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On the gyrokinetic equilibrium
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Recent developments in gyrokinetic-magnetohydrodynafhit$D) theory and in electromagnetic
gyrokinetic particle simulations raise the question of consistency between the gyrokinetic model and
the fluid model. Due to the special characteristics of the guiding center coordinates, it is a nontrivial
exercise to show this consistency. In this paper it is shown, in a very general setting, that the
gyrokinetic theory and the fluid equations do give an equivalent description of plasma equilibrium
(alot=0). The fluid continuity equation and momentum equation for equilibrium plasmas are
recovered entirely from the gyrokinetic theory. However, it was Spitzer who first realized the
importance of consistency between guiding-center motion and fluid equations. In particular, he
studied the “apparent paradoxical result” regarding the difference between perpendicular particle
flow and guiding-center flow, which will be referred to as the Spitzer paradox in this paper. By
recovering the fluid equations from the gyrokinetic theory, we automatically resolve the Spitzer
paradox, whose essence is how the perpendicular current and flow are microscopically generated
from particles’ guiding-center motion. The mathematical construction in the gyrokinetic theory
which relates observable quantities in the laboratory frame to the distribution function in the
guiding-center coordinates is consistent with Spitzer’s original physical picture, while today’s
gyrokinetic-MHD theory covers a much wider range of problems in a much more general and
guantitative way. ©2000 American Institute of Physids$1070-664X00)05202-2

I. INTRODUCTION MHD theory can provide a rigorous, self-consistent, and
) o ) _nonperturbative formalism for those modes having both
Since Littlejohn’s work on the non-canonical Hamil- gong kinetic and strong fluid characteristics, such as fish-
tonian structure for the guiding center motibr, modern  p5ne" modes and hot particle driven TAEs. For this purpose,
gyrokinetic theory has gradually been established.Par- s crycial that gyrokinetic-MHD theory can recovéut is
ticle simulations based on gyrokinetic models have succes$;y: jimited to fluid models.
fully been used to study electrostatic microturbulence and  \ynat gyrokinetic theory offers is a simplified version of
transport in tokamak plasmas:* Recently, gyrokinetic e v/jasov—Maxwell system by utilizing the fact that, in
theory has been developed to study fluid types of modes igyngly magnetized plasmas, the particle’s gyroradius is
general geometry. These modes, such as Toroidal Alfve, cn smaller than the scale length of the magnetic field:
Elgenques (TAEs) and Compressmngl Alf\re_Waves €s=|p/Lg|<1, whereLg=|B/VB|. More fundamentally,
(CAWSs) in tokamak geometry, were studied previously only 5y okinetic theory is about the construction of a gyrocenter
by fluid equations. The advance of gyrokinetic theory in this.qinate system in which the particle’s gyromotion is de-
direction blurs the conventional boundary between the gyrogqsied from the rest of the particle dynamics, and deriving
kinetic theory and the fluid models. The ideal behind theye \/ja50v—Maxwell equation system in this special coordi-
so-called gyrokinetic-magnetohydrodynaniMHD) theory a6 system(According to the convention in Refs. 9—14,
is to investigate all the _maf_r&SCOp'C,ﬂu'd phenomena entirelyy,iging-center coordinates refer to this special coordinates in
from the gyrokinetic sidé? " (In this paper, gyrokinetic- e magnetostatic case, while gyrocenter coordinates refer to
MHD theory is defined to be the analysis of electromagnetiGheir counterparts when there are electromagnetic perturba-
fluid motions from the gyrokinetic point of view without s in the system. In the static case, the gyrocenter coordi-
utilizing the fluid equations. Here, MHD refers to plasmaae system is the guiding-center coordinate system. Since
fluid dynamics in general.Obviously, there should be no \ e oniy consider static cases in this paper, we will use these
discrepancy between the gyrokinetic and the fluid pictures ity terms interchangeab)yEven though all coordinate sys-
the gyrokinetic-MHD theory is meant to be correct in de-emg are geometrically equivalent, the algebra involved is
scribing the fluid motions. The importance of gyrokinetic- gitterent depending on the specific problems being studied.
MHD theory is manifested as modern fusion devices apgqr applications in magnetized plasmas, the advantage of the
proach ignition conditions, where S|gq|f|cant n.umbers Ofgyrocenter coordinate system lies at the fact that, in this co-
energetic particles are generated by fusion reactions, and thgqinate system, the fast time scale gyromotion is decoupled
restrictions of fluid models, including the lack of kinetic fom the particle’s gyrocenter orbit dynamics. For low fre-
resonances and inaccuracy in parallel dynamics, becomg,ency electrostatic modes and shear Aifveodes, the gy-
prominent. Fully kinetic models are needed. Gyrokinetic-romqtion is not important and is naturally decoupled from
the system, as if it completely “averaged out.” The advan-
dElectronic mail: honggin@princeton.edu tage of the gyrokinetic approach does not come without a
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price. Because of the special characteristics of the guiding C C
center coordinates, it is a nontrivial exercise to show the J1=gV.iPLXb=g(p=p)(VXDb). )
consistency between the gyrokinetic system and the fluid
equations. Here, the fluid equations mean the moment equa-
tions of the Vlasov equation in the particle coordinates. ThiBy comparison, we find the missing term is
undertaking constitutes a major portion of the recent analyti-
cal work in the gyrokinetic area. Quite often, gyrokinetic
systems are only shown to be able to recover reduced fluid jy, =—
equations.

