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An analytic solution is obtained for free-boundary, high-beta equilibria in large aspect ratio
tokamaks with a nearly circular plasma boundary. In the absence of surface currents at the
plasma-vacuum interface, the free-boundary equilibrium solution introduces constraints arising
from the need to couple to an external vacuum field which is physically realizable with a reasonable
set of external field coils. This places a strong constraint on the pressure profiles that are consistent
with a given boundary shape at highebp . The equilibrium solution also provides information on the
flux surface topology. The plasma is bounded by a separatrix. Increasing the plasma pressure at
fixed total current causes the plasma aperture to decrease in a manner that is described. ©1997
American Institute of Physics.@S1070-664X~97!03103-0#
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I. INTRODUCTION

It is desirable to achieve highb in tokamaks for the
purpose of developing an economic fusion reactor. It
long been recognized that there is an equilibrium constr
on highb tokamaks arising from the appearance of a se
ratrix which moves into the plasma. This effect has be
observed in Tokamak Fusion Test Reactor~TFTR!.1,2 When
ebp is raised to a sufficiently high value, the plasma apert
becomes constricted by a naturally arising inboard polo
field null which prevents further increase of the plasma pr
sure. This is easily understood in terms of a simple phys
model. As the plasma pressure is increased, the extern
applied vertical field is increased to maintain equilibrium. O
the inboard side of the tokamak, the applied vertical fi
opposes the poloidal field produced by the plasma curren
null point is produced, which moves into the plasma as
the vertical field is increased for a fixed plasma current. T
simple model, while explaining the main features of the e
perimentally observed effect, does not take into account
effects of changing current and pressure profiles, or the
plication of multipolar external fields. In particular, it ha
been suggested that the equilibriumb limit can be circum-
vented by a sequence of ‘‘flux-conserving equilibria’’ whic
maintain theq profile. We address these issues in this pa
in the context of an analytic solution for free-boundary, hig
beta equilibria in large aspect ratio tokamaks with a nea
circular plasma boundary.

Cowley et al.3 have obtained a fixed boundary tokam
equilibrium solution valid for large aspect ratio and ve
high b. In this paper, we extend that solution to include t
matching to an externally imposed vacuum field, under
added assumption that the shape of the plasma bounda
nearly circular. For a fixed boundary solution it is possible
arbitrarily and independently specify the shape of the plas
boundary, as well as the pressure andq profiles in the plasma
~whereq is the ‘‘safety factor’’!. The free-boundary equilib
rium introduces constraints arising from the need to cou
to an external vacuum field which is physically realizab
with a reasonable set of external field coils. We will see t
this places a strong constraint on the profiles that are con
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tent with a given boundary shape at highebp .
In Sec. II we obtain the solution to the Grad–Shafran

equation in the plasma interior, assuminge!b<1 ~where
e is the inverse aspect ratio!. This is a generalization of the
treatment of Cowleyet al., who assumeb5O(1).

In Sec. III we match to the solution in the vacuum regi
under the assumption that the plasma boundary is circu
and we describe the topology of the solution. We take
field to be continuous across the plasma-vacuum interface
taking the component of the magnetic field parallel to t
boundary to be continuous, we are assuming that there i
surface current.

In Sec. IV we perturb about the solution obtained in t
previous section to investigate the effect of a small mod
cation in the shape of the plasma boundary.

Finally, in Sec. V we discuss our solutions and pres
some conclusions.

II. SOLUTION OF THE GRAD–SHAFRANOV
EQUATION IN THE PLASMA INTERIOR FOR e!b<1

In this section we obtain the solution to the Grad
Shafranov equation in the plasma interior, assum
e!b<1. We generalize the treatment of Cowleyet al., who
assumeb5O(1). Wetakeb5O(eg) (0<g,1). This is to
be compared with the conventional lowb tokamak ordering,
b5O(e2), and the conventional highb tokamak ordering,
b5O(e).4 For g,1 a boundary layer appears in the sol
tion of the Grad–Shafranov equation, with the width of t
boundary layer depending on the value ofg.

