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Gyrocenter-gauge kinetic theory is developed as an extension of the existing gyrokinetic theories. In
essence, the formalism introduced here is a kinetic description of magnetized plasmas in the
gyrocenter coordinates which is fully equivalent to the Vlasov–Maxwell system in the particle
coordinates. In particular, provided the gyroradius is smaller than the scale-length of the magnetic
field, it can treat high-frequency range as well as the usual low-frequency range normally associated
with gyrokinetic approaches. A significant advantage of this formalism is that it enables the direct
particle-in-cell simulations of compressional Alfve´n waves for magnetohydrodynamic~MHD!
applications and of rf~radio frequency! waves relevant to plasma heating in space and laboratory
plasmas. The gyrocenter-gauge kinetic susceptibility for arbitrary wavelength and arbitrary
frequency electromagnetic perturbations in a homogeneous magnetized plasma is shown to recover
exactly the classical result obtained by integrating the Vlasov–Maxwell system in the particle
coordinates. This demonstrates that all the waves supported by the Vlasov–Maxwell system can be
studied using the gyrocenter-gauge kinetic model in the gyrocenter coordinates. This theoretical
approach is so named to distinguish it from the existing gyrokinetic theory, which has been
successfully developed and applied to many important low-frequency and long parallel wavelength
problems, where the conventional meaning of ‘‘gyrokinetic’’ has been standardized. Besides the
usual gyrokinetic distribution function, the gyrocenter-gauge kinetic theory emphasizes as well the
gyrocenter-gauge distribution function, which sometimes contains all the physics of the problems
being studied, and whose importance has not been realized previously. The gyrocenter-gauge
distribution function enters Maxwell’s equations through the pull-back transformation of the
gyrocenter transformation, which depends on the perturbed fields. The efficacy of the
gyrocenter-gauge kinetic approach is largely due to the fact that it directly decouples particle’s
gyromotion from its gyrocenter motion in the gyrocenter coordinates. As in the case of kinetic
theories using guiding center coordinates, obtaining solutions for this kinetic system involves only
following particles along their gyrocenter orbits. However, an added advantage here is that unlike
the guiding center formalism, the gyrocenter coordinates used in this theory involves both the
equilibrium and the perturbed components of the electromagnetic field. In terms of solving the
kinetic system using particle simulation methods, the gyrocenter-gauge kinetic approach enables the
reduction of computational complexity without the loss of important physical content. ©2000
American Institute of Physics.@S1070-664X~00!00511-5#
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I. INTRODUCTION

Most of the interesting plasmas in the laboratory a
space are magnetized plasmas. Particle’s motion in ma
tized equilibrium plasmas consists of the fast gyromot
and the slow guiding center motion. Fast gyromotion put
restrict constrain on the time step if particle simulations
the particle coordinates are used to simulate the magne
plasmas. In the past twenty years, gyrokinetic theory
been developed to remove the fast gyromotion from the
netic system for low frequency and long parallel wavelen
phenomena.1–17 Gyrokinetic particle simulations, which us
much larger time step than the time scale
gyromotion,4,18–24 have been successfully applied to t
transport problem of fusion plasmas. Recently, gyrokine
perpendicular dynamics14,15 is identified and developed as a
important component of the kinetic theory in the gyrocen
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coordinates. The gyrokinetic perpendicular dynamics, wh
has not been systematically considered in the conventio
gyrokinetic theories,1–5,8–12 enables us to elegantly recove
the compressional Alfve´n wave, which is missing in the pre
vious gyrokinetic description for waves with characteris
frequencies smaller than the gyrofrequency. Introducing
gyrokinetic perpendicular dynamics also extends the gyro
netic model to arbitrary frequency modes. Since novel ma
ematical techniques, Lie perturbation and pull-back trans
mation, are utilized, the analytical formalism is much mo
general and transparent compared with previous attemp
gyrokinetic model for high frequency modes.6,7

In this paper, we further extend the gyrokinetic perpe
dicular dynamics into a kinetic description in the gyrocen
coordinates which includes all the magnetized plasma
sponses that are contained in the Vlasov–Maxwell system
the particle coordinates. In essence, the formalism introdu
here is a kinetic description of magnetized plasmas in
gyrocenter coordinates which is fully equivalent to t
3 © 2000 American Institute of Physics

IP copyright, see http://ojps.aip.org/pop/popcpyrts.html.



ar
le
g

at
hi
la
-
to
T
e
on
ov
th
is

ov
ug
e
tin
en
w

n
su
-
nd
,
or

nt

l-
u
th
g
d

ea
de
s

,
e
e

ua
fe

b
ns
et
re
y
io
th
rd
ea
th
ro
u
or
t

ug

he
e-
z

can
ie

ory
m
h

rti-
le

the
fre-
y is
can
im-
-

i-
ro-
o-

ll-
the
he

fi-

d-
ys-

o-
f the
out
e
ki-
tic
n

ible

nal
c
-
ied
ics

he
hould
ing

ell

4434 Phys. Plasmas, Vol. 7, No. 11, November 2000 Qin, Tang, and Lee
Vlasov–Maxwell system in the particle coordinates. In p
ticular, provided the gyroradius is smaller than the sca
length of the magnetic field, it can treat high-frequency ran
as well as the usual low-frequency range normally associ
with gyrokinetic approaches. A significant advantage of t
formalism is that it enables the direct particle-in-cell simu
tions of compressional Alfve´n waves for magnetohydrody
namic ~MHD! applications and of rf waves relevant
plasma heating in space and laboratory plasmas.
gyrocenter-gauge kinetic susceptibility for arbitrary wav
length and arbitrary frequency electromagnetic perturbati
in a homogeneous magnetized plasma is shown to rec
exactly the classical result obtained by integrating
Vlasov–Maxwell system in the particle coordinates. Th
demonstrates that all the waves supported by the Vlas
Maxwell system can be studied using the gyrocenter-ga
kinetic model in the gyrocenter coordinates. We will ref
this formalism as gyrocenter-gauge kinetic theory to dis
guish it from the existing gyrokinetic theory, which has be
successfully developed and applied to many important lo
frequency and long parallel wavelength problems,18–24where
the conventional meaning of ‘‘gyrokinetic’’ has been sta
dardized. In this new theoretical approach, besides the u
gyrokinetic distribution functionf, another indispensable dis
tribution functionS on the phase space and the correspo
ing governing equation is introduced. As shown in Sec. IIS
sometimes plays an even more important role. The w
‘‘gyrocenter-gauge kinetic’’ reflects the fact thatS is actually
a gauge function associated with the symplectic gyroce
transformation.