The purpose of the present analysis is to show, in a very
general setting, that gyrokinetic theory and the fluid equaOne may want to try to recover this missing term by manipu-
tions give an equivalent description of plasma equilibriumlating the gyrokinetic equation, but it is not apparent at all
(a/9t=0). We will recover the fluid continuity equation and how it can be found this way. Why is this term missing?
the momentum equatiofthe zeroth and first moment equa- Obviously, the physics of the missing term is the perpen-
tions of the Vlasov equation in the particle coordinaties  dicular component of the well-known diamagnetic current. If
equilibrium plasmas from the gyrokinetic theory. The gyro-we imaginegyrating particles in strong magnetic field to act
kinetic equilibrium is of fundamental importance for the like small magnets with magnetic momejpt=mv?/2B,
widely adopted perturbative gyrokinetic particle simulationthenj,,=cV XM with M=—bZ.nu.. We note that under-
(8t method,*”~%* where the equilibrium distribution func- standing this physical picture cannot be used to replace a
tion and the electromagnetic field are assumed to be knownmigorous derivation from first principles—the Vlasov—
Gyrokinetic equilibria consistent with the well-studied fluid Maxwell system in either the particle coordinates or the
ones are obviously necessary for the perturbative gyrokinetiguiding center coordinates. If the gyrokinetic description of
particle simulations to be reliable. In particular, recent nu-plasmas is self-consistent and complete, we should be able to
merical studies of equilibria with zonal flo’/sraise again systematically recover this term, just as when we start from
the question of how to describe the equilibrium flow from the Viasov equation in the particle coordinates, we automati-
the gyrokinetic point of view. In addition, kinetic-MHD cally recover this term.
modes are normally driven by both energetic particles and Even though we pose this problem here using the lan-
equilibrium inhomogeneities. For example, to investigate inguage of modern gyrokinetic theory, it is Spitzer who first
ternal kink modes by the gyrokinetic models, we have torealized this problem and its significance almost a half cen-
give a correct equilibrium current distribution in the gyroki- tury ago??>23 Spitzer's qualitative solution of this apparently
netic equilibrium. A linear gyrokinetic theory for kinetic paradoxical result is fundamental and has been widely
MHD eigenmodes can be found in Refs. 11-14. The recovadopted. At the center of Spitzer's physical picture is the
ery of the complete fluid equations with nonlinear dynamicsidea that particle flow is different from the guiding-center
from gyrokinetic theory will be reported in future publica- flow. We will refer to this problem as the “Spitzer paradox”
tions. to reflect its interesting history. In Sec. Il, we will discuss the

The essence of the problem studied here is how to relat8pitzer paradox and how it is closely related to the modern
the measurable quantities in the laboratory frame to the ingyrokinetic-MHD theory. The importance of revisiting the
formation in the guiding center coordinates . Given a distri-Spitzer paradox lies at the fact that the gyrokinetic approach,
bution function F(X,V|,u) in the guiding-center coordi- the description of plasmas based on gyrocenter motion, has
natesZ = (X,V|,u,£), how do we calculate the fluid density, been developed into a precise quantitative theory. Any
flow, and current? For example, if we want to know the fluid “seeming conflict” between the gyrokinetic theory and other
perpendicular current in a plasma without parallel flow andwell-established models should be resolved properly. Differ-
electrical field, we may want to take the velocity moment ofent theoretical models should predict the same results for

VX

Py
CbE)

(©)

