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An analytic solution is obtained for free-boundary, high-beta equilibria in large aspect ratio
tokamaks with a nearly circular plasma boundary. In the absence of surface currents at the
plasma-vacuum interface, the free-boundary equilibrium solution introduces constraints arising
from the need to couple to an external vacuum field which is physically realizable with a reasonable
set of external field coils. This places a strong constraint on the pressure profiles that are consistent
with a given boundary shape at higl3,, . The equilibrium solution also provides information on the

flux surface topology. The plasma is bounded by a separatrix. Increasing the plasma pressure at
fixed total current causes the plasma aperture to decrease in a manner that is describ887 ©
American Institute of Physic§S1070-664X97)03103-0

I. INTRODUCTION tent with a given boundary shape at higf,, .

In Sec. Il we obtain the solution to the Grad—Shafranov

It is desirable to achieve higpp in tokamaks for the equation in the plasma interior, assumiag S<1 (where

purpose of developing an economic fusion reactor. It hag is the inverse aspect rajioThis is a generalization of the
long been recognized that there is an equilibrium constraintreatment of Cowleyet al, who assumegg=0(1).
on high 8 tokamaks arising from the appearance of a sepa- In Sec. Ill we match to the solution in the vacuum region
ratrix which moves into the plasma. This effect has beerunder the assumption that the plasma boundary is circular,
observed in Tokamak Fusion Test ReadfbFTR).?> When  and we describe the topology of the solution. We take the
€B, is raised to a sufficiently high value, the plasma aperturdield to be continuous across the plasma-vacuum interface. In
becomes constricted by a naturally arising inboard poloidataking the component of the magnetic field parallel to the
field null which prevents further increase of the plasma presboundary to be continuous, we are assuming that there is no
sure. This is easily understood in terms of a simple physicasurface current.
model. As the plasma pressure is increased, the externally In Sec. IV we perturb about the solution obtained in the
applied vertical field is increased to maintain equilibrium. Onprevious section to investigate the effect of a small modifi-
the inboard side of the tokamak, the applied vertical fieldcation in the shape of the plasma boundary.
opposes the poloidal field produced by the plasma current. A Finally, in Sec. V we discuss our solutions and present
null point is produced, which moves into the plasma as thesome conclusions.
the vertical field is increased for a fixed plasma current. This
simple model, while explaining the main features of the ex-l. SOLUTION OF THE GRAD-SHAFRANOV
perimentally observed effect, does not take into account thEQUATION IN THE PLASMA INTERIOR FOR e<fg=<1

effects of changing current and pressure profiles, or the ap- In this section we obtain the solution to the Grad—
plication of multipolar external fields. In particular, it has Shafranov equation in the plasma interior, assuming
been suggested that the equilibriggnlimit can be circum- e<B=1. We generalize the treatment of Cowleyal, who
vented by a sequence of “flux-conserving equilibria” which assumed=0(1). Wetake8=0(e”) (0=y<1). This is to
maintain theq profile. We address these issues in this papeg, compared with the conventional Igivtokamak ordering,

in the context of an analytic solution for free-boundary, high',BzO(eZ) and the conventional higf tokamak ordering
beta equilibria in large aspect ratio tokamaks with a nearIyB:O(E) 4 For y<1 a boundary layer appears in the so’lu-

circular plasma tgoundary. _ , tion of the Grad—Shafranov equation, with the width of the
Cowley et al” have obtained a fixed boundary tokamak boundary layer depending on the valuesof

equilibrium solution valid for large aspect ratio and very It is convenient to introduce the following
high 8. In this paper, we extend that solution to include the -0 3

matching to an externally imposed vacuum field, under the _

added assumption that the shape of the plasma boundary is x=x/a, z=z/a, R=Ry(1+ex), e=a/Ry,

nearly circular. For a fixed boundary solution it is possibleto  —

arbitrarily and independently specify the shape of the plasma =¥l Pmax, @

boundary, as well as the pressure gmatofiles in the plasma _ a2 _ pead

(whereq is the “safety factor’). The free-boundary equilib- = Rov F~1, p= 7 p~e” (O=y<l). (2
0¥ max max

rium introduces constraints arising from the need to couple
to an external vacuum field which is physically realizableHere .« IS # at the plasma boundary, corresponding to
with a reasonable set of external field coils. We will see thap(¢,,,,0=0, anda is the scale length of the plasma in a
this places a strong constraint on the profiles that are consipoloidal cross-section. In the circular boundary casis, the
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minor radius. By choosingF_= O(1) and p=0(e”)(0  Wheny>0,F;=0, soF is a constant. In this case, integra-
<y<1), we imply that g=0O(1) and B=0(€’B,) tion of Equation(10) yieldsF =¥/, whereW¥, is the total