Before formally introducing the mathematical forma
ism, let us look at the basic concepts of the gyrocenter-ga
kinetic theory. As pointed out in Ref. 15, the absence of
compressional Aflve´n wave and the difficulties of treatin
arbitrary frequency modes in the previous gyrokinetic mo
els are fundamentally due to the lack of a systematic tr
ment for the plasma perpendicular response in these mo
For a kinetic system, the kinetic equation can be viewed a
theoretical description for the response of the plasma
terms of charge and current densities, to the electromagn
field. It is not necessary to determine charge density indep
dently, because we can solve for it from the continuity eq
tion after knowing the current density. We can therefore in
that the reason that the compressional Aflve´n wave is not
recoverable from the previous gyrokinetic models must
the lack of complete information about the plasma respo
provided in these models. In the gyrocenter-gauge kin
theory, all the information about the magnetized plasma
sponse contained in the Vlasov–Maxwell system is kept b
complete description of the gyrocenter-gauge distribut
function. The special features that particularly distinguish
gyrocenter-gauge kinetic theory in the gyrocenter coo
nates from other gyrokinetic theories are the systematic tr
ment of the gyrocenter-gauge distribution function and
pull-back transformation. Since the construction of the gy
center coordinates involves the perturbed fields, the p
back transformations of functions from the gyrocenter co
dinates back to the particle coordinates must depend on
perturbed fields. This dependence shows up directly thro
Downloaded 20 Oct 2000 to 198.35.7.82.Redistribution subject to A
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the perturbed potentialsf1 and A1 , as well as indirectly
through the gyrocenter-gauge distribution function. T
spirit of gyrocenter-gauge kinetic simplification is to d
couple the gyromotion~the gyration due to the Lorent
force! from the gyrocenter motion~the orbit motion of gyro-
center due to the inhomogeneity of the magnetic field!, in-
stead of averaging out the gyromotion. This procedure
only be done rigorously and systematically using the L
perturbation method. What gyrocenter-gauge kinetic the
offers is a simplified version of the Vlasov–Maxwell syste
by utilizing the fact that the particle’s gyroradius is muc
smaller than the scale length of the magnetic field:eB01B1

[ur/LB01B1
u!1. As long aseB01B1

is small, we are able to

construct a gyrocenter coordinate system in which the pa
cle’s gyromotion is decoupled from the rest of the partic
dynamics. It is important to notice that the existence of
gyrocenter coordinates does not depend on the mode
quency directly. Therefore even when the mode frequenc
comparable to or larger than the cyclotron frequency, we
still take advantage of the gyrocenter coordinates and s
plify the kinetic system.14,15 Three different coordinate sys
tems appear in our formalism. (x,v) is the particle ‘‘physi-
cal’’ coordinate system. Z5(X,Vi ,m,j,w,t) is the
~extended! ‘‘guiding center’’ coordinate system in an equ
librium magnetic field. When the time-dependent elect
magnetic fields are introduced, we use the ‘‘gyrocenter’’ c

ordinate system Z̄5(X̄,V̄i ,m̄,j̄,w̄, t̄ ) to describe the
gyrocenter motion. Among other things, the most we
known difference between the guiding center motion and
gyrocenter motion is the polarization drift motion due to t
time-dependent electrical perturbation, responsible for the
nite Larmor radius correction to drift waves4 and the com-
pressional Alfve´n wave.15 We are following Brizard11 and
recent conventions15 in using the terms gyrocenter and gui
ing center to distinguish these two different coordinate s
tems.

Recasting the Vlasov–Maxwell equations in the gyr
center coordinates should not lose any physics content o
original system, if the mathematical procedure is carried
correctly while the simplification is achieved. In th
gyrocenter-gauge kinetic theory, the information of the
netic system is split into two parts, the usual gyrokine
distribution f and the gyrocenter-gauge distribution functio
S. While f is gyrophase independent and mainly respons
for the shear Alfve´n wave and drift waves,S is gyrophase
dependent and solely responsible for the compressio
Aflvén wave. We note thatf andSare not a simple algebrai
split of the full distribution function in the particle coordi
nates, but rather a geometric split of the information carr
by it. In the gyrocenter-gauge kinetic system, the dynam
of f andS are governed by different kinetic equations in t
gyrocenter phase space. Physics on the phase space s
not depend on the choice of coordinate system. The guid
center coordinate systemZ5(X,Vi ,m,j) and the gyrocenter

coordinate systemZ̄5(X̄,V̄i ,m̄,j̄) are equivalent to the
usual particle coordinate systemz5(x,v) in terms of de-
scribing the physics contained in the Vlasov–Maxw
IP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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equation system. We will show in Sec. III that the magn
tized plasma linear response, expressed in the susceptib
from the the gyrocenter-gauge kinetic theory recovers
actly the conventional magnetized plasma susceptibility
rived from the Vlasov–Maxwell equations in the particle c
ordinate system. Recovering the classical plas
susceptibility completely from the gyrocenter-gauge kine
theory guarantees the recovery, in the gyrocenter coordi
system, all the interesting waves that we have known fr
the classical theory, including the compressional Alfv´n
wave and the Bernstein wave, previously recovered by
gyrokinetic perpendicular dynamics.15

Even though all coordinate systems are geometric
equivalent, the computational complexity involved are d
ferent depending on the specific problems under invest
tion. For applications in magnetized plasmas, the advan
of the gyrocenter coordinate system lies at the fact tha
and only in this coordinate system the fast time scale gy
motion is decoupled from the particle’s gyrocenter orbit d
namics. For low-frequency electrostatic and the shear Alf´n
modes, the gyromotion is not important and is naturally
coupled from the system as if it is completely ‘‘averag
out.’’ On the other hand, general frequency modes and
compressional Alfve´n mode can be easily recovered by i
cluding the decoupled gyrocenter-gauge kinetic equation
the gyrocenter coordinate system, since the gyrocenter o
motion is independent of the gyromotion. The current n
merical codes and particle simulation codes based on g
center orbit integration for low frequency electrostatic a
shear Alvén modes can be extended to general frequency
appropriately adding in the gyrocenter-gauge componen

An interesting fact seldom discussed before is that
classical magnetized plasma susceptibility is actually gy
phase independent. All the physics contained does not
pend on the distribution over gyrophase. It is therefore na
ral and straightforward to work in the gyrocent
coordinates. As we will see later, it does not take too mu
calculation to obtain the plasma susceptibility after the ba
formalism is rigorously setup.

The paper is organized as follows. In Sec. II, we intr
duce the basic analytical formalism of the gyrocenter-ga
kinetic theory. Then, the susceptibility of a magnetiz
plasma is derived from the gyrocenter-gauge kinetic the
in Sec. III. We show that this gyrocenter-gauge kinetic s
ceptibility recovers exactly the classical one. In the last s
tion, we discuss the particle simulation method for t
gyrocenter-gauge kinetic model and several related issu

II. BASIC FORMALISM

A. Littlejohn’s standard guiding center coordinates

We assume the equilibrium plasma is magnetostatic
magnetized, which means, by definition

eB0
[U r

LB0
U!1. ~1!

Here,r[2v3b0 /V is the gyroradius, andLB0
[uB0 /¹B0u

is the scale length of the equilibrium magnetic fieldB0 . For
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magnetized plasmas, we can construct a set of noncano
phase space coordinates in which the gyromotion is dec
pled from the rest of the particle dynamics to any order
eB0

. This special set of coordinates is called ‘‘standard gu
ing center variables’’ by Littlejohn.3 The underlying method
is to look at the perturbation of the phase space Lagrang
when eB0

is small, and introduce a near identity coordina
transformation such that, in the new coordinate system,
gyromotion is decoupled. The guiding center~GC! transfor-
mation TGC:z5(x,v)°Z5(X,Vi ,m,j), which transfers
particle coordinatesz5(x,v) into the standard guiding cente
coordinatesZ5(X,Vi ,m,j) can be found in Refs. 1–3, an
11. Here,X is the configuration component of the guidin
center coordinate,Vi is the parallel velocity,m is the mag-
netic moment, andj is the gyrophase angle. For the prese
purpose, we do not need to display the expression excep
the familiar

X5x2r0 . ~2!