1

F(X,V|,u) to obtain the perpendicular currefsiee Sec. Il experimental observables, such as the fluid density and cur-
for details and more general cases rent. In this sense, Spitzer’s solution to this problem is the
first attempt at today’s gyrokinetic-MHD theory.
2 ef XLZWBﬁ‘/mF(Z)dV”d,u Of course, gyroklnetlc-MHD theory has much more con-
s tent than just the perpendicular current. In Sec. Ill, we will

start from the basic gyrokinetic system and systematically
. recover, for the static cases, the zeroth and first moment
ZES: eJ’ Va2mB/mF(Z)dVdu equations of the Vlasov equation in the particle coordinates.
By quantitatively recovering the fluid equations from the gy-
) rokinetic theory, we automatically resolve the Spitzer para-
pi?“Lpb'Vb):lb’ (1) dox, whose essence is how the perpendicular current and
flow are microscopically generated from particles’ guiding-
whereX is the summation over species. This is only part ofcenter motion. As Spitzer showed for the perpendicular flow,
the perpendicular current we have obtained from the Vlasogyrokinetic theory indicates that all observables in the labo-
equation in the particle coordinates-(x,v) by taking the ratory frame(particle coordinatgsare different from their
velocity moments, counterparts in the guiding center coordinates. Furthermore,

—Cb><
B
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gyrokinetic theory gives exact relations between observables
in the laboratory frame and quantities defined in the guiding
center coordinates. e - =

The mathematical construction, which relates the distri-

plasma

bution function F(X,V,u«) in the guiding-center coordi- M | ,
natesZ=(X,V|,u,&) to the observable fluid quantities in ‘ \‘.\'/-’/
the laboratory frame is the pull-back transformat®n'* of )

the inverse guiding-center transformati@® *. We will
show that the physics encapsulated in the pull-back transfor:
mation is consistent with Spitzer's physical picture on how
the diamagnetic current is generated by guiding-center mo-
tion, even though the pull-back transformation is introduced
into the gyrokinetic system independently and naturally as a
mathematical convenience. FIG. 1. Spitzer paradox.

The paper is organized as follows. In Sec. Il, the Spitzer
paradox and its modern implication are discussed. In Sec. lll,
we start from the basic gyrokinetic theory, systematicallysf o currentd does not necessarily mean a transport of par-
derive the equilibrium ¢/3t=0) fluid continuity equation ticje across the magnetic field. Electric field and magnetic
and momentum equation, and finish with a qua”“tat'vegradients produce particle drifts, but a gradient in pes-
anal_ysis of th_e Spitzer paradox. In the last section, we sUMg ;re does not.” This viewpoint is not accurate simply be-
marize and discuss future work. cause current is physically carried by particles. If there is no

particle flow inside the plasma, there is no current. The prob-

Il. THE SPITZER PARADOX AND ITS MODERN lem With.KraII aqd Trivelpigce’s argument is the under!ying
IMPLICATIONS assumption that if the guiding centers do not move vertically,

_ _ . . . then the macroscopic vertical velocity is zero.
Spitzer first noticed the obvious differences between the  Actually, even if the guiding centers do not move verti-

currents described by the fluid equations and the guidingcally, we can still observe vertical macroscopic flow. This is
center motiorf>** There are two aspects of these obviousphyious from Fig. 2. Suppose that there are 3, 2, and 1 ions
differences in an equilibrium plasma without parallel flow gn the gyro-orbits centered @3, 02, andO1, respectively.
and electric field. First, the perpendicular current given bwye observe gyrophase-averaged downward flows at points
the fluid model is the diamagnetic curresitxX Vp/B, which B ¢ andD with current intensity 1, and an upward flow at
is not in the guiding-center drift motioflt will be clear later point A with current intensity 3. It is clear now that zero
thatcbx Vp/B is only part of the diamagnetic currenOn  guiding center velocity does not imply zetocal macro-
the other hand, the curvature drift and the gradient drift forscopic current or flow, because it only implies zesx@raged
the guiding-center motion are not found in the fluid results.macroscopic current or flow. More importantly, this average
This puzzle, first posed and discussed by Spitzer, is what Wg the average over gyrophase and over different spatial lo-
call the Spitzer paradox. To resolve it, we must explain,cations. Macroscopic and microscopic pictures are consistent
qualitatively as well as quantitatively, how the diamagneticif the averaged current or flow over gyrophase and over the
current is microscopically generated, and what happens tgonfiguration space are the same, which is the case for Fig. 2.
the maCI’OSCOpiC Counterparts of the curvature drift and the The average over the Configuration Space inevitably in-
gradient drift. volves the boundary conditions, which was realized by
As to the first part of the puzzle—how the diamagneticspitzer to be necessary to reconcile the macroscopic and the
current is generated microscopically, Spitzer gave the wellmicroscopic picture. The boundary conditions can be quite
known physical picture, which is illustrated in Fig. 1. The gyptle. Let's consider the setup in Fig. 1. Whether the light
basic setup is an equilibrium plasma with a constant magyill be on depends on the boundary conditions. If the left
netic field and a pressur@ensity gradient in the perpen- ang right boundaries are perfect reflecting wdliee Fig.

dicular direction. From the fluid equatign<B/c=Vp, we  3(a)], which is case considered by Van Leevwen, Bohr, and
know that the perpendicular currentdb X Vp/B. However,

if we look at the microscopic picture, for each guiding cen-
ter, the drift motion does not produce any current or flow.
Spitzer pointed out that there are more particles on the left
than on the right; thus macroscopically gyromotion generates
current and flow at each spatial location.