= 0(€”)(0=svy<1), Whe@@pz(azRgllﬁﬁwﬂopmaX, andy toroidal flux. ' ' .

is chosen such that”= €28, In the normalized variables, For the boundary layer, the differential equation fy

we get the dimensionless Grad—Shafranov equation: is:
) 9 9?)— ro(0)\?]o%po dp
el (1+ X irecax 32V [1+(_rb(0) iz~ 2ro(0)cosd d—%+Gm+n(¢o),
I (11
dp —dF
=(1+ EX_)2£+Fd—1//' (3) where
r=ry(6)— e\, (12

The perturbative solution of this equation with respect to . ) )
small e is singular. It is a boundary layer problem. Physi-2nd rp(6) is the radial coordinate of the plasma-vacuum
cally, the leading order force balance is between plasmgoundary. The quantity* is the width of the boundary lay-
pressure and toroidal field. To the next order, in the coreéh,where\ is defined to bev=(1-7y)/2. N
region the force balance is also between the toroidal field and 10 zeroth and first order iné the coefficient
plasma pressure. The flux surfaces are nearly vertical line§1+ (Fu(6)/7s( 9))2] can be dropped, wheré is the small
The need to close the flux surfaces results in a boundarj@rameter measuring the deviation of the boundary from cir-
layer near the plasma boundary, where the poloidal field erularity. SubstitutingGnn(o) from Equation(7), we ob-
ters the next order force balance. This can be compared witt!"
the low 8 and conventional higl8 tokamak equilibrium. In Pl dp
the low 3 tokamak,3~ €2, the poloidal field enters into both BTt 2[Xcord to) — €O I'y( 9)]d—. (13
the leading ordefradia) and the next ordeftoroidal) force o
balance, while in the conventional h|gh Case,ﬁ"’f, the Mu|t|p|y|ng Equation (13) by &lr//o/o')t, integrating from
leading order force balance involves the toroidal field andt=w and choosinglyy/dt—0 asy— peore, We get
plasma pressure but not the poloidal field. The poloidal field

only appears in the next order force balance. Let (t?_l/fo)z: fi//o Ay [x(4")
y=m/n, a=e 4) ot Weored COS Tp(6))
wherem,n are integers anth<<n. When y=0, we choose — o 1y Q)Jd_p, (14)
m=0n=1. dy
Expanding ¢ and FF'=G in the small parameter . Yo
a/ZEl/n, we have =4p[x(d/ )_ cosd rb(a):” cored COSA Tp(6))
Y=ot atytalypt ..., (5) X()
' -4 f P(o(x))dx, (15
FF'=G=Go+a'Gy+a’Gy+ ... . (6) cos? r(6)

where iy(X) is the core solution foi), as a function of.

To obtain this expression, we have integrated by parts. As-
suming thatp=0 on the plasma boundary, the radial deriva-
tive of ¢, there is given by

After expanding the Grad—Shafranov equatisae Ap-
pendix A for detailg, we obtain the equation determining the
core solution:

2Xp" (o) + Gmin(¥o)=0. (7)

071/;0 2 — [cod ry(6)
For given p and G profiles, this equation determines ar :4Eﬂpf ) P(tho(x))dX. (16)
X(fg). In the form of unnormalized variable€) is $o=1 X(1)
ZMOR(z)X P’ (o) + @Gy n( o) =0. (8 The eB_p scaling reflects the fact that the width of the bound-

_ o . ary layer scales likegs,) "2
The domain of validity of the core solution extends to the ~ Tnhe thickness of the boundary layer goes to zero at
plasma boundary on the inboard side of the mid-plane. If wey— - The boundary layer may terminate at a smaller value
let a correspond to the coordinate of the inboard intersec- ¢ g |n that case, a segment of the plasma boundary is

tion of the plasma boundary with the mid-plane, we get thejescribed by the core solution, and must be a straight line. If

relation the boundary layer extends all the wayée 7, then it fol-

—2u-R2D’ G -0 9 lows from Equation(16) that

#oRGP (¥max) + Gt n( ¥man) . 9
2

The value ofq on each flux surface is dominated by the (‘9_%) -0. (17)

contribution from the core, so that or Yo=10=m
(o) = +Fo(ho) V1-x (10 The leftmost boundary on the mid-plane is then a zero point

qt¥o 7 dgoldx’ of the poloidal field.
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Ill. FREE-BOUNDARY SOLUTION WITH CIRCULAR The 6 independent part of the field far from the plasma is