The regular phase space is extended to include the time
ordinate t and its conjugate coordinate energyw such that
time-dependent Hamiltonians can be treated on an e
footing with the time-independent ones. In the extend
guiding center coordinates (X,Vi ,m,j,w,t), the extended
phase space Lagrangian is2,3,11,12

gE5ĝE2HEdt

5S e

c
A1mVib2m

mc

e
WD •dX

1
mc

e
mdj2wdt2~H2w!dt, ~3!

where species subscripts are temporarily suppressed, an

W5R1
b

2
~b•¹3b!, R5~¹e1!•e2 , b5B/B. ~4!

e1 and e2 are unit vectors in two arbitrarily chosen perpe
dicular directions, ande1 and e2 are perpendicular to eac
other. All quantities are evaluated in the guiding center
ordinates now.ĝE gives the extended symplectic structur
HE5H2w is the extended Hamiltonian, andH is the regular
Hamiltonian defined as

H5
mVi

2

2
1mB.

The corresponding Poisson bracket is obtained by inver
the matrixĝEi j , which is the coefficient of the differential o
the symplectic structuredĝE5ĝEi jdZidZj ,2,3,11

$F,G%5
e

mc S ]F

]j

]G

]m
2

]F

]m

]G

]j D
2

cb

eBi*
•F S ¹F1W

]F

]j D3S ¹G1W
]G

]j D G
1

B*

mBi*
•F S ¹F1W

]F

]j D ]G

]Vi
2S ¹G1W

]G

]j D ]F

]Vi
G

1S ]F

]w

]G

]t
2

]F

]t

]G

]wD , ~5!
IP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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where

B* 5B1
cmVi

e
¹3b, Bi* 5b•B* . ~6!

B. Symplectic gyrocenter transformation

When the time dependent perturbed electromagn
field is introduced, the extended phase space Lagrangian
gives the dynamics of particles. However, it is perturb
accordingly,10,11

gE5gE01gE1 ,

gE15Fe

c
A1~TGC

21X,t !•d~TGC
21X!G2ef1~TGC

21X,t !dt,

~7!

whereTGC
21 is the inverse of the guiding center transform

tion,

TGC
21X5X1r01O~eB!. ~8!

Expandingd(TGC
21X), we obtain

gE15
e

c
A1~X1r0 ,t !•F ~11¹r0!•dX

1
]r0

]m
dm1

]r0

]j
djG2ef1~X1r0 ,t !dt. ~9!

The essence of the Lie perturbation method is to int
duce a near identity transformation from the equilibriu
guiding center coordinatesZ5(X,Vi ,m,j,w,t) to the gyro-
center coordinatesZ̄5(X̄,V̄i ,m̄,j̄,w̄, t̄ ) when the perturbed
field is present such that the transformed extended ph
space Lagrangianḡ can be gyrophase independent.

For the transformation

Z̄i5~eGZ! i'Zi1Gi~Z!, ~10!

the leading order transformed extended phase space
grangian is

ḡE15gE12 i GvE01dS5gC E12H̄E1dt, ~11!

where vE05dgE0 , S is an arbitrary gauge function, an
i GvE0 is the interior product between the vector fieldG and
the two-formvE0 . The fact thatdSis a gauge transformatio
was pointed out by Littlejohn in Ref. 25, where the Lie pe
turbation method for Hamiltonian system in noncanoni
coordinates was systematically introduced. It was a
pointed out by Hahm in Ref. 9, where this method was fi
applied to the gyrokinetic theory. This point of view wa
subsequently adopted by Brizard.11,12,26In this paper, we re-
fer Sas the gyrocenter-gauge to reflect the fact thatdS is the
gauge transformation in the process of constructing the
rocenter coordinates from the equilibrium guiding center
ordinates and the perturbed fields.27 We note that the Hamil-
tonian Lie perturbation procedure in noncanonic
coordinates is different from the conventional canonical
ordinate transformation, which can be characterized as th
transformations (q,p)→(Q,P) which satisfy pdq5PdQ
1dS for some scalarS.25,26,28,29 In the canonical limit,S
Downloaded 20 Oct 2000 to 198.35.7.82.Redistribution subject to A
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serves as the scalar generating function which generate
canonical transformation. However, in the noncanoni
cases, it is the vector fieldG that directly gives the transfor
mation. The extra freedom associated withS allows us to
pick the gauge which is computationally or analytically be
eficial. There are several different ways to makegC E and
H̄Edt gyrophase independent. We will chooseG andSsuch
that the transformation is symplectic, that is, there is no p
turbation on the symplectic structure

gC E150. ~12!

Other non-symplectic transformations are also possible. G
erally non-symplectic transformations are more algebraic
involved.

Since we choose not to change the time variablet,Gt

50. Other components ofG are solved for fromgC E150.

GX52
c

eBi*
b3S e

c
A11¹SD2

B*

mBi*
]S

]Vi
1O~eB!,

GVi5
B*

mBi*
•S e

c
A11¹SD1O~eB!,

Gm5
e

mc S e

c
A1•

]r0

]j
1

]S

]j D , ~13!

Gj52
e

mc S e

c
A1•

]r0

]m
1

]S

]m D1O~eB!,

Gw52
]S

]t
.

The transformed Hamiltonian is thus uniquely determined
the choice ofgC E150.

H̄E15HE12Gi
]HE0

]xi 1Gw

5ef1~X̄1r0 ,t !2
e

c
A1~X̄1r0 ,t !

•$X̄1r0 ,HE0%2$S,HE0%, ~14!

in which

$X̄1r0 ,HE0%5V̄1vd , ~15!

where

V̄5V̄'1V̄ib, V̄'5$r0 ,HE0%. ~16!

In the calculation related to the gyrocenter transformati
we will only keep the lowest order in terms ofeB , because
the background finite Larmor radius~FLR! effects normally
are not important.

H̄E1 has to be gyrophase independent as well. Ther
another freedom here. We choose
IP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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H̄E15^ef1~X̄1r0 ,t !2V̄•

e

c
A1~X̄1r0 ,t !&, ~17!

where ^ &[(1/2p)*0
2pdj represents the gyrophase avera

ing operation. This leads to the equation determining
gauge functionS

$S,HE0%5V
]S

]j
1

]S

]t
1

]S

]X̄
•$X,HE0%1

]S

]Vi

$Vi ,HE0%

5ef̃1~X̄1r0 ,t !2
e

c
V̄•A1̃~X̄1r0 ,t !, ~18!

wheref̃1(X̄1r0 ,t) and V̄•A1̃(X̄1r0 ,t) are the gyrophase
dependent parts off1(X̄1r0 ,t) and V̄•A1(X̄1r0 ,t), re-
spectively:

f̃1~X̄1r0 ,t !5f1~X̄1r0 ,t !2^f1~X̄1r0 ,t !&,

V̄•A1̃~X̄1r0 ,t !5V̄•A1~X̄1r0 ,t !2^V̄•A1~X̄1r0 ,t !&.
~19!

Here, we only carry out the analysis to the first order,
therefore, study linear theory in this paper. Second or
nonlinear theory is readily available by carrying out t
analysis to the second order, but the algebra is somew
tedious.

Since the transformation we have chosen is symplec
gC E150, the Poisson bracket in the gyrocenter coordinate
the same as that in the guiding center coordinates, whic
given by Eq.~5!. After obtaining the desired gyrocenter c
ordinates, we will ‘‘push forward’’ objects on the origina
particle coordinates onto the new coordinates. The object
physical interest here are Maxwell’s equations and the V
sov equation.