Widely adopted*~2?® as it is, Spitzer's picture has con-

stantly been misunderstood. It is easy to observe that each
particle spends the same amount of time moving downward
on the right as it does moving upward on the left. The guid- | . |

ing centers for the particles do not move vertically. Based on
this fact, Krall and Trivelpiec® argued that “the existence FIG. 2. Guiding-center motion and diamagnetic current and flow.

Nes

plasma physicist
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FIG. 3. Boundary conditions.

Spitzer?® the light is on, because there is a net current andvork with the single-particle picture. The fluid theory usu-
flow downward. Microscopically, gyromotions are not com- ally gives the right results when applied straightforwardly,
pleted on the boundary, therefore, the spatially averagedven though it contains “fictitious” drifts like the diamag-
guiding center flow is downward. If the boundaries are sharmetic drift.”
boundaries between vacuum and the plagse® Fig. 8)], The Spitzer paradox is important, because it highlights
the light is off, because there is no net current. Macroscopithe seeming conflict between the theory of gyromotion and
cally, the density gradient on the left plasma-vacuum boundthe fluid equations, two most fundamental concepts in
ary is reversed and approaches infinity. There is a surfacplasma physics. After Spitzer posed this paradox, gyrokinetic
flow upward on the boundary, such that the spatially avertheory, the theory of gyromotion, has been developed into a
aged macroscopic flow is zero. In both situations, the micropowerful tool for the study of plasma physics. Recent devel-
scopic and macroscopic pictures agree, because the spatiatipment in gyrokinetic-MHD theory and gyrokinetic particle
averaged current and flow are the same. We do not discusémulation raises again the necessity to show the consistency
how these boundary conditions can be achieved, but assunbetween the gyrokinetic model and the fluid model, but in a
theoretically that they can be achieved. The discussion ofvider range and in a more general geometry. These are the
boundary conditions in the gyrokinetic formalism is actually modern implications of the Spitzer paradox. Therefore,
of practical interests. In the process of developing the gyroSpitzer’s effort in this area should be regarded as the begin-
kinetic particle simulation methods, boundary conditionsning of today’s gyrokinetic-MHD theory. In the next section,
were identified as important issues at the very beginningwe will recover the fluid continuity equation and the momen-
When studying the drift waves using the gyrokinetic particletum equation from the gyrokinetic system. Part of the analy-
simulation method, Lee and Okudaadopted a boundary sis is to derive the perpendicular flourreny from the
condition which is equivalent to the scenario illustrated ingyrokinetic theory, which is exactly the essence of the
Fig. 3(b). Spitzer paradox. In another words, the analysis presented

For the second part of the puzzle—what is the macrohere includes a quantitative solution to the Spitzer paradox in
scopic counterpart of the magnetic drifts, Spit?eargued  a very general setting.
that “in a region where the density and pressure are uniform,
no macroscopic velocities or currents can appear, regardless
of what magnetic fieldB, may be present, provided that Ill. GYROKINETIC EQUILIBRIUM
4B/t vanishes.” Cheff concluded that “the curvature drift
exists in the fluid picture,.... ThegradientB drift, how-
ever, does not exist for fluids.” Krall and Trivelpiece’s  Gyrokinetic theory assumes and takes advantage of the
conclusior® argued that “Electric field and magnetic gradi- fact that the plasma is strongly magnetized, that is, the par-
ents produce particle drifts, but a gradient in fressure ticles’ gyro-radii are much smaller than the scale-length of
does not.” the magnetic field

Even though the basic idea that the guiding center flow pVB
is different from the particle flow is fundamental, the quan- EE‘
titative microscopic picture for the diamagnetic current given
by Spitzef? was complicated and difficult to apply to general The gyrokinetic theory for equilibrium plasmas is given by
geometries. Chéfi concluded that “it can be quite tricky to phase space Poisson bracket

A. Posing the problem

<1. (4
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FIG. 4. Guiding-center coordinate system.

{-,-} AZ)XFHAZ)—F2), (5

Hamiltonian H(Z) e 7(Z), and phase space distribution

function F(Z) € F(Z), whereZ=(X,V|,u,§) is the phase

space coordinates which are normally referred to as th
h Nate system in a static magnetic field is illustrated in Fig. 4.

guiding-center coordinates atf{Z) is the set of all smoot
phase space functions.