It is convenient to introduce the following
normalization:3

x̄5x/a, z̄5z/a, R̄5R0~11e x̄!, e5a/R0 ,

c̄5c/cmax, ~1!

F̄5
a2

R0cmax
F;1, p̄5

m0a
4

cmax
2 p;eg ~0<g,1!. ~2!

Here cmax is c at the plasma boundary, corresponding
p(cmax)50, and a is the scale length of the plasma in
poloidal cross-section. In the circular boundary case,a is the
/4(3)/762/9/$10.00 © 1997 American Institute of Physics
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minor radius. By choosingF̄5O(1) and p̄5O(eg)(0
<g,1), we imply that q5O(1) and b5O(e2b̄p)
5 O(eg)(0<g,1), whereb̄p[(a2R0

2/cmax
2 )m0pmax, andg

is chosen such thateg5e2b̄p . In the normalized variables
we get the dimensionless Grad–Shafranov equation:

e2F ~11e x̄!
]

] x̄
1

11e x̄
]

] x̄1
]2

] z̄2G c̄
5~11e x̄!2

dp̄

dc̄
1F̄

dF̄

dc̄
. ~3!

The perturbative solution of this equation with respect
small e is singular. It is a boundary layer problem. Phy
cally, the leading order force balance is between plas
pressure and toroidal field. To the next order, in the c
region the force balance is also between the toroidal field
plasma pressure. The flux surfaces are nearly vertical li
The need to close the flux surfaces results in a bound
layer near the plasma boundary, where the poloidal field
ters the next order force balance. This can be compared
the lowb and conventional highb tokamak equilibrium. In
the lowb tokamak,b;e2, the poloidal field enters into both
the leading order~radial! and the next order~toroidal! force
balance, while in the conventional highb case,b;e, the
leading order force balance involves the toroidal field a
plasma pressure but not the poloidal field. The poloidal fi
only appears in the next order force balance. Let

g5m/n, a5e1/n, ~4!

wherem,n are integers andm,n. Wheng50, we choose
m50,n51.

Expanding c and FF8[G in the small paramete
a5e1/n, we have

c5c01a1c11a2c21 . . . , ~5!

FF8[G5G01a1G11a2G21 . . . . ~6!

After expanding the Grad–Shafranov equation~see Ap-
pendix A for details!, we obtain the equation determining th
core solution:

2xp8~c0!1Gm1n~c0!50. ~7!

For given p and G profiles, this equation determine
x(c0). In the form of unnormalized variables,~7! is

2m0R0
2xp8~c0!1aGm1n~c0!50. ~8!

The domain of validity of the core solution extends to t
plasma boundary on the inboard side of the mid-plane. If
let a correspond to thex coordinate of the inboard intersec
tion of the plasma boundary with the mid-plane, we get
relation

22m0R0
2p8~cmax!1Gm1n~cmax!50. ~9!

The value ofq on each flux surface is dominated by th
contribution from the core, so that3

q~c0!5
6F0~c0!

p

A12x2

dc0 /dx
. ~10!
Phys. Plasmas, Vol. 4, No. 3, March 1997
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Wheng.0, F0850, soF0 is a constant. In this case, integr
tion of Equation~10! yieldsF05C t /p, whereC t is the total
toroidal flux.

For the boundary layer, the differential equation forc0

is:

2F11S r b8~u!

r b~u!
D 2G]2c0

]t2
52r b~u!cosu

dp

dc0
1Gm1n~c0!,

~11!

where

r5r b~u!2elt, ~12!

and r b(u) is the radial coordinate of the plasma-vacuu
boundary. The quantityel is the width of the boundary lay
er,wherel is defined to bel[(12g)/2.

To zeroth and first order ind the coefficient
@11(r b8(u)/r b(u))

2# can be dropped, whered is the small
parameter measuring the deviation of the boundary from
cularity. SubstitutingGm1n(c0) from Equation~7!, we ob-
tain

2
]2c0

]t2
52@xcore~c0!2 cosu r b~u!#

dp

dc0
. ~13!

Multiplying Equation ~13! by ]c0 /]t, integrating from
t5` and choosing]c0 /]t→0 asc→ccore, we get

S ]c0

]t D 254E
ccore0~cosu r b~u!!

c0
dc8@x~c8!

2 cosu r b~u!#
dp

dc8
~14!

54p@x~c8!2 cosu r b~u!#uccore0~cosu r b~u!!

c0

24E
cosu r b~u!

x~c0!

p~c0~x!!dx, ~15!

wherec0(x) is the core solution forc0 as a function ofx.
To obtain this expression, we have integrated by parts.
suming thatp50 on the plasma boundary, the radial deriv
tive of c0 there is given by

S ]c0

]r D 2U
c051

54eb̄pE
x~1!

cosu r b~u!

p~c0~x!!dx. ~16!

Theeb̄p scaling reflects the fact that the width of the boun
ary layer scales like (eb̄p)

21/2.
The thickness of the boundary layer goes to zero

u5p. The boundary layer may terminate at a smaller va
of u. In that case, a segment of the plasma boundary
described by the core solution, and must be a straight line
the boundary layer extends all the way tou5p, then it fol-
lows from Equation~16! that

S ]c0

]r D 2U
c051,u5p

50. ~17!

The leftmost boundary on the mid-plane is then a zero po
of the poloidal field.
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III. FREE-BOUNDARY SOLUTION WITH CIRCULAR
BOUNDARY

In this section we will match the equilibrium solution i
the plasma interior to the solution in the vacuum region
der the assumption that the plasma boundary is circular.
adopt boundary conditions at infinity appropriate for the si
ation where we have a set of equilibrium coils located
from the plasma. The matching at the plasma-vacu
boundary will impose a strong constraint, uniquely determ
ing the value of the quantityp(c0(x)) in the plasma interior.
We will also look at the topology of the magnetic field, an
will find that the plasma-vacuum boundary coincides with
separatrix.

To the lowest order ine, the vacuum fluxcv satisfies
Laplace equation:

¹2cv50, ~18!

whose general solution is:

cv5a01b0 ln r1 (
n51

`

~anr
n1bnr

2n!cosnu. ~19!

We take the plasma-vacuum boundary to be a circle.
radius of the circle,a, must be consistent with Equation~9!.
In normalized form, the equation for the boundary is:

r b~u!51. ~20!

Due to the continuity of the normal component of the ma
netic field,c must be continuous across the plasma-vacu
interface:

cvur b~u!5c0ur b~u!51. ~21!

Therefore,

a051, an52bn~n.0!. ~22!

There are two pieces to the magnetic field solution in
vacuum region. One piece decays radially outward as
move away from the plasma, and it corresponds to the fi
produced by the plasma currents. The second piece incre
as we move away from the plasma boundary into the vacu
region. This part of the field is produced by the currents
the external field coils.

The quantityb0 is related to the total current through th
plasma. FromBp5 (¹c/R)3f̂ andm0I t5rBpdl, we get:

I t5
2pcmax

m0R0
b0 . ~23!

We regard the external equilibrium coils as being
from our large aspect ratio tokamak plasma. Far from
plasma, theu dependent part of the field that is driven by t
plasma currents decays liker2n, and is small compared to
theu dependent part of the field that is driven by the exter
coils. The field produced by the coils at larger determines
the an for n.0. On a circular reference surface atr5r l ,
r l@a, we have

an5
1

r l
np
E
0

2p

cv~r5r l ,u!cosnudu. ~24!
764 Phys. Plasmas, Vol. 4, No. 3, March 1997
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The u independent part of the field far from the plasma
determined byb0 :

b05
1

ln r l2pE0
2p

cv~r5r l ,u!du21. ~25!

This part of the field is determined by the total plasma c
rent, and is independent of the external coils.

If we make no further assumptions, there will in gene
be a discontinuity in the radial derivative ofc at the plasma-
vacuum interface. This would correspond to a surface c
rent. If the equilibrium is rapidly changing, for example
the plasmab is being rapidly ramped up, then we have n
reason to rule out the existence of a localized edge curr
and the equations tell us that in general such a current
exist. On the other hand, a strongly localized current is d
sipated quite rapidly by any finite resistivity. If we are inte
ested in the equilibrium solution on a somewhat longer ti
scale, it is reasonable to make the assumption that there
surface current. That is what we will assume. The z
surface-current assumption implies the continuity of the p
allel component of the magnetic field plasma-vacuum bou
ary, giving:

S ]cv

]r U
cv51

D 25S ]c0

]r U
c051

D 2. ~26!

The boundary layer extends tou5p. ~If it did not, that
would imply that a segment of the plasma boundary wo
be a straight line, which contradicts the assumption that
boundary is circular.! At u5p we get

S ]cv

]r U
cv51

D 250. ~27!

This gives an equilibrium constraint that must be satisfi
between the externally imposed equilibrium field and t
plasma current:

b01 (
n51

`

ann~21!n50. ~28!

The continuity of the parallel component of the magne
field, along with Equations~20! and~16!, give us an equilib-
rium constraint that must be satisfied everywhere along
plasma-vacuum interface:

S ]cv

]r U
cv51

D 254eb̄pE
21

cosu

p~x!dx, ~29!

where we have writtenp(x)[p(c0(x)). Differentiating, we
obtain an expression forp:

p~cosu!5
1

2eb̄p
S ]cv

]r U
cv51

D d
d cosu S ]cv

]r U
cv51

D .
This gives

p~c0~x!!5
1

2eb̄p
Fb01 (

n51

`

annTn~x!G (
n51

`

annTn8~x!,

~30!

where theTn(x)(n51,2, . . . ) areChebyshev polynomials
H. Qin and A. Reiman
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For a given externally applied equilibrium field, and
given total plasma current, Equation~30! determines the
pressure as a function ofx in the plasma core. We still hav
the freedom to specify one additional profile in the inter
~e.g. the current profile! to uniquely determine the interio
solution. Alternatively, if we are given the solution in th
plasma interior,p(x) is specified, and we can take the squa
root of Equation~29! to construct the unique external fie
required to maintain the equilibrium with a circular boun
ary.

In practice, only a few lown values of thean will be
non-negligible. The highern Fourier components of the
vacuum field decay rapidly away from the external fie
coils. Retaining only the first few terms on the right ha
side of Equation~30!, we find that only a restricted set o
p(x) profiles can be reasonably supported with a circu
boundary. We note that the constraints on the pressure
file are the results of the existence of a boundary layer in
high eb̄p ordering, and also of the continuation of the ma
netic field across the plasma boundary due to the z
surface-current assumption. This is to be contrasted with
fixed boundary solution, where the pressure and current
files could be arbitrarily specified.

Let us look at the special case where the external fiel
uniform and vertical at infinity. Now the boundary conditio
for cv at a large radiusr l is

B5
¹c

R
3f̂→Bvẑ. ~31!

In this case, it is easy to get

cv511b0 ln r1a1~r21/r !cosu, ~32!

and the constraint on the coefficients

b052a1 , ~33!

which is the special form of Equation~28!. The special form
here for Equation~30! is

p~c0~x!!5
1

2eb̄p

b0
2~11x!. ~34!

The quantitya1 is related to the vertical field at infinity

Bv5
cmax

R0a
a1 . ~35!

Equation~33! is the hoop force balance in the highb case,

I tm054paBv . ~36!

With Equation ~34! we get an expression for the require
vertical field as a function of the pressure. Expressing
result in unnormalized variables, and using

pS xaD5

pmaxS 11
x

aD
2

, ~37!

we get

Bv5
m0e

5/2R0
2pmax

2cmax
. ~38!
Phys. Plasmas, Vol. 4, No. 3, March 1997
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This is to be compared with the lowb result ~see, for ex-
ample, Ref. 4! where besides pressure several other te
come into the expression forBv . However, it is already the
case in the conventional highb ordering that the pressur
dependence dominates the other terms.4

An important figure of merit for tokamak equilibria is

b I[
4*pdV

R0m0I t
2 . ~39!

This measures the plasma pressure that is supported
given plasma current. In our solutionb I can be obtained
explicitly from Equation~34!,

E
21

1

p~x!2~12x2!1/2dx5
b0
2p

2eb̄p

. ~40!

In unnormalized form, we have

E pdV52pR0E
2a

a

p~x!2~a22x2!1/2dx

52pR0

b0
2p

2eb̄p

a2
cmax
2

m0a
4 5

e22m0I t
2R0

4eb̄p

. ~41!

Thus,

b I b̄p5e23. ~42!

This relation is a consequence of our assumption that the
no surface current at the plasma-vacuum interface.

Another useful parameter is:

q*5
2pa2B0

m0R0I t
. ~43!

It measures the current that a fixed toroidal flux can supp
In a straight tokamak with circular flux sufaces,q* is related
to the stability criteria for external kink modes. In the hig
eb̄p ordering, whenq is constant,

q*5
4pcmax

m0R0I t
5

2cmax
2

m0ae5/3R0
3pmax

5
2q

e3/2b̄p

52qe1/22g.

~44!

When q is not constant but ;O(1), we have
q*;2qe1/22g instead.

Now we turn to the topological structure of the vacuu
field associated with a circular plasma boundary. On
plasma-vacuum boundary, the poloidal field vanishes
u5p and is finite elsewhere. It is straightforward to veri
that at the point (r51,u5p), the first and the second de
rivatives are all zero. The third derivatives at this point are
follows:

]3cv

]r 3
5
2b0
r 3

1 (
n51

`

ann@~n21!~n22!r n231~n11!~n

12!r2n23#Tn~y!, ~45!

]3cv

]r 3 U
r51,u5p

5 (
n51

`

2n3an~21!n, ~46!
765H. Qin and A. Reiman
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]3cv

]r 2]u U
r51,u5p

50, ~47!

]3cv

]r ]u2
5 (

n51

`

ann~r n211r2n21!@Tn9~y!~12y2!

2Tn8~y!y#, ~48!

]3cv

]r ]u2 U
r51,u5p

5 (
n51

`

2annTn8~21!52
]3cv

]r 3 U
r51,u5p

,

~49!

]3cv

]u3 U
r51,u5p

50. ~50!

The identityTn8(21)5(21)n11n2 has been used. The Tay
lor’s expansion at (r51,u5p) is

cv511
]3cv

]r 3 U
r51,u5p

~r21!3

3!

13
]3cv

]r ]u2 U
r51,u5p

~r21!~u2p!2

3!
. ~51!

The equations for the level lines passing through this po
can be obtained by settingcv51,

~r21!323~r21!~u2p!250. ~52!

Thus there are three such lines:

r2156A3~u2p!,r51. ~53!

Since the vacuum solution is valid onto the surfa
r (u)51, which is itself a flux surface, we conclude that t
topological structure of the flux surfaces near the po
(r51,u5p) is ‘‘K-shaped.’’ More precisely, we can verify
that at this point all the three angles between these three
are equal~see Fig. 1!,

/A15/A25/A35p/3. ~54!

Plotted in Fig. 1 is a solution with a circular plasma boun
ary. The vacuum field is uniform and vertical at infinity. Th
vacuum solutioncv is described by Equation~32!, while the
core solution is given by c0(x)51/22(xA12x2

1 sin21 x)/p, which is the case whenq5constant. Figure
1~c! is the required pressure profile.

IV. FREE-BOUNDARY SOLUTION WITH PERTURBED
CIRCULAR BOUNDARY

In this section we perturb about the solution obtained
the previous section to investigate the effect of a small mo
fication in the shape of the plasma boundary. We use a
rameterd!1 to measure the deviation of the boundary fro
circularity, r b1(u)[@r b(u)21#5O(d). The corresponding
perturbations inGm1n andp from those which give a circu
lar boundary are also of orderd. Our approach is to specify
the perturbed plasma boundaryr b1(u) and solve for the per-
turbed pressