(a) Eigenfrequency(b) Mode structure, all harmonic$c) Mode structurem=2. (d) Mode structurem=3.

toroidicity-induced coupling occurs at the flux surface whereradial location whereg= (1/n) (m+3), as predicted in the
q(y)=>5/4 between then=2 andm=3 harmonics. Plotted analytic model.
in Fig. 9(b) are the continua for thex=2 andm=3 harmon- In the rest of this section, we study numerically the ki-
ics without and with coupling. netic destabilization of the TAEs by energetic particles, as
Numerically, two TAEs are found in the gap. The onewell as the damping due to the background plasma. Com-
with lower frequency has the same phase for the dominamared with the existing hybrid model$28-?the fully ki-
m=2 andm=3 harmonics, and is called the even mode. Thenetic approach developed here is more self-consistent and
other one with higher frequency has opposite phases for theomprehensive. Compared with tt#V calculation for the
dominantm=2 andm=3 harmonics, and is called the odd growth rate and background damping widely used in the hy-
mode. In Figs. 1@&) and 11a), the eigenfrequencies from brid models, the eigenvalue calculation is nonperturbative
the KIN-2DEM code and the NOVA-K code are plotted and more accurate. To investigate the destabilization of the
againstR, for both the even and the odd mode. The resultsTAEs, we introduce a third species, of energetic hydrogen
from the KIN-2DEM and the NOVA-K codes agree with ions, into the system. The fast ions are assumed to be Max-
each other very well. Drawn in Figs. @), 10(c), and 1Qd) wellian with a constant temperature profile. The pressure
are the mode structures of the even mode for the case @fofile for the hot particles is
Ro=400 cm. The counterparts for the odd mode are drawn in — b(0)e- ¥0.09 34
Figs. 11b), 11(c), and 11d). The characteristics of the even Ph=p(0)e ' (34
and odd modes are clear from the plots. The dominant harfFhe domains of variation for the hot particle thermal velocity
monics arem=2 andm=3, and the harmonics peak at the v}, and 3, at the magnetic axis are
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vh In Fig. 13a), the growth rate is plotted againg}, for the
05<-—<15 0<pp<1.0. (35 case ofv,/va=1.5. For the NOVA-K codedW, is propor-
A tional to the density of hot particles. Wh@ is increased by
To include the background damping, the background temmcreasing the hot particle density, the growth rate increases
perature profile is assumed to be linearly. Moreover, in the NOVA-K code, the background
T,=T,=0.51— )% keV. (36) damping is fixed, and is represented by_a negativ_e offset
) o when B,=0. In the KIN-2DEM code, the eigenvalue is cal-
We will look at the destabilization of the even mode for cjated separately for eagh, value. Therefore it can used to
the caseR,=400 cm. Shown in Fig. 12) is the growth rate (et the linear scaling of with respect tog,. From Fig.
versus v, calculated by the KIN-2DEM code and the 13) we see that the linear scaling is approximately valid.
NOVA-K code; in Fig. 12b) is the change in the real fre-  ap interesting observation is that the linear scaling is less
quency calculated by the KIN-2DEM code. Since thesccyrate for smalleg, where the background stabilization is
NOVA-K code use a perturbativéW calculation, the per-  comparable to the hot particle destabilization. This indicates
turbation in the eigenfrequency can only be pure imagina_r)fhat background damping is not just a simple offset of the
or pure real. In the current case, only the growth rate 'Erowth rate, and the background stabilization and hot particle
perturbed. The agreement between the KIN-2DEM code angestapilization are indeed coupled together. It also reflects
the NOVA-K code varies witlv, /v, . The best agreementis the fact that the underlying theory for ti#V estimate—the
atvn/ua=0.5, while the difference reaches its maximum atenergy principal and the variational principle are not accurate

vh/va=1.0. This discrepancy is mainly due to the differencesor modes with relatively strong kinetic resonances.
in the basic models. The NOVA-K code is based on a hybrid

model, and assumes that the perturbation due to hot particles

is small. The perturbation in eigenfrequency is obtained from

6W using the unperturbed ideal MHD mode structure. They|. cONCLUSIONS AND FUTURE WORK

KIN-2DEM code, on the other hand, is a fully kinetic, non-

perturbative code. All plasma species are treated equally, and In 2D tokamak geometry, we have developed a numeri-
the eigenfrequency, containing both real and imaginary partssal solution method for the electro-magnetic gyrokinetic sys-
is calculated by solving the eigenvalue problem. The eigentem. The gyrokinetic equation is solved for the distribution
function is obtained self-consistently as well. function in terms of the perturbed field by integrating along

30 T 20 T T T T

v (10° /sec)
(10° /sec)

Sw,

-5L L L I 1 1 0 Il Il 1 !
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) B (b) B

FIG. 13. Destabilization of TAE by hot particles. The even mode for the Rgse400 cm is destabilized by energetic particles withv ,=1.5. The linear
scaling of y with respect to3y, is approximately valid(a) Growth rate.(b) real frequency.
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unperturbed orbits. The solution is substituted back into thextra inertial forces appear. An alternative approach is to
gyrokinetic moment equation and the gyrokinetic Poissorrepresent the shear flow by a shifted equilibrium Maxwellian
equation. When the boundary conditions are incorporated, adistribution in the lab frame, where the functional form of
eigenvalue problem is formed. A newly developed computethe gyrokinetic equation is not affected by the shear flow.
algebra package, General Vector Analysis, is used to effiThe latter point of view probably is more general, because,
ciently carry out the complicated vector calculus. The eigenbesides the shear flow, we can put more equilibrium proper-
mode is Fourier decomposed in the poloidal direction, andies into the equilibrium distribution function. This method is
the coupled second order ODE system in the radial directioa special case of the Chapman—Enskog-like approach pro-
is solved by a finite element method. The resulting numericaposed by Callefi®=®8which separates the distribution func-
code, KIN-2DEM, can operate in a radially global mode astion into the dynamic Maxwelliariy and the kinetic distor-
well as in a radially local modes on a chosen flux surface. Agion F.
an example of such a local calculation, KIN-2DEM has re-
covered the kinetic ballooning mode, and the numerical re-
sults agree with those calculated by the highULL code.
The KIN-2DEM code has also been applied to the internal
kink mode. This represents the first fully kinetic model for \where
the internal kink mode. Ideal MHD results for both a straight
tokamak and in toroidal geometry are recovered in validation
tests. The numerical results from the KIN-2DEM code agree m |32 md#
well with those from the well-established PEST code. Itis ~ [d=N m) €
also discovered that trapped ions can change the characteris-
tics of the growth ratey versus central safety factgp curve,
and introduce significant real parts into the eigenfrequencies. 5 mu
In addition, the TAE mode has been recovered from the new L= 57 o7 u=v-V,
gyrokinetic system of equations. As in the case for the inter-
nal kink mode, this represents the first fully kinetic model for
the TAE modes. The numerical results from the KIN-2DEM andn, T, V, andq are functions ok andt. F represents the
code and the NOVA-K code agree very well. It is found thatkinetic part off beyondfy. A gyrokinetic equation for~
energetic(beanm) hydrogen ions can destabilize the TAE needs to be derived, whose solution will be used to calculate
modes. On this problem, the agreement between the KINthe viscous stress tensdl(x,t) and the heat stress tensor
2DEM code and the NOVA-K code varies with,/v,. The  O(x,t) such that the fluid equations far(x,t), T(x,t),
best agreement is at,/vo=0.5, while the difference V(x,t), andq(x,t) can be closedr is also needed to calcu-
reaches its maximum ai,/v,=1.0. This discrepancy is late the charge density and the current density in Maxwell’s
mainly attributed to the differences in the basic models. Theequations. Besides tokamak plasmas, the gyrokinetic system
linear scaling of the growth rate with respect to the hot for general equilibria may have applications in other
particle 8,, assumed by the hybrid models is tested by thebranches of plasma physics. For example, we notice the
KIN-2DEM code. It is found that the linear scaling is ap- similarity between the particles’ trajectories in a cylindrical
proximately valid. However, it is less accurate when theneutral plasma with flow in the, direction and a cylindrical
background damping is comparable to the hot particle destazonneutral plasma confined radially by a magnetic field in
bilization. thee, direction®® In both cases, the particles’ trajectories are
The current version of the KIN-2DEM code is an eigen- circular orbits in thee, direction, on top of which the fast
value code for shear Alfwewaves in a circular concentric time scale gyromotions are added. For space plasmas, hy-
model equilibrium. It is of practical interest to extend the brid, perturbative kinetic MHD is not applicable to many
code to general numerically calculated equilibria so that exinteresting problems. One example is collisionless reconnec-
tra geometric effects, such as the Shafranov shift, can bton, which is thought to be relevant to magnetic storms in
included in the analysis. Again, the computer algebra packthe magnetosphere. Recent magnetic reconnection experi-
age for vector analysis is expected to be a powerful tool irments at the Princeton Plasma Physics Laboratory suggested
the process of the extension. Adopting realistic equilibriathat “anomalous resistivity” could be the key to understand-
will help the KIN-2DEM code to improve its accuracy in ing magnetic reconnection phenoméfaA fully kinetic
addressing the kinetic MHD problems for real experimentalmodel is necessary to explain the observed “anomalous re-
cases. Moreover, adding the compressional component of thestivity,” which is much bigger than the classical resistivity
magnetic perturbation and the perpendicular dynamics wildue to Coulomb collisions. Another example is the mecha-
extend the code to a wider range of modes, including comnism of parallel acceleration for charged particles near the
pressional Alfve waves and cyclotron wavés. magnetic poles of the earth, which explains the aurora phe-
A gyrokinetic model for an equilibrium with shear flow nomena. Perturbative kinetic MHD cannot describe the par-
has been an active research topic in tokamak physics relel acceleration, because the ideal MHD Ohm’'s law
cently. Nonlinear gyrokinetic systems have been derived bydopted impliesE,=0. Also, strong wave-particle interac-
Artun et al,***¢ Brizard®* and HahnP® Normally, the gyro- tion is expected to be important for the parallel acceleration
kinetic equation is derived in the shear flow frame, whereof charged particles.