We will useA andf to notate the perturbed field here
after; the subscript ‘‘1’’ will be dropped. Unless clarity re
quires us to use the barred notation, we will also drop
bars for the gyrocenter coordinates hereafter.

C. Kinetic equations, pull-back, and push-forward

In its geometric~coordinate independent! form, the Vla-
sov equation is$F,HE%50. In the gyrocenter coordinates,F̄

and F̃ can be decoupled because$ % and HE are gyrophase
independent.

$F̄,HE%50, $F̃,HE%50, ~20!

where F̄5^F&, and F̃5F2F̄. Let F5F01 f , whereF0 is
the equilibrium distribution, andf is the perturbed distribu
tion, we have

] f̄

]t
1Ẋ

] f̄

]X
1V̇i

] f̄

]Vi
52$F̄0 ,H1%,

~21!
] f̃

]t
1Ẋ

] f̃

]X
1V̇i

] f̃

]Vi
1 j̇

] f̃

]j
52$F̃0 ,H1%.
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However, f̄ and f̃ cannot provide all the information abou
the distribution function in the phase space. The third kine
equation in the gyrocenter-gauge kinetic theory is

]S

]t
1Ẋ

]S

]X
1V̇i

]S

]Vi
1 j̇

]S

]j

5ef̃~X1r0 ,t !2
e

c
V•Ã~X1r0 ,t !. ~22!

In the gyrocenter-gauge kinetic theory, the gyrocenter-ga
functionSplays a significant role.S is not only a gauge, bu
more importantly,S is identified as the distribution function
over the phase space which carries valuable physical in
mation about the kinetic system. In many applications, s
as the compressional Alfve´n wave and the Bernstein wave
all the physics is hidden inS instead of the gyrokinetic dis
tribution functionf. Equation~22! may look similar in form
and dimension to Eq.~7! for a scalar fieldS1 in Ref. 30 in the
context of free energy method.31 The scalar fieldS1 in Ref.
30 is a first order generating function, which generate
canonical coordinate transformation, and therefore induc
transformation from the perturbed particle distribution to t
unperturbed particle distributionf. Clearly, our gyro-center
gauge function and Eq.~22! are different from the generatin
function S1 and Eq. ~7! in Ref. 30. First of all,S in our
formalism is the gauge function for the noncanonical gy
center coordinate transformation, whileS1 in Ref. 30 is a
generating function for a canonical transformation. S
ondly, S1 in Ref. 30 in the context of free energy metho
exists before the construction of gyrocenter coordinates
even when the gyrocenter coordinate system does not ex
all. Of course, after the gyrocenter coordinates are c
structed, one can try to expressS1 and Eq.~7! in Ref. 30 in
the gyrocenter coordinates with the purpose of developin
free energy method for the low-frequency gyrokine
system,30 a goal different from ours. As usual, Maxwell’
equations are used to complete the gyrocenter-gauge kin
system. It is not clear how to write Maxwell’s equation
directly in the gyrocenter coordinates. But the straightf
ward solution is to write Maxwell’s equations in the partic
coordinates first, then relate the charge and current dens
to the distribution functions in the gyrocenter coordinat
i.e., f̄ , f̃ , andS.

The Poisson equation is

2¹2f~r ,t !54p(
j

eE d3vf ~r ,v,t !1
1

c

]

]t
¹•A~r ,t !,

~23!

where

E d3vf ~r ,v,t !5E d6Z@TGY* f #~Z,t !d~TGC
21X2r !. ~24!

Ampere’s law is

¹3~¹3A~r ,t !!5
4p

c (
j

eE d3vvf ~r ,v,t !, ~25!

where
IP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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E d3vvf ~r ,v,t !5E d6ZVGC~Z!@TGY* f #~Z,t !d~TGC
21X2r !.

~26!

In the above equations,d6Z is understood to be
(Bi* /m)d3XdVidmdj. TGY* is the pull-back transformation
which transforms the perturbed distributionf in the gyro-
center coordinates into that in the guiding center coordina
TGC

21 is the inverse ofTGC that transforms the particle phys
cal coordinates (r ,v,t) into the guiding center coordinate
We assume the guiding center transformationTGC and the
corresponding pull-back transformationTGC* , and the gyro-
center transformationTGY and the corresponding pull-bac
transformationTGY* are one-one onto~bijective!. Generally,
for a macroscopic quantityQ(r ) in the particle coordinates
and its microscopic counterpart in phase spaceq(r ,v), we
have5,9–11

Q~r !5E q~r ,v! f P~r ,v,t !d3v

5E d~x2r !q~r ,v! f P~z,t !d6z. ~27!

In the guiding center coordinatesZ5(X,Vi ,m,j),

Q~r !5E @TGC* 21q#~Z! f GC~Z,t !d~TGC
21X2r !d6Z. ~28!

Replacingf GC(Z,t) by its pull-back from the gyrocenter co
ordinates, we get

Q~r !5E @TGC* 21q#~Z!@TGY* f GY#~Z,t !d~TGC
21X2r !d6Z.

~29!

The pull-back transformation from the gyrocenter co
dinates to the guiding center coordinates is easily obtai
from the expression forG given by Eq.~13!

TGY* F5F1LGF

5F2
b

Bi*
3FA~X1r0 ,t !1

c

e
¹SG•¹F

2
B*

mBi*
]S

]Vi
•¹F

1
e

mc

B*

Bi*
•FA~X1r0 ,t !1

c

e
¹SG ]F

]Vi

1
e

mcFe

c
A~X1r0 ,t !•

]r0

]j
1

]S

]j G ]F

]m

2Fe

c
A~X1r0 ,t !•

]r0

]m
1

]S

]mG ]F

]j
1O~eB!, ~30!

whereLGF represents the Lie derivative ofF with respect to
the vector fieldG. As we will see in the next section, th
pull-back transformationTGY* and therefore the gyrocente
gauge distributionS lie at the center of the gyrocenter-gau
kinetic theory.
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After the pull-back off into the particle coordinates, th
configuration variabler of the particle coordinates in Max
well’s equations can be viewed as a dummy variable, a
can be replaced by the configuration variableX of the gyro-
center coordinates. As a result, we effectively obtain
push-forward of Maxwell’s equation on the gyrocenter co
dinates:

2¹2f~X8,t !54p(
j

eE d6Z@TGY* f #~Z,t !d~TGC
21X2X8!

1
1

c

]

]t
¹•A~X8,t !, ~31!

¹3~¹3A~X8,t !!5
4p

c (
j

eE d6ZVGC~Z!@TGY* f #~Z,t !

3d~TGC
21X2X8!. ~32!

III. SUSCEPTIBILITY

As an electromagnetic medium, a plasma can be fa
fully characterized by its susceptibility. For example, all t
waves supported by plasmas can be derived from the pla
susceptibility. To a large degree, a theoretical model for p
mas can be characterized by the susceptibility it predicts
this section, we derive the susceptibility for a magnetiz
plasma from the gyrocenter-gauge kinetic model, and pr
that it recovers exactly the well-known result derived fro
the Vlasov–Maxwell system in the particle coordinates.
this recovery, we show that gyrocenter-gauge kinetic theo
as an extension of the gyrokinetic theory, includes all
physics that can be described by the Vlasov–Maxwell s
tem in the particle coordinates.

We consider a homogeneous magnetized plasma wi
constant magnetic field in theez direction. For a linear per-
turbation of the form exp(ik•r2 ivt), we can always choose
the coordinate system such thatky50, k'5kx , and ki

5kz . By definition,

j52
iv

4p
x•E. ~33!

To find outx, we only need to expressj in terms ofE. Our
starting point is the pull-back formula

j15 HeE ~V'1Vib!@TGY* ~F01 f !#~Z!d~X1r02r !d6ZJ
1
,

~34!

wherej1 is the first order current in the laboratory frame.$ %1

represents the first order of the expression inside$ %. In ad-
dition, we have used the relationship

TGC* 21v5V'1Vib. ~35!

As usual, it is reasonable to assumeF̃050. Then, the
kinetic equation forf̃ is homogeneous and does not depe
on the perturbed field:

] f̃

]t
1Ẋ

] f̃

]X
1V̇i

] f̃

]Vi
1 j̇

] f̃

]j
50. ~36!
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For the initial value problem,f̃ is purely a residual of the
gyrophase dependent part of the initialf̃ . If we assumef̃

50 initially, then f̃ vanishes all the time. The physics for th
linear susceptibility does not depend on initial condition. W
can therefore letf̃ 50 andf 5 f̄ for the current purpose. Use
ful information about the gyrophase dependent part of
distribution function is carried byS.

The integral in Eq.~34! is related toF0 , f, andS through

@TGY* ~F01 f !#15 f 1
e

mc
b•FA~X1r0!1

c

e
¹SG ]F0

]Vi

1
e

mcFe

c
A~X1r0!•

]r0

]j
1

]S

]j G ]F0

]m
.

~37!

To solve forf andS, we first calculate the linear driveH1

and ef̃(X1r0 ,t)2e/cV•Ã(X1r0 ,t). Choosing the coor-
dinate system forj such that

V'52V'@ex sinj1ey cosj#,

r05
V'

V
@ex cosj2ey sinj#. ~38!

We have

f~X1r0!5er0•¹f~X!,

^f~X1r0!&5^er0•¹&f~X!5J0f~X!,
~39!

f̃~X1r0!5~er0•¹2J0!f~X!,

J05J0 S V'k'

V D .

Similarly,

V•A~X1r0!5ViAi~X1r0!1V'•A'~X1r0!,

^V'•A'~X1r0!&52V'J1Ay ,

V'•A'̃~X1r0!52eil cosjV' sinjAx

2~eil cosj cosj1J1!V'Ay , ~40!

J15J1 S V'k'

V D ,

l5r0k'5r0kx .

The expressions forH1 and ef̃(X1r0)2e/cV•Ã(X1r0)
are

H15eFJ0S f2
Vi

c
Ai D1

V'

c
J1AyG ,

ef̃~X1r0!2
e

c
V•Ã~X1r0!

5eF ~eil cosj2J0!S f2
Vi

c
AzD

1eil cosj sinj
V'

c
Ax1~eil cosj cosj1J1!

V'

c
AyG .

~41!
Downloaded 20 Oct 2000 to 198.35.7.82.Redistribution subject to A
e

From the kinetic equation forf

] f

]t
1Vib•¹ f 5

1

m
b•¹H1

]F0

]Vi
, ~42!

we easily know the solution forf

f 5
2ekz

m~v2kzVi!
FJ0S f2

Vi

c
Ai D1

V'

c
J1AyG ]F0

]Vi
. ~43!

One quickly notices that for those modes withkz50, such as
the compressional Alfve´n wave and the Bernstein wave,f
50, all the physics must be inside the gyrocenter-gauge
tribution functionS.

IntroducingS* defined by

S* 5S2
eH1

i ~v2kzVi!
, ~44!

we have the kinetic equation forS* from that forS

V
]S*

]j
2 i ~v2kzVi!S*

5eeil cosjFf~X!2
1

c
V•A~X!G

5eeil cosjF S f2
1

c
VzAzD1

V'

c
Ax sinj1

V'

c
Ay cosjG .

~45!

The pull-back transformation depends only onS* due to a
cancellation

@TGY* ~F01 f !#15
e

mc
Az~X1r0!

]F0

]Vi
1

ikz

m
S*

]F0

]Vi

1
e

mcFe

c
A~X1r0!•

]r0

]j
1

]S*

]j G ]F0

]m
.

~46!

As a consequence, all the physics is included inS* . Using
~A9! to expand exp(il cosj), we can solve Eq.~45! for S* :

S* 5
e

V
(

n52`

n5` H I n~ il!einj

i ~n2v̄1kzVi!
S f2

Vi

c
AzD

1F I n~ il!ei ~n11!j

22~n112v̄1kzVi!

2
I n~ il!ei ~n21!j

22~n212v̄1kzVi!
G V'

c
Ax

1F I n~ il!ei ~n11!j

2i ~n112v̄1kzVi!

1
I n~ il!ei ~n21!j

2i ~n212v̄1kzVi!
G V'

c
AyJ , ~47!
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where v̄5v/V and kzVi5kzVi /V. We can re-arrange
(n52`

n5` using ~A16!–~A18! to get

S* 5
e

V
(

n52`

n5` H I n~l!einj

i ~n2v̄1kzVi!
S f2

Vi

c
AzD

1
nIn~ il!einj

2 il~n2v̄1kzVi!

V'

c
Ax

1
I n8~ il!einj

i ~n2v̄1kzVi!

V'

c
AyJ , ~48!

]S*

]j
5

e

V
(

n52`

n5` H nIn~l!einj

~n2v̄1kzVi!
S f2

Vi

c
AzD

1
n2I n~ il!einj

2l~n2v̄1kzVi!

V'

c
Ax

1
nIn8~ il!einj

~n2v̄1kzVi!

V'

c
AyJ . ~49!

Our strategy here is to calculate the current through
pull-back formula in terms of potentialsf and A, and find
out the susceptibilityxp defined by

j52
iv

4p
xp•S Ax

Ay

Az

f
D . ~50!

Here, subscript ‘‘p’’ refers to the fact thatxp is the suscep-
tibility matrix connectingj and potentialsf andA, while x
is reserved for the susceptibility connectingj and electric
field E. xp andx are simply related by
Downloaded 20 Oct 2000 to 198.35.7.82.Redistribution subject to A
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xp5 i x•S v

c
0 0 2kx

0
v

c
0 0

0 0
v

c
2kz

D . ~51!

Furthermore, to break the expression into manageable pie
we split xp into two parts,

xp5xp
i
1xp

' , ~52!

where xp
i and xp

' are terms proportional to]F0 /]Vi and
]F0 /]V' , respectively.

Let’s start from the complete expression forj1

j1~r !5eE d~X1r02r !d6Z~V'1Vib!

3H e

mc
Az~X1r0!

]F0

]Vi
1

ikz

m
S*

]F0

]Vi

1
e

mcFe

c
A~X1r0!•

]r0

]j
1

]S*

]j G ]F0

]m J
5eE d3Ve2r0•¹~V'1Vib!H e

mc
Az~X1r0!

]F0

]Vi

1
ikz

m
S*

]F0

]Vi
1

e

mcFe

c
A~X1r0!•

]r0

]j

1
]S*

]j G ]F0

]m J U
X°r

, ~53!

where ‘‘uX°r ’ ’ means replacingX by r after the velocity
integral is finished. The expressions forS* and]S* /]j, Eqs.
~48! and ~49!, can be substituted into the above equation
expressj1(r ) in terms of the potentialsf andA exclusively.

First, we look at the]F0 /]Vi term in j1(r )•b
eE
0

`

V'dV'E
2`

`

dVi E
0

2p

djVi

]F0

]Vi

(
n852`

n85`

I n8~2 il!ein8jH eil cosj
e

mc
Az1

ikze

mV
(

n52`

n5` F I n~ il!einj

i ~n2v̄1kzVi!
S f2

Vi

c
AzD

1
n einj I n~ il!

2 il~n2v̄1kzVi!

V'

c
Ax1

einj I n8~ il!

i ~n2v̄1kzVi!

V'

c
AyG J

5e2pE
0

`

V'dV'E
2`

`

dViVi

]F0

]Vi

(
n52`

n5` F nJn
2~l!

2~n2v̄1kzVi!

kze

kxmc
Ax1

iJn8~l!Jn~l!

2~n2v̄1kzVi!

kzV'e

Vmc
Ay

1
Jn

2~l!~n2v̄ !

~n2v̄1kzVi!

e

mc
Az1

Jn
2~l!

~n2v̄1kzVi!

kze

mV
fG . ~54!

In the above derivat,ion, we have used identity~A12! for theAx andf terms,~A13! for theAy term, and~A5! for theAz term.
This equation gives the third row ofxp

i .
For the]F0 /]V' term in j1(r )•b, we have
IP copyright, see http://ojps.aip.org/pop/popcpyrts.html.



4441Phys. Plasmas, Vol. 7, No. 11, November 2000 Gyrocenter-gauge kinetic theory
eE
0

`

V'dV'E
2`

`

dVi E
0

2p

djVi

]F0

]V'

B

mV'

(
n852`

n85`

I n8~2 il!ein8j
e

mc
H e

c
eil cosj

V'

V
~2Ax sinj2Ay cosj!

1
e

V
(

n52`

n5` F nIn~ il!einj

~n2v̄1kzVi!
S f2

Vi

c
AzD 1

n2I n~ il!einj

2l~n2v̄1kzVi!

V'

c
Ax1

nIn8~ il!einj

~n2v̄1kzVi!

V'

c
AyG J

5
e2

m
2pE

0

`

V'dV'E
2`

`

dVi

]F0

]V'

Vi

V'

(
n52`

n5` F Jn
2~l!

~n2v̄1kzVi!
S f2

Vi

c
AzD 1

v̄2kzVi

2~n2v̄1kzVi!

nJn
2~l!V'

lc
Ax

1
i ~v̄2kzVi!

2~n2v̄1kzVi!

Jn~l!Jn8~l!V'

c
AyG , ~55!

where we have used identity~A12! for the f andAz terms,~A12! and ~A3! for the Ax term, and~A13! and ~A4! for the Ay

term. The third row ofxp
' can be easily read off from the above equation.

The algebra involved for the perpendicular component ofj1 is a little bit more complicated. For the]F0 /]Vi term in
j1(r )•ex , we have

eE
0

`

V'dV'E
2`

`

dVi E
0

2p

djVi

]F0

]V'

(
n852`

n85`

2I n8~2 il!ein8j sinjH eil cosj
e

mc
Az1

ikze

mV
(

n52`

n5` F I n~ il!einj

i ~n2v̄1kzVi!
S f2

Vi

c
AzD

1
n einj I n~ il!

2 il~n2v̄1kzVi!

V'

c
Ax1

einj I n8~ il!

i ~n2v̄1kzVi!

V'

c
AyG J

5e2pE
0

`

V'dV'E
2`

`

dViV'

]F0

]Vi

(
n52`

n5` F n2Jn
2~l!

2~n2v̄1kzVi!

kzeV

kx
2V'mc

Ax1
inJn8~l!Jn~l!

2~n2v̄1kzVi!

kze

kxmc
Ay

1
nJn

2~l!~n2v̄ !

~n2v̄1kzVi!

eV

kxV'mc
Az1

nJn
2~l!

~n2v̄1kzVi!

kze

kxV'm
fG . ~56!

To derive this expression, we have first used the following identity:

(
n52`

n5`

I n~2 il!einj sinj5 (
n52`

n5`
nIn~2 il!

l
einj, ~57!

and then~A12! for theAx term, ~A13! for theAy term, ~A12! and~A3! for theAz term, and~A13! for thef term. This result
gives the first row ofxp

i .
For the]F0 /]V' component inj1(r )•ex , we have

eE
0

`

V'dV'E
2`

`

dVi E
0

2p

djV'

]F0

]V'

B

mV'

(
n852`

n85`
2 in8I n8~2 il!

l
ein8j

e

mc
H e

c
eil cosj

V'

V
~2Ax sinj2Ay cosj!

1
e

V
(

n52`

n5` F nIn~ il!einj

~n2v̄1kzVi!
S f2

Vi

c
AzD 1

n2 I n~ il!einj

2l~n2v̄1kzVi!

V'

c
Ax1

nIn8~ il!einj

~n2v̄1kzVi!

V'

c
AyG J

5
e2

m
2pE

0

`

V'dV'E
2`

`

dVi

]F0

]V'

(
n52`

n5` F n2Jn
2~l!

l~n2v̄1kzVi!
S f2

Vi

c
AzD 1

v̄2kzVi

2~n2v̄1kzVi!

n2Jn
2~l!V'

l2c
Ax

1
i ~v̄2kzVi!

2~n2v̄1kzVi!

nJn~l!Jn8~l!V'

lc
AyG , ~58!

where we have used~A12! and~A6! for theAx term,~A13! and~A4! for theAy term, and~A12! for thef andAz terms. What
we get from this equation is the first row ofxp

' .
To obtain the equation forj1•ey , we first invoke

e2 il cosj cosj5 (
n52`

n5`

I n8~2 il!einj. ~59!
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Then, for the]F0 /]Vi term

eE
0

`

V'dV'E
2`

`

dVi E
0

2p

djV'

]F0

]Vi

(
n852`

n85`

2I n8
8 ~2 il!ein8jH eil cosj

e

mc
Az1

ikze

mV
(

n52`

n5` F I n~ il!einj

i ~n2v̄1kzVi!
S f2

Vi

c
AzD

1
n einj I n~ il!

2 il~n2v̄1kzVi!

V'

c
Ax1

einj I n8~ il!

i ~n2v̄1kzVi!

V'

c
AyG J

5e2pE
0

`

V'dV'E
2`

`

dViV'

]F0

]Vi

(
n52`

n5` F inJn~l!Jn8~l!

~n2v̄1kzVi!

kzV'e

lVmc
Ax2

Jn8
2~l!

~n2v̄1kzVi!

kzV'e

Vmc
Ay

2
iJn~l!Jn8~l!~n2v̄ !

~n2v̄1kzVi!

e

mc
Az2

iJn~l!Jn8~l!

~n2v̄1kzVi!

kze

Vm
fG , ~60!

where we have used~A14! for thef andAx terms,~A15! for theAy term, and~A14! and~A4! for theAz term. This result gives
the second row ofxp

i .
For the]F0 /]V' component

eE
0

`

V'dV'E
2`

`

dVi E
0

2p

djV'

]F0

]V'

B

mV'

(
n852`

n85`

2I n8
8 ~2 il!ein8j

e

mc
H e

c
eil cosj

V'

V
~2Ax sinj2Ay cosj!