The Hamiltonian H(Z) and the Poisson bracket

{-,-117391%]etermine the particle dynamics i, and are
given by

H= 2” +uB+ed, (©)
and
FG—e JF dG JF G cb
F O el 3 ou " au 3] oy
J F+WaF J G W&G B*
1lax (7_5 (7_5 mB;
J F+WaF ( J G+WaG JF
| ax a&) oV | aX 9E] vy’
(7)
where
B* =Bt - ”be B =b-B*. ®)
The guiding-center velocity is then given by
X_XH_lB* dH ¢ bX&H
SO e v e X
=V|b+Ve.g+Va+O(e?),
ch
VEXB:EXV¢1 ©)

c
Vg=gghX (1VB+mVfb- Vb).

In this paper, we use the gyroradipg and the thermal
velocity vy, as the basic scale parameters for length and ve-

On the gyrokinetic equilibrium 995

locity. E=—V ¢ is thus treated a®(¢) for simplicity. The
case in whichE is O(€%) will be considered elsewhere. The
basic ordering can be summarized as

cVpXb CcEXB
enB B2

UHNUmNO(GO)>UL~ ~0(e). (10
For the current purpose, we only need to know the leading
order expression for the guiding-center transformation
G:z—Z, which transforms the particle coordinates

=(x,v) into the guiding-center coordinat@s=(X,V,u,§)
X=Xx—pp+0(e), V|=v+0(e),

pu=potO(e),

where,uo:mvfIZB and x,v,v, ,0) is the usual local par-
ticle coordinatesp,, defined in particle coordinates, is the
usual gyroradius. & is chosen such thatv,=
—elle|(g sin 0+e, cosd). e, ande, are two perpendicular
directions in the configuration space, an€ g, ,b) is a
gght handed orthogonal frame. The guiding center coordi-

£=6+0(e), 1y

The gyrokinetic equation fofF(Z) is

{FH}=X-— =0, (12

+V) S av”
where we have made use of the fact that for low frequency
phenomenaF(Z) is gyrophase independett!*It is easy

to verify that phase space volume is conserved by the Pois-
son bracketLiouville theoren)

(Bn V=0 (13

Therefore, the gyroklnetlc equation can also be expressed as

J
(BH XF)+ (B VHF)=O. (14
Our goal here is to recover from the gyrokinetic theory
summarized above the fluid continuity equation and motion
equation derived directly from the Vlasov equation for each

species

V-nu=0 (15)
1
mnu-Vu+V~p—Eenu><B—enE=0, (16
where
nzf f(x,v) ddv, (17)
1
= EJ vi(x,v)d3v, (18

b= f M(v—u)(v—u)f(xv)d=p, |+ (p~ p, )bb,
(19

1
pL:fEm(VL_UL)'(VL_UL)f(X’V)dgv' (20)
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T
pn=f My =) - (V)= up f v dv. @D 5 ‘

f(x,Vv) is the distribution function in particle coordinates, and

| is the unit tensor.

As pointed out before, gyrokinetic theory assumes par- \,@
ticles’ gyro-radii are much smaller than the scale length of r
the magnetic field §<1). We do not expect gyrokinetic
theory to be valid where is not small. As a result, the re-
covery of the fluid equations from the gyrokinetic model is
for strongly magnetized plasmas only. Under this assump-
tion, we have taken the fluid pressure tensdo be isotropic
in the perpendicular direction. Since the gyrokinetic theory
adopted in this paper is correct to ord2(e), our recovery q(r):f q(r,v)f(r,v)d3v
of the fluid equations from the gyrokinetic side is carried out
to orderO(e) as well.

The fluid momentum equatiofEq. (16)] is a vector Zj a(2)f(2)8(x—r)d°z
equation. We will recover the parallel and perpendicular
components of it separately. Making use of the identity

FIG. 5. The physics of the pull-back formula.

:J G ¥[q(z)8(x—r)]F(Z2)d®z
V- (bb)=(V-b)b+(b-V)b
. - [ e@axz)+p-rF@ez. @7
=(V,.=Vpin B—be(VxB), (22
where we have assumed that the guiding-center transforma-
tion G is a diffeomorphismone-one onto and smogthand

we have
d°z=B}f/md*XdV|dudé, (28)
V-p=V,p, +V
p=V.p. +Vp Q(2)=G **q(2), (29)
1
+(p=p)[ (V.- VpInB=gbX(VXB)|. (23 p=G ™po. (30

Here G~ '* is the pull-back ofG ™, which maps any func-
The parallel and perpendicular components of the fluid motion onz=(x,v) into a function onZ=(X,V,u,§)

mentum equatiofiEq. (16)] are G (2> F(Z)=F(X(Z)). (31)
mn(u-Vu)+Vpj—(pj—p)VIn B—engj=0 (24 The physics encapsulated in the pull-back formula is il-
lustratively shown in Fig. 5. An observabtgr) at certain
and locationr in the laboratory frame is the average of its micro-

scopic counterpart expressed in the guiding center coordi-
natesQ(Z) over nearby guiding centers with(Z) + p(Z)

=r. In Fig. 5, three examples of such guiding centers are
shown. Obviously, this mechanism is consistent with
—(py=PL)(VXb), —enEXDb], (25 spitzer's original qualitative picture of how the diamagnetic
current is generated by the gyromotiee Sec. )| but ex-
pressed using the gyrokinetic language, and in a quantitative

c
nuL=—e—B[mn(u'Vu)><b+VLpL><b

where we have utilized the following identity:

way.
(VXb) =E(V><B) —V, InBXb (26) For the number density in particle coordinates, we use
€ B 1 L . . 1k
q(z2)=1 andG™*1=1.
B. Pull-back formula for fluid density and velocity in n(r)=j S(X+p—1)F(Z) d°Z
particle coordinates
As Spitzer first noticed, the fluid velocity is different =f S(X—r)F(Z) d5Z+0(€?)

from the averaged drift velocity. But how can we relate

quantitatively the fluid velocityu(r) in the particle coordi-

nates to the information about the gyrokinetic distribution =27rf F(Z)Bf/mdVdu|  +0(€), (32
function F(Z) in the guiding-center coordinates? The gen- Xt

eral formula for this purpose is the so-called “pull-back Where “[x...,” means replacing by r.

transformation.” Generally, for a macroscopic quantity) For the fluid velocity in particle coordinatag(r), we
in the particle coordinates, we have haveq(z)=v=x, G~ ™*v=X+p(X)+0O(€?), and
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first term is part of the parallel flow.

. magnetic flow from the gyrokinetic point of view is the key
n(rju(r)= f (X+p)8(X+p—1)F(Z)d°Z+O(€) issue of the Spitzer paradox. We will come back to this issue
later on in Sec. Il D.

Overall, the fluid density and flow in the particle coor-
dinates can be expressed in terms of the gyrokinetic distri-
bution functionF(Z) in the guiding-center coordinates

+f,')5(x+p—r)F(Z)dﬁz+0(ez). (33 =(X\V|,u,é) as

=J [Vjb+Veyg+Vgl8(X—1)F(Z)d®Z

We now look at the expression foi(r) term by term. The n(r)=27TJ F(Z)B*/md\/|d,u‘x +0(€), (43)

[=di

f V\|b5(X—f)F(Z)d6Z=”U\|bX TO(e),  GY )= nUjb+ %x W, %B+Wub-Vb

U= 2" V|B*/mF(Z)dV,d (35) cn Co. (Wi 2

1=+ | ViBi i + 5 EXb— Vx| Zb +O(€?). (44)
X>r

For theEX B term, we have

The last term is the diamagnetic flow, which can be simpli-
fied in terms ofW

In deriving above equation, the following equations are used:

The replacement of by r after the velocity space integral in
(36) the above equations brings quantities from the guiding-center

c
Vexgd(X—r)F(Z2)d®Z= —nEXb : : . .
J exel JF(2) B coordinateZ = (X,V|;, u,£) back into the particle coordinates

X—
o _ r z=(x,v), as if we are working in the “mixed coordinates”
The magnetic drift term is
(r,V,u,8).
f Vy8(X—r)F(Z)d%Z
c VB C. Recovery of fluid equations
= epPx | Wo F“LWb’Vb) o (37) We now recover the fluid continuity equatipgg. (15)]
from the gyrokinetic model. From our result fafr)u(r),
where
— . y *
wlzzwf BuF(Z)Bf /mdVd, @g v (n(Nu(r)=v 2”] XF(Z)Bf ImdVjdu
Syivx | +0(é
W”EZWJ meF(Z)Bﬁ*/de”d,u. (39) E ' B X (e )
=T

:[v-zwf )'(F(Z)B*/ded,u}X

—r

f pS(X+p—r)F(2)d°Z +0(€%). (45
Applying [dV|dudé to the gyrokinetic equatiofEq. (14)]
=f,';p-va(x—r)F(Z)dﬁz+0(eZ) gives
=—f V-[ppBl IMF(Z)]18(X ~1)dVjdudé+O( ) V'J 2mXF(Z)Bf dVidu=0. (46)
c w, Therefore,
=——Vx(b?> +0(€?). (40)
e Xt V- (n(ru(r))=0(ed). (47)