f(x,v,t)=f4+F, (37
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APPENDIX A: ORBIT INTEGRAL FOR DISTRIBUTION FUNCTION

The result of orbit integration fan and relevant definitions are as follows. Detailed calculations can be found in Ref. 40:
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Here, u is the magnetic moment is the kinetic energy;

o,=1 for positiveU; and oy=—1 for negativeU. All other
symbols have their usual meaning.
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The following approximations fowp and U(® will be
adopted™

— €
with
L, nq cTm dinng\ 1!
(m_—" (m) _ - _
wp=w] Rom' “* "LeBr " ( dx) :
(A15)
and
0, trapped,
U= PP (A16)

~|U, circulating.

APPENDIX B: EXPRESSIONS FOR MATRICES A, B,
AND C

The matrix elements involving the distribution function
can be simplified using the methods described by Marchand
et al** Other matrix elements are easily obtained by apply-
ing the GVA computer algebra program. Detailed calcula-
tions are carried out in Ref. 40. Here we only list the final

results:

T
* ]

n w— w(D)—

—w

|
n,'n
nq,n2odd 172

nwb’j

Wy
- ( Jnm— TYJS,m) ‘]n+nl+n2,p

Wdj
+2| Jnonym— YJ‘n3 - )Jml,p
Zd,
_(Jn—nl—nz Y‘JS ng—n,, m)‘]n,p
rRow zgdj ;dj G G

- NoC TY - Jn,m_TYJn,m ‘Jn+nl+n2,p
+2|J ~dyge )JG

n—n,,m © n—n,,m|~n+n,,p

diy, G G

_(‘]n n,—n, Y‘]nfnlfnz m)‘]n,p

(B1)

|
Ny

Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



Phys. Plasmas, Vol. 6, No. 6, June 1999 Qin, Tang, and Rewoldt 2561

O
Jn—nl,mJn‘p_Jn,mJn+nl,p _(‘]n—nl,m_%YJS—nl )Jn,p
d
+|Inm JYJﬁm)Jn+nl 0
(0 0 ) (
X + . B2)
0 B,
rRoa) G rRo(l) 2 d]
_( )\e ) (Jn ny m‘:I ‘]n mJn+n1 p) _( )\eC - Jn—nlm Y‘]S ng,m ‘]S,p

Ddj, G |6
+ Jn,m_ TY‘Jn,m)JnJrnl,p

We have neglected the contribution of circulating particles toAhend B matrices, because the radial excursions of the
circulating particles are much smaller than those of the trapped particles.
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