1
e

V
(

n52`

n5` F nIn~ il!einj

~n2v̄1kzVi!
S f2

Vi

c
AzD 1

n2I n~ il!einj

2l~n2v̄1kzVi!

V'

c
Ax1

nIn8~ il!einj

~n2v̄1kzVi!

V'

c
AyG J

5
e2

m
2pE

0

`

V'dV'E
2`

`

dVi

]F0

]V'

(
n52`

n5` F2 inJn~l!Jn8~l!

~n2v̄1kzVi!
S f2

Vi

c
AzD 1

i ~v̄2kzVi!

~n2v̄1kzVi!

nJn~l!Jn8~l!V'

lc
Ax

2
v̄2kzVi

~n2v̄1kzVi!

Jn8
2~l!V'

c
AyG , ~61!

where we have used~A14! and~A7! for theAx term,~A15! and~A8! for theAy term, and~A14! for thef andAz terms. What
we get from this equation is the second row ofxp

' .
Assembling the above results together, we obtain the following result for the susceptibility in the gyrocenter-gauge

theory:

xp5xp
i
1xp

' , ~62!
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c
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D , ~63!
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Finally, Eq.~62! recovers the classical result derived
integrating the Vlasov–Maxwell equations in the particle c
ordinates along unperturbed orbit. To see this, we take
result forxs from the Eq.~10.45! of Ref. 32, and transform i
into xs,p by

xs,p5 i xs•S v

c
0 0 2kx

0
v

c
0 0

0 0
v

c
2kz

D . ~65!

This xs,p is exactly the same as the result we have obtai
in Eq. ~62! from the gyrocenter-gauge kinetic theory.

IV. DISCUSSION

Gyrocenter-gauge kinetic theory is developed as a
netic theory in the gyrocenter coordinates, fully equivalen
the Vlasov–Maxwell system in the particle coordinates. T
ing advantage of the existence of the gyrocenter coordin
in magnetized plasmas, the gyrocenter-gauge kinetic the
simplifies the Vlasov equation by geometrically decoupli
the gyrophase-independent part of the distribution funct
from the gyrophase-dependent part. Maxwell’s equation
the particle coordinates can be easily pushed forward o
the gyrocenter coordinates by using the pull-back formu
which relates the charge and current densities to the di
bution functions in the gyrocenter coordinates. As an ext
sion of previous gyrokinetic models, the gyrocenter-gau
kinetic theory emphasizes the decoupling of the gyroph
dependent and independent informations, and the importa
of the gyrocenter-gauge distribution function. Gyrocent
gauge kinetic susceptibility is derived for homogeneo
magnetized plasmas, and it recovers exactly the classica
sult derived by integrating the Vlasov–Maxwell equations
the particle coordinates along unperturbed orbit.

Even though only the susceptibility for homogeneo
magnetized plasmas is derived here, the equation syste
Sec. II is valid in general geometry. We expect t
gyrocenter-gauge kinetic equation system to bring subs
tial simplification compared with the usual Vlasov–Maxwe
Downloaded 20 Oct 2000 to 198.35.7.82.Redistribution subject to A
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approach in treating inhomogeneous magnetized plasm
while all the physics are kept intact. This is because
unperturbed orbit in the gyrocenter-gauge kinetic system
much simpler. It consists of two components, the gyromot
and the decoupled gyrocenter motion. The fact that gy
center motion is decoupled from the gyromotion enables
to eliminate the gyrophase variablej in the kinetic equations
for f and Sn . In this sense, the gyrocenter-gauge kine
model enjoys the same simplification and benefit as the c
ventional low frequency gyrokinetic models do, and furth
more, extends this benefit and simplification to arbitrary f
quency modes.

For example, let us consider the case where]/]y50 for
the perturbed field. We use this example to illustrate
basic feature of particle simulation method for th
gyrocenter-gauge kinetic system. In the paper, we do
intent to give a comprehensive account on the gyrocen
gauge particle simulation method, which will be the subje
of future publications. For the current case, the kinetic eq
tion for S is

]S

]t
1Ẋ

]S

]X
1V̇i

]S

]Vi
1V

]S

]j

5eF ~eil cosj2J0!S f2
Vi

c
AzD1eil cosj sinj

V'

c
Ax

1~eil cosj cosj1J1!
V'

c
AyG , ~66!

wherekx is understood to be2 i ]/]x. Since in~and only in!
the gyrocenter coordinatesẊ andV̇i are gyrophase indepen
dent, different gyrophase harmonics forSare decoupled. Let

S5 (
n52`

n5`

Sneinj. ~67!

Using

eil cosj5 (
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n5`

I n~ il!einj,

eil cosj sinj5 (
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n5`
2nIn~ il!

l
einj, ~68!
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eil cosj cosj5 (
n52`

n5`

I n8~ il!einj,

we easily have the decoupled equations forSn

S050,

dSn

dt
1 inVSn5eF I n~ il!S f2

Vi

c
AzD2

nIn~ il!

l

V'

c
Ax

1I n8~ il!
V'

c
AyG , nÞ0, ~69!

d

dt
[

]

]t
1Ẋ

]

]X
1V̇i

]

]Vi
.

The above kinetic equations forSn do not involve the gy-
rophase variablej, and the characteristics of the equatio
are particles’ gyrocenter orbits. However, to solve these
netic equations using particle simulation method, the ti
step DT for advancingSn has to satisfyDT,1/nV, even
though the gyrocenter orbit motions are slower and satis

Ẋ
]

]X
1V̇i

]

]Vi
!nV. ~70!

This is because terminVSn and the terms depending onf
andAz are fast varying. Then, in terms of particle simulati
for arbitrary frequency modes, what is the simplificati
brought by the gyrocenter-gauge kinetic system compa
with the Vlasov–Maxwell system in the particle coordinate
To solve the kinetic equations forf andSn , we truncate the
equation system forSn and keep those important harmoni
for the problem under investigation. Along its gyrocen
orbit, each particle carries thoseSn kept in the system, as
well as the usual distributionf. For high-frequency mode
(v;nV, for some integern!, we have to use small time ste
(DT,1/nV) to advancef andSn along particles’ gyrocente
orbits. Since the gyrocenter motions themselves are slo
motions with larger scale length, it is not necessary to
small time step to advance particles’ gyrocenters in the
rocenter phase space. Particularly, we can us anadiabatic
gyrocenter pusher, which advances particles’ phase-spa
coordinates in larger gyrocenter time step, and between
gyrocenter time steps,f andSn are advanced many time step
in smaller gyrofrequency time step while particles’ pha
space coordinates are kept constant. The slower gyroce
time step is determined by the gyrocenter orbit motio
whereas the faster gyrofrequency time step is determine
the harmonics numbern. In principle, we can use differen
gyrofrequency time steps for different harmonicsSn . In each
gyrofrequency time step, Maxwell’s equations in the gy
center coordinates has to be solved to update the field.f and
Sn enter Maxwell’s equations through the pull-back formu
which can be numerically implemented by the well-know
multi-point averaging technique.18 The computational sim-
plification brought by the gyrocenter-gauge kinetic system
twofold. First, the gyrophase coordinatej is explicitly re-
moved from the dynamic equations for particles. T
gyrophase-dependent information is efficiently described
the harmonicsSn kept in the system, without increasing th
Downloaded 20 Oct 2000 to 198.35.7.82.Redistribution subject to A
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number of simulation particles. If using the straightforwa
particle simulation for Vlasov–Maxwell system in the pa
ticle coordinates, we have to increase the number of sim
tion particles many times to achieve desired resolution in
gyrophase coordinatej. Obviously, the gyrocenter-gauge k
netic particle simulation requires less memory usage
computing time. Secondly, the gyrocenter-gauge kinetic p
ticle simulation only advances particles’ phase space coo
nates along their gyrocenter motions, which are much slo
motions with larger scale length compared with particle
motions in the particle coordinates, which each simulat
particle has to follow if the simulation is carried out for th
Vlasov–Maxwell system in the particle coordinates. The
fore, gyrocenter-gauge kinetic particle simulation requi
much less computing time to advance simulation particle

The formalism presented in this manuscript can be ea
extended to nonlinear case by carrying out the transfor
tion between the~equilibrium! guiding center coordinate
and the~perturbed! gyrocenter coordinates to the second
higher order. The basic procedure is similar to those in R
9–12. In fact, the noncanonical Lie perturbation metho
used here was originally introduced as an efficient and s
tematic approach for the nonlinear gyrokinetic systems.
the nonlinear case, the kinetic equations and the pu
forward of Maxwell’s equations keep the same forms, exc
that in the pull-back of distribution function nonlinear pe
turbed fields appear. This is a direct result of the construc
of the gyrocenter coordinates up to the second or higher
der.

So far, we have not considered collisions in our syste
The gyrocenter-gauge kinetic system in the gyrocenter co
dinates developed here is thus parallel to the collisionl
Vlasov–Maxwell system in the particle coordinates. F
many problems of wave–particle interactions and instab
ties, collisions are not important, especially for the hig
frequency range. However, for applications such as neoc
sical transport, it is necessary to include collisions in t
gyrocenter-gauge kinetic system. The exact expression
collision operators in the gyrocenter coordinates should
rigorously derived bypushing forwardthe corresponding
collision operators in the particle coordinates. Compa
with the collision operators in the particle coordinates, o
distinguish feature of the collision operators in the gyr
center coordinates is their explicit dependences on the
turbed fields and background inhomogeneities through
pull-back transformation. Since the collision operators n
mally involve high-order differentials in the phase space,
construction of the gyrocenter-gauge collision operators w
be in the high-order jet space. In terms of particle simulati
once the expression of the collision operators are obtain
they can be simulated by the usual Monte Carlo method.33–35

Work in this direction will be reported in the future publica
tions.
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APPENDIX: IDENTITIES FOR J N AND IN

The following identities forJn and I n are used:
For Jn

J2n~x!5Jn~2x!5~21!nJn~x!, ~A1!

Jn8~2x!5~21!n11Jn8~x!, ~A2!

(
n52`

n5`

nJn
250, ~A3!

(
n52`

n5`

JnJn850, ~A4!

(
n52`

n5`

Jn
251, ~A5!

(
n52`

n5`

n2Jn
2~x!5

x2

2
, ~A6!

(
n52`

n5`

nJnJn850, ~A7!

(
n52`

n5`

Jn8
25

1

2
. ~A8!

For I n

el cosj5 (
n52`

n5`

I n~l!einj, ~A9!

I n~x!5 i 2nJn~ ix !, ~A10!

I n8~x!5 i 2n11Jn8~ ix !, ~A11!

I n~ ix !I 2n~2 ix !5Jn
2~x!, ~A12!

I n8~ ix !I 2n~2 ix !52 iJn~x!Jn8~x!, ~A13!

I 2n8 ~2 ix !I n~ ix !5 iJn~x!Jn8~x!, ~A14!

I 2n8 ~2 ix !I n8~ ix !5Jn8
2~x!, ~A15!
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I n21~x!2I n11~x!5
2n

x
I n~x!, ~A16!

I n21~x!1I n11~x!52I n8~x!, ~A17!

I n85I n21~x!2
n

x
I n~x!5I n11~x!1

n

2
I n~x!. ~A18!

1R. G. Littlejohn, J. Math. Phys.20, 2445~1979!.
2R. G. Littlejohn, Phys. Fluids24, 1730~1981!.
3R. G. Littlejohn, J. Plasma Phys.29, 111 ~1983!.
4W. W. Lee, Phys. Fluids26, 556 ~1983!.
5D. H. E. Dubin, J. A. Krommes, C. Oberman, and W. W. Lee, Phys. Flu
26, 3524~1983!.

6L. Chen and S. T. Tsai, Phys. Fluids26, 141 ~1983!.
7L. Chen and S. T. Tsai, Plasma Phys.25, 349 ~1983!.
8S. C. Yang and D. I. Choi, Phys. Lett. A108, 25 ~1985!.
9T. S. Hahm, Phys. Fluids31, 2670~1988!.

10T. S. Hahm, W. W. Lee, and A. Brizard, Phys. Fluids31, 1940~1988!.
11A. J. Brizard, J. Plasma Phys.41, 541 ~1989!.
12A. J. Brizard, Phys. Fluids B1, 1381~1989!.
13H. Qin, W. M. Tang, and G. Rewoldt, Phys. Plasmas5, 1035~1998!.
14H. Qin, Ph.D. dissertation~Princeton University, 1998!.
15H. Qin, W. M. Tang, W. W. Lee, and G. Rewoldt, Phys. Plasmas6, 1575

~1999!.
16H. Qin, W. M. Tang, and G. Rewoldt, Phys. Plasmas6, 2544~1999!.
17H. Sugama, Phys. Plasmas7, 466 ~2000!.
18W. W. Lee, J. Comput. Phys.72, 243 ~1987!.
19W. W. Lee and W. M. Tang, Phys. Fluids31, 612 ~1988!.
20S. E. Parker, W. W. Lee, and R. A. Santoro, Phys. Rev. Lett.71, 2042

~1993!.
21J. C. Cummings, Ph.D. dissertation~Princeton University, 1995!.
22A. M. Dimits, T. J. Williams, J. A. Byers, and B. I. Cohen, Phys. Re

Lett. 77, 71 ~1996!.
23R. D. Sydora, V. K. Decyk, and J. M. Dawson, Plasma Phys. Contro

Fusion38, A281 ~1996!.
24Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Scien

281, 1835~1998!.
25R. G. Littlejohn, J. Math. Phys.23, 742 ~1982!.
26A. J. Brizard, Ph.D. dissertation~Princeton University, 1990!, pp. 31.
27T. S. Hahm, private communication.
28H. Goldstein,Classical Mechanics, 2nd ed.~Addision-Wesley, Reading,

MA, 1980!.
29V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed.

~Springer-Verlag, New York, 1989!, p. 258.
30A. Brizard, Phys. Plasmas1, 2473~1994!.
31P. J. Morrison and D. Pfirsh, Phys. Fluids B2, 1105~1990!.
32T. H. Stix, Waves in Plasmas~American Institute of Physics, New York

1992!, pp. 247–262.
33X. Xu and M. N. Rosenbluth, Phys. Fluids B3, 627 ~1991!.
34Z. H. Lin, W. M. Tang, and W. W. Lee, Phys. Rev. Lett.78, 456 ~1997!.
35Y. Chen and R. B. White, Phys. Plasmas4, 3591~1997!.
IP copyright, see http://ojps.aip.org/pop/popcpyrts.html.