BOUNDARY determined byb,:
In this section we will match the equilibrium solution in b= 1 27 _ 4
the plasma interior to the solution in the vacuum region un- "9~ |nr 24 ], g (r=r;,0)do—1. (25)

der the assumption that the plasma boundary is circular. We

adopt boundary conditions at infinity appropriate for the situ-This part of the field is determined by the total plasma cur-
ation where we have a set of equilibrium coils located far'ent, and is independent of the external coils.

from the plasma. The matching at the plasma-vacuum If we make no further assumptions, there will in general
boundary will impose a strong constraint, uniquely determin€ & discontinuity in the radial derivative gfat the plasma-
ing the value of the quantity(#o(x)) in the plasma interior. vacuum interface. This would correspond to a surface cur-
We will also look at the topology of the magnetic field, and rent. If the equilibrium is rapidly changing, for example if
will find that the plasma-vacuum boundary coincides with athe plasmas is being rapidly ramped up, then we have no

separatrix. reason to rule out the existence of a localized edge current,

To the lowest order ire, the vacuum fluxy, satisfies ~and the equations tell us that in general such a current will

Laplace equation: exist. On the other hand, a strongly localized current is dis-
sipated quite rapidly by any finite resistivity. If we are inter-

V2y,=0, (18)  ested in the equilibrium solution on a somewhat longer time

scale, it is reasonable to make the assumption that there is no
surface current. That is what we will assume. The zero
surface-current assumption implies the continuity of the par-

whose general solution is:

o]

Y,=aptbg Inr+ 21 (a,r"+b,yr~"cosné. (19 allel component of the magnetic field plasma-vacuum bound-
" ary, giving:
We take the plasma-vacuum boundary to be a circle. The o 2 oy 2
radius of the circlea, must be consistent with Equati@8). ( v . ) (26)
In normalized form, the equation for the boundary is: Iy Il y=1
re(0)=1. (20 The boundary layer extends t= 7. (If it did not, that

would imply that a segment of the plasma boundary would

Du(_a tq the continuity of th_e normal component of the Magye a straight line, which contradicts the assumption that the
netic field, ¥y must be continuous across the plasma-vacuum ! -
boundary is circulay.At 6= we get

interface:
Iy ?
Wolr )= Yolry 0= 1. (21 =0. (27)
or -1
Therefore, Y o _ o
This gives an equilibrium constraint that must be satisfied
ao=1, a,=—by(n>0). (22)  petween the externally imposed equilibrium field and the
There are two pieces to the magnetic field solution in theolasma current:
vacuum region. One piece decays radially outward as we *
move away from the plasma, and it corresponds to the field bgy+ > a,n(—1)"=0. (28

produced by the plasma currents. The second piece increases n=1

as we move away from the plasma boundary into the vacuum  The continuity of the parallel component of the magnetic

region. This part of the field is produced by the currents infield, along with Equation§20) and(16), give us an equilib-

the external field coils. rium constraint that must be satisfied everywhere along the
The quantityb, is related to the total current through the plasma-vacuum interface:

plasma. FronB,= (V¢/R) X ¢ and uol=$B,dl, we get: (ﬁ%

_ 27 Ymax or
#oRo

2 J— cos 6
=4ep p(x)dx, (29
]

bo. (23)

o ) ) where we have writtep(x) =p(#(x)). Differentiating, we
We regard the external equilibrium coils as being fargptain an expression fqy:
%—1)'

from our large aspect ratio tokamak plasma. Far from the

plasma, thed dependent part of the field that is driven by the _ Iy
o : p(cos 6) ar