To recover the fluid momentum equatifigg. (16)], we

) 2uB first invoke the basic ordering
p={pH}=\/———&+0(e), (41)
0 cVpXb CcEXB
) 27 e uj~vin~0(e)>u, ~ onB 5 ~0O(e). (48
f ppdé| :Teijb+o(6)- (42) B
. ! . It is then clear that

Here, €;j;, is the Kronecker symbol, and the subsciiptep-
resents the dimension parallel Bo u-Vu=ujb- Vub+ O(€)

It is important to observe that this diamagnetic flow ap- 5 )
pears naturally in our gyrokinetic system. Understanding dia- =—Uj(bXVXb)+ubb-Vu+0O(e), (49)
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0=V~(nu)=V-(nbu”)+O(ez)
=nb-VuH+uHV-(nb)+O(62)
n
=I’lb'VUH+UHB~VE+O(EZ). (50
We also can verify that

Wi(r)=277f B,LLF(Z)B‘T/m dvidu

=T

:J ;vafd3v+O(e) p,(r)+0(e), (51

W”(r)=27rf mVFF(Z)Bff /mdVjdu

X1

= an”2+ 27TJ' m(VH—U”)2

XF(2)Bf/mdVjdu

Xi=>r

=mnif(r)+py(r)+O(e). (52

To derive the parallel component of the fluid momentum
equation[Eq. (24)], we apply 27/V|Bf/m dVdu to the

gyrokinetic equation

F
\Y; b b-VB— =0(€?), 53
I —(pm ea‘)av| (€9) (53
and get
b J —Lb.VB-eEn=0(e?). (54

ReplacingX by r and using Egs(51) and(52), we have

mnf Py pi

B-V—— 5 *B V +— b-VB—enEn=0(¢?). (55)
The first term of this equation can be simplified by E@®)

and(50).

mnuf ,_ N
B-VT=2u||mnb~VuH+muHB-VE
=mnq‘b-Vu”
=mn(qu~Vqu)H
=mn(u-Vu);+O(€?). (56)
In addition
PIl_g o
B-V B _VHpH p“VH In B. (57)

We therefore obtain from the gyrokinetic theory

mn(u-Vu)H+VHpH—(pH—pL)VH In B—enﬁ‘ZO(EZ),
(58

which is the parallel component of the fluid momentum

equation[Eq. (24)], correct to ordeO(e?).

Qin et al.

For the perpendicular component of the fluid equation,
we have, from Eq(44),

cb (W, cn
nu, = e_BX ?VB‘FW”b'Vb +EEXb
c W
——VX(—Lb) } +0(€?)
e B
L) Ixsr
c{ Vp,xb, [bXVB [ b
= — —_ pl —_ J—
B 82 Bl
(VXb), (VXb), Exb )
+p—g MmNy —g— +n—g—c+O(e).
(59
Using
(u-Vu)Xb=—uf(Vxb), +0(e?), (60)
beB( b) (VXb),
—|VXg] == : (61)
2 Bl B
we finally have
c
nui=—a3[mnu-Vu><b+lel><b
—(p—p.)(VXb), —enEXb]+O(€?), (62

which is the perpendicular fluid momentum equatidiy.
(25)], correct to ordeO(€?).

The above equations are derived for a single species,
from which one-fluid equations can be derived trivially by
the usual procedure. Since fluid equations for a single spe-
cies have been recovered from the gyrokinetic side, so have
the one-fluid equations.

D. Quantitative analysis of the Spitzer paradox

By quantitatively recovering the fluid equations from the
gyrokinetic theory, we automatically resolve the Spitzer
paradox, whose essence is how the perpendicular current and
flow are microscopically generated from particles’ guiding-
center motion. For the discussion in this section, we assume
there is no macroscopic parallel flow. Using the results in
previous sections, we can express the perpendicular current
from the gyrokinetic viewpoint as

JLZES neu,
—2

fe(x+p )S(X+p—r)F(Z)d®Z
1L

=2 jus ta

(VXDb), |, (63

C
=g |bXV2 pi+| 2 p—2 P
S S S
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whereX is the summation over species. As we have pointed cb VB )
out before, the physics of this equation is consistent with  1a(r)= 5 x| P. 5~ ~PpXVXb|+O(e). (66)
Spitzer’s original picture, but is expressed from the modern

viewpoint of gyrokinetic theory, and in a quantitative way. Therefore, contrary to those viewpoints cited in Sec. Il, our

The macroscopic flow at some spatial location in the Ioar'['Cleconclusion is that both the curvature drift and the gradient

coordinatesu(r), is the averaged instantaneous particle ve-

] - B drift have their macroscopic counterparts.

locity of trge guiding centers nearby, if(X+p)5(X+p Putting togetheij,, andj4 calculated from the gyroki-
- r)E(Z)d Z. The mathgmaﬂcs here is S|mple and accuratenatic theory, we have
Physically, the perpendicular current consists of two parts,
the perpendicular component of the diamagnetic current and
the drift current. TheEX B currents due to different species ii=2> jmitia
cancel out in neutral plasmas. s

In the above derivation from the gyrokinetic theoyy, c
andjq are naturally separated. They have different physical =B
meaning as they first appear in the equation. However, if we
derivej, from the velocity moment of the Vlasov equation ) )
in the particle coordinates, we can only directly obtain ~ Where part of the diamagnetic curreri¥ p, VX (b/B) can-

cels part of the current due to the gradient drift. As discussed
c c
jLZEVLE p, Xb— g(z Py _2 Py
S S S

(VXb), |, (67)

beZ p,+
S

z pu—zs Py

before, this result agrees with the fluid equations, correct to
orderO(€?). When the distribution functioff, is isotropic,
(64)  Zgpj=Zsp, =2sp, we recover the familiar fluid result,
Then, if we defingy andjq as they are, we find algebra- =c/Bb><VESp.. . N
' ’ To summarize, using the gyrokinetic theory, we found

ically j, =jm.+iq- In this approachjy, andj, are merely NS . ; .
definitions. The theory itself does not indicate such a split.that Spltzers orlglna.\I picture as to how the diamagnetic cur
ent is generated is correct. However, accurate analysis

As a matter of fact, we believe this split was first discovered _ . S .
when the problem was studied from the gyrokinetic side. shows that the fluid perpendicular current in isotropic plas-

For each species, we have derived the diamagnetic cumas'Cb><VESIOL /B, contains both the diamagnetic current
' and part of the current caused by the gradient drift. The other

(VXb).

rent as part of the current caused by the gradient drift cancels the
) _ . 6 current generated by the curvature drift for isotropic distri-
im(r)=e [ pé(X+p—nF(2)d°Z bution functions. This explains why it seems that, for isotro-
pic plasmas, there are no counterparts in the fluid model for
—_VX cbp—l +0(€?) thg curvature Qrift and the gradient drift,g’bx stpL /B. is
B mistakenly believed to be exactly the diamagnetic drift.
cVp, Xb b
=—pTl—cpr><§+O(ez). (65)

. . ] . . IV. SUMMARY AND FUTURE WORK
Diamagnetic current in an electromagnetic medium of the

form cV XM is well-known.M is the magnetic moment of The physical picture of guiding-center motion and its
the medium. If we define the plasma magnetic moment to benodern quantitative formulation, gyrokinetic theory, is an
—bW, /B, thencV X (—bp, /B) is the diamagnetic current effective description of magnetized plasmas. On the other
of the plasma. However, as first realized by North#®this  hand, fluid equations can be derived exactly as the moment
physical picture should quantitatively be proved from firstequations of the Vlasov equation without referring to the
principles—gyrokinetic theory. In other words, the fact thatnotion of guiding-center motion. These fluid equations are
in plasmas there is a current of the forW X (—bp, /B) well-known and valid for both magnetized plasmas and non-
should not be taken granted, but as a result of correct micranagnetized plasmas. It is interesting to compare the gyroki-
scopic theories. Northrop proved this fact from the viewpointnetic description with the fluid description in magnetized
of guiding-center motion. But his method is quite compli- plasmas where both descriptions are correct. The Spitzer
cated and is only outlined in Ref. 28. Obviously, our deriva-paradox, a seeming conflict between the macroscopic fluid
tion here is simpler and valid for general 3Rhree- picture and the microscopic guiding-center picture regarding
dimensional geometry. We note that the diamagnetic currentthe perpendicular current, was noticed almost a half century
is not cbXVp, /B, but rathercVX(—p, b/B). In other ago. In general, it is necessary to show the consistency be-
words, thechXxX Vp, /B term in the fluid model is only part tween the gyrokinetic model and the fluid model in all as-
of the diamagnetic current. To get the whole story, we neegbects. We have demonstrated this consistency, for the case of
to consider the second half of the Spitzer paradox, which igquilibrium plasmas 4/dt=0), by systematically deriving
about the macroscopic counterparts of the curvature drift anthe basic fluid equations from the basic gyrokinetic theory.

the gradient drift. Besides its theoretical importance, recovering fluid equations
From gyrokinetic theory, the current due to the magneticdfrom the gyrokinetic side has its practical value as well.
drift for each species is Gyrokinetic-MHD theory will provide a rigorous theoretical
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