plasma currents decays like ", and is small compared to 2€Bp

the @ dependent part of the field that is driven by the external

d (dy,
’ —1) d cose(T

coils. The field produced by the coils at largedetermines This gives
the a, for n>0. On a circular reference surface ratr,, * *
r;>a, we have P(o(X)) = 2e8 bo+ 21 annTn(X) 21 apnTh(x),
p n= n=
an= r=ry,0)cosnede. _
" r'mlo bl 19 24 where theT,(x)(n=1,2, ...) areChebyshev polynomials.
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For a given externally applied equilibrium field, and a This is to be compared with the loy@ result (see, for ex-
given total plasma current, Equatidi30) determines the ample, Ref. 4 where besides pressure several other terms
pressure as a function a&fin the plasma core. We still have come into the expression f@,. However, it is already the
the freedom to specify one additional profile in the interiorcase in the conventional high ordering that the pressure
(e.g. the current profileto uniquely determine the interior dependence dominates the other tefms.
solution. Alternatively, if we are given the solution in the An important figure of merit for tokamak equilibria is
plasma interiorp(x) is specified, and we can take the square
root of Equation(29) to construct the unique external field — 4/pdv
required to maintain the equilibrium with a circular bound- ! Rool{”
ary.

In practice, only a few lown values of thea, will be
non-negligible. The highen Fourier components of the
vacuum field decay rapidly away from the external field

(39

This measures the plasma pressure that is supported for a
given plasma current. In our solutiof, can be obtained
explicitly from Equation(34),

2

coils. Retaining only the first few terms on the right hand 1 bgm
side of Equation30), we find that only a restricted set of f P(X)2(1-x?)Ydx= 2eg (40
p(x) profiles can be reasonably supported with a circular -t €Bp
boundary. We note that the constraints on the pressure prgn unnormalized form, we have
file are the results of the existence of a boundary layer in this a
high €3, ordering, and also of the continuation of the mag- f pdVZZWROJ p(x)2(a%—x?)Y2dx
netic field across the plasma boundary due to the zero -a
surface-current assumption. This is to be contrasted with the b2 2 2, 2R
fixed boundary solution, where the pressure and current pro- _ 07 _, Ymax _ € “HoliRo
. S > 27Ry a vi . (41
files could be arbitrarily specified. 2eB, Mo 4epp
Let us look at the special case where the external field is
uniform and vertical at infinity. Now the boundary condition 'US:
for ¢, at a large radius, is BiBp= e 3 (42)
B= E X <}>—>Bvi- (31)  Thisrelation is a consequence of our assumption that there is
R no surface current at the plasma-vacuum interface.
In this case, it is easy to get Another useful parameter is:
Y,=1+bg Inr+a,(r—1/r)cosé, (32 _2ma’By
MoRolt

and the constraint on the coefficients
It measures the current that a fixed toroidal flux can support.
(33 : L .
In a straight tokamak with circular flux sufaceg, is related
which is the special form of Equatid28). The special form  to the stability criteria for external kink modes. In the high

boz 2a1 y

here for Equation(30) is €3, ordering, wherq is constant,
2
P(o(X)) = 5——Db3(1+x). (34 4my 24 29 _
2€eBp ° Q.= leax: 5/3ma?i< = =2qe'?.
Hoolt  woa€e”RoPmax € ﬁp
The quantitya, is related to the vertical field at infinity, (44)
B — Ymax 35 When g is not constant but ~O(1), we have
""" Rea a- (35 q, ~2qe*? 7 instead.

Now we turn to the topological structure of the vacuum
field associated with a circular plasma boundary. On the
| wo=4maB, . (36)  plasma-vacuum boundary, the poloidal field vanishes at

) ) . i 6= and is finite elsewhere. It is straightforward to verify

With Equation(34) we get an expression for the required (4t at the point (=1,0= ), the first and the second de-

vertical field as a function of the pressure. Expressing the;yatives are all zero. The third derivatives at this point are as

Equation(33) is the hoop force balance in the highcase,

result in unnormalized variables, and using follows:
3“(14_ X 331,// 2b ”
X _pm a —2=24 an[(n—1)(n—2)r" 3+ (n+1)(n
p — | = —, (37) ar r n=1
a 2
-n-3
we get +2)r 3T (y), (45)
5252 P %
#0€” RoPmax v _ 3 n
B,=— (39) 3 =2 2na,(—=1)", (46)
Y 2‘;bmax ar r=1,0=m n=1
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>y,
=0 (47
2 1
or (90 r=10=m AL AL G L T Ty E
ﬁ3lﬂv S -1 -n—-1 " 2 25_ ® plasma _g
190 =nzl an(r" T[Ty (1-y) boundary ]
! 1E _.:.
—Ta(y)yl, (48) F ]
"K" point ]
0—,3¢, *® &31// o poin 3
v v - ]
= 2a,nT. (—1)=— , - .
o 96° r=10=m “21 (=) or’ r=10=m z 0§
(49) : 5
P, —1f ;
— =0. (50 C 3
3 ]
90 r=160=m E ]
The identity T/ (—1)=(—1)""!n? has been used. The Tay- -2F E
lor's expansion atn(=1,0= ) is RTI4TN A AR b 3
(93¢, (r 1)3 -3 -2 -1 0 1 2 3
B X
e e
v ar —1g-m 3!
3 (r=1)(9—m)? AR
°Y, r— -
+3ara02 e 3! ' (51 .
r=Lo=m 081 =
The equations for the level lines passing through this point
can be obtained by setting, =1, i |
0.6} 1
(r—1)3-3(r—1)(8—m)?=0. (52) | ]
Thus there are three such lines: hd |
04}l .
r—1=+3(6—m),r=1. (53 L
Since the vacuum solution is valid onto the surface -
r(#)=1, which is itself a flux surface, we conclude that the — ©-2[ ]
topological structure of the flux surfaces near the point X
(r=1,0=) is “K-shaped.” More precisely, we can verify ol N
that at this point all the three angles between these three lines _; o —05 0.0 05 1.0
are equalsee Fig. 1, X
LA1:LA2:LA3:7T/3 (54) 10 — .
Plotted in Fig. 1 is a solution with a circular plasma bound- [ (©
ary. The vacuum field is uniform and vertical at infinity. The 5 i
vacuum solutiony, is described by Equatiof82), while the 0-8_‘ .
core solution is given by zpo(x)=1/2—(x\/1—x2 i
+ sin"1x)/m, which is the case wheq=constant. Figure b
1(c) is the required pressure profile. °'6_' 7]
P
IV. FREE-BOUNDARY SOLUTION WITH PERTURBED 0.4 ]
CIRCULAR BOUNDARY [ )
In this section we perturb about the solution obtained in R ]
the previous section to investigate the effect of a small modi-
fication in the shape of the plasma boundary. We use a pa- [
rameteré<<1 to measure the deviation of the boundary from oolZfe . . . o+ . . . . | R

circularity, rp.(6)=[r,(8)—1]=0(68). The corresponding -1.0 -0.5 0.0 0.5 1.0
perturbations irG,,, , andp from those which give a circu- X

lar boundary are also of ordéx Our approach is to specify

the perturbed plasma boundany () and solve for the per-

turbed pressure profilp;(X)=p1(#o(X)).

Let FIG. 1. () Contour plot for vacuum and plasma solution with circular
boundary &;=1). (b) The core solutionj,. (c) Pressure profilgnormal-
P(X) = Po(X) +Pa(X), (55  ized by (eBy) b3l
766 Phys. Plasmas, Vol. 4, No. 3, March 1997 H. Qin and A. Reiman

Downloaded-20-Sep-2007-t0-198.35.1.65.~Redistribution-subject-to-AlP-license-or-copyright,~see=http://pop.aip.org/pop/copyright.jsp



rp(0)=1+r,1(0), (56) Iy Y _
2( — ) ( — ) =4€By) 4Po(Y)YToa(6)
ap=ay’ +ay” by=b”+b, (57) o=t Yo=1
y
o=y + Ut (58) +4 f Pa00dx|, (65
v, =0+ b (59 where agairy= cos#. It follows that
As before, thea,,b, are the coefficients in the series
solution of ¢, which satisfies the Laplace equation. The s PoY
al® b are the unperturbed coefficients, aafg ,b{) are (T) =2(eBp) ] ——=rm(0)
the first order coefficients with respect to the small distortion Yo=1 » /Jy Po(X)dx
from a circular boundary. Alsa,,; is the first order plasma -1
boundary, andy{" and ¢{*) are the first order core and y
vacuum solution. We expand about a conveniently chosen j p1(x)dx
circular boundary equilibrium solution. We can arbitrarily " -1 66)
specify the major and minor radii of the circular boundary y ’
solution. We choose them so that the circular boundary co- \ J,lp‘)(x)dx

incides with the perturbed plasma boundary at the two points
where it crosses the mid-plane. The perturbed plasma bound@he zero surface-current assumption connégts and (64)
ary then goes througk= *1, that is: and gives

©

-+ =
Foy(%=m) =0. €0 a’+bY+ > [(n+1)aY'—(n—1)bY]cosne
=1
This simplifies the calculation, becaugéx) andpy(x) have "
the same domains iR. We are also free to choosg,,., to
have the same value for the circular boundary solution and

ez
p y(GIB_)]'/Z (Eﬁp) 7lpl(x)dx
the perturbed solution. The common value yaf,, can be -0 P

y—rbl( 0)+ v , (67)
normalized to 1. /f \/f
One of the boundary conditions at the plasma boundary _1p0(x)dx _1p0(x)dx

is
where we have made use of Equati@).
_ —1— We specify the perturbed boundary,
ol - MUNCS 1=30 4+ gD ) _ .
ety = e o lrmteryo o0 ro1(0)=n_oa, cosnd. Equation(62) then determines the
* perturbed vacuum field. Substituting the perturbed coeffi-
+bi7rp1(0) + nZl [(aP+biY) cients into Equatiori67), we get an equation that determines
B p1(x) when we impose the constraints:
(0)
+2a,’nry.(6)]cosné. (61 py(+1)=0. (68)
To first order iné this gives When the magnetic field is vertical and uniform at infin-

ity, (62) and(67) can be simplified into

0

M 0)=nZo @, cosné

) ©

alP+ >, (al+bP)cosno+| b®+2>, a®n cosne
n=1 n=1

XTp1(6)=0, (62)
al!+al cos+327_,b'Y cosng 60
or - bi¥(1+ cos6) . (69
e1(8)=— ai’+37_(aY+bM)cosne ©3 and
bl bl¥+25>_,a®n cosng w

_ _ _ o aP+biP+2a¥ cos+ >, (1—n)b'Y cosne
To first order iné, the radial derivative at the perturbed n=1

boundary is
2| d
0¢(1) o poy( EB_p)llz (Eﬁp) _1pl(x) X
= =6 ~bryu(6)+ 3, [(al~biY) - ————Tu()+ - . (70)
) \/ fﬁlpo(x)dx \/jlpo(x)dx
—2a%r,1(6)]n cosné. (64)
Figure 2 shows the equilibrium solution for a perturbed
We expand the relatiofiL6) to first order: plasma boundary with small ellipticity,
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X
FIG. 2. (a) Contour plot for vacuum solutiora{”)=1). (b) Pressure profile ~ FIG. 3. (a) Contour plot for vacuum solutiore§”=1). (b) Pressure profile
[normalized by €8,) ~1(b{)?]. The dashed Ilne is the unperturbed solu- [normalized by €8,)~*(b{”)?]. The dashed line is the unperturbed solu-
tion, and the solid fine is the perturbed one. tion, and the solid line is the perturbed one.
rp1(6)=—0.031— cos ¥). (71 and
The detailed calculation for the perturbed vacuum field and -
the pgrturbed pressure is given in Appepdlx B. S (a+ bD)(—1)"2=0, (74
Figure 3 shows the equilibrium solution for a perturbed n=1

plasma boundary with small ellipticity and triangularity,

rp1(#)=—0.051— cos ¥)+0.015cosf#— cos F).
(72)
The detailed calculation is again given in Appendix B. D) L (D) ” @ .
The perturbation does not alter the main topological fea- @0 0o +n§=:1 [(n+Da;’—(n=1)b;"](-1)"=0
tures we found in the presence of a circular boundary. Even (75)
though the global picture of, changes after the perturba-
tion, the K-shaped structure with three equal angles at th€hysically, this means that to first order éhthe poloidal

From Equations67) and (60), we obtain another relation
between the coefficients:

leftmost boundary is kept to first order of field at the leftmost boundary in the mid-plane is zero. This
Considering Equation60) and(62), we must have two conclusion is consistent with EGL7).
relations between tha(" ,b{}: Using the relationg73), (74) and (75), we find that to
- first order iné all the first and second derivatives vanish at
ag1)+ 2 (agl)ergl))(_l)n:O, 73 the .Ieftmost boundary in the mid-plane. As in Sec. Ill, we
n=1 find:
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3,1 3,(1) plays a key role in determining the boundary shape, in con-
Iy Ty ; Sl .
YT =7 |53 , (76)  trast with the situation at lows, where the shape is only
r=l6=m r=16=m weakly affected by the pressure profile.
Matching to the external vacuum field enables us to ex-
(93¢.(1) (931#(1) . . .
v _7% —0 77 amine the topology of the flux surfaces. Consistent with the
a%a0| _,, 9 | _ , picture of a separatrix moving in a3, is increased, the

plasma is bounded by a separatrix in our highy, equilib-
Here we have taken the radial and poloidal derivatives of theium solutions. As we raisgs 8, in an equilibrium with
Laplace equation fonpgl) with the conditions that all the circular boundary, the aperture decreases as described by
second derivatives at the leftmost boundary in the mid-plan&quation(42). This relation is a consequence of our assump-
vanish. tion that there is no surface current at the plasma-vacuum
Following the argument in Sec. lll, we find that the to- interface. If we allow a surface current to exist at the plasm-
pological structure fory, = 4O+ 4V is the same as that for vacuum interface, it can prevent the separatrix from moving
the unperturbed/,go) with a circular boundary. See Fig. 2 and in as the pressure is increased. Even in the absence of a

Fig. 3 for the perturbed boundary and perturbed vacuum scsurface current, we can construct a flux conserving sequence
lution. of equilibria by controlling the current profile g3,y IS

raised to keep thg profile invariant. In that case, the current
increases withp,. to keep B, B, invariant, consistent with
Equation(42).

APPENDIX A: THE DERIVATION OF EQUATION (7)

For a fixed boundary equilibrium solution, such as that We expand Equatiot8) order by order in the parameter

described in Ref. 3, we are free to mdependently specify th%_ To the ordera® we get:
shape of the boundary as well as two profiles. We can, for

V. DISCUSSION AND CONCLUSIONS

example, specifip(y) plus one other profile such ag ), Go(ipp)=0. (A1)
or G(¢), orx(y). The fixed boundary equilibrium solution To the orderat,a?, ... o™ 1

does not take into account the constraints arising from cou-

pling to a vacuum field outside the plasma. The extension to  G1(#0)=0,G2(#0)=0, ... Gn-1(4o)=0. (A2)

a free-boundary solution requires the existence of an apprerg the ordera™

priate vacuum field that can support the given profiles and

plasma shape. We need to be concerned about whether the P(%0)+Gm(0)=0. (A3)
the vacuum field to which we couple is physically realizableTq the order ofa™*?,aM*2 amrn—1.

with a reasonable set of external field coils.

Specification of the fixed boundary solution determines Gm+1(#0)=0Gm+2(#0)=0, ... Gmin-1(40)=0.
p(¥o(x)). For a circular boundary, this quantity is related to (Ad)
the external vacuum field through Equati@®®). The higher  To the order ofa™*"

n Fourier components of the vacuum field decay rapidly , _
away from the external field coils. It is not desirable to have 2XP"(#0) + Grmin(h0) = 0. (A5)
the external field coils very close to the plasma, and in pracThe last equation is Equatidi).

tice or?ly a few lown v'alues of them'n vyill be non-negligible.  AppENDIX B: CALCULATION OF THE FIRST ORDER
quﬁt'ort‘h(?’?) then d'Ct?teS the ,“rt“'tf;‘d %'1355 _‘Pf('/lfo(x)l) SOLUTION WITH A PERTURBED BOUNDARY

profiles that are in practice consistent with a circular plasma _ N1/ (0N 2
boundary. This is a strong constraint on the practically real- (l)Wg) norm?ll)ze pO((é())’ P1(x) by. (€8,) (t?o ) .and
izable higheg, equilibrium solutions that emerges from our ag .a gnd by * by _bO then SUbSt'tL,’te Equatiaf§9) into
analysis. (70), multiply both sides of the equation by+1 cos(), and

In experiments, we impose the part of the vacuum fiel€duate the corresponding Fourier coefficients. This proce-

produced by the coils. The profiles in the plasma are deterdure leads us to the following set of equations:
mined by the ohmic current drive and by any supplementary  2f,=a("+1.5a(" + b+ 0.5,

current drive, and by the density and temperature profiles,

which are in turn determined through transport processes. 2fi=2ag"+2a{" +b{",

The equilibrium equations self-consistently determine the 1 1 1 1

shape of the plasma boundary in the presence of these pro- 2f2=1.5a(1 )+O'5b(1 )—b<2 )—O.5b<3 g
files and the imposed external field. The solutions obtained ¢, —2bV - by,

in this paper correspond to those profiles which yield a

nearly circular boundary. For a given boundary shape, and a

set ofa, determined by the external coils, the vacuum field is m—3 m— 1
determined by Equatio(62). Equation(67) in turn gives the 2f=———b —(m-1)bYV— ——b}
p(x) profile required to yield the specified boundary with the 2 2

given external field. One profile in the plasma interior re-

mains arbitrary. We find that at high3,, the pressure profile (m>2), (B1)

Phys. Plasmas, Vol. 4, No. 3, March 1997 H. Qin and A. Reiman 769

Downloaded-20-Sep-2007-t0-198.35.1.65.~Redistribution-subject-to-AlP-license-or-copyright,~see=http://pop.aip.org/pop/copyright.jsp



where thef,, are the Fourier component ¢f%®p,(x)dx, tain  a{”=0.03, a{®=-0.075  a’=0(n>1),
b{M=-0.18, b{"=0.09, b{"=-0.03, b{"=-0.015,

f""“)pl(x)dxz S f. cosne. bV=0(n>3),  and  py(x)=—0.18-0.1+0.183
-1 n=0 +0.12¢%. The solution is shown in Fig. 2.
When rp1(6)=—0.05(1- cos X¥)+0.015(cosh

The quantityp,(x) is given by ]
—cos¥), we obtain a{’=0.0425 a{”=0.01,
(1) - _ (1~ M— _
D4(X) = 2 ¢ dTn(x) dT ( ) _ 2 f U 1(X) ®2 0(n>1), (1)b° 0.03,(1) bi”=0, b} 0.05,
= ' b3’=-0.01, by;’=0.0075, b,’=0(n>4), and pi(X)
=0.28&+0.3x?>—0.283—0.3x*. The solution is shown in
whereT,(x) andU(x) are Chebyshev polynomials of the Fig. 3.
first kind and second kind.
Equation(69) gives:
agl): —ap—0.5a;, s A Sabpagh, R. A. Gross, M. E. Mauel, G. A. Navratil, M. G. Bell, R.
Bell, M. Bitter, N. L. Bretz, R. V. Budny, C. E. Bush, M. S. Chance, P. C.
Efthimion, E. D. Fredrickson, R. Hatcher, R. J. Hawryluk, S. P. Hirshman,
A. C. Janos, S. C. Jardin, D. L. Jassby, J. Manickam, D. C. McCune, K.
b(l)_ — 0.501— avo— 0.5 M. McGuire, S. S. Medley, D. Mueller, Y. Nagayama, D. K. Owens, M.
2 - DT Gy V.o, Okabayashi, H. K. Park, A. T. Ramsey, B. C. Stratton, E. J. Synakowski,
G. Taylor, R. M. Wieland, M. C. Zarnstorff, J. Kesner, E. S. Marmar, and
J. L. Terry, Phys. Fluids B, 2277(1991).
2M. E. Mauel, G. A. Navratil, S. A. Sabbagh, M. G. Bell, R. V. Budny, E
(1 _ L ) ) ) ) ,
bn =—0.5ap_1—an—0.5an41 (n>1). D. Fredrickson, R. J. Hawryluk, A. C. Janos, D. W. Johnson, D. C. Mc-
. - (1) A1) k(1) Cune, K. M. McGuire, S. S. Medley, D. Mueller, D. K. Owens, H. K.
Whenaﬂ IS specmeda v 8y b andpl(x) can be Park, A. T. Ramsey, B. C. Stratton, E. J. Synakowski, G. Taylor, R. M.
determined from the above equatlons together with con- wieland, M. C. Zarnstorff, J. Kesner, E. S. Marmar, and J. L. Terry, Nucl.

straint p;(*+1)=0. The constraint is needed because the Fusion32, 1468(1992.

above equations have two undetermined degrees of freedomg ;()6%?%‘;3]’5 P. K. Kaw, R. S. Kelly, and R. M. Kulsrud, Phys. Fluids B

ag_l)'f'bg_l): - ao—a1—0.5a2,

1
bg Vis determined through Equatidis). 4J. P. Freidbergideal Magnetohydrodynami¢®lenum, New York, 1987
For example, wheny(6) = —0.03(1- cos %), we ob- pp. 132-145.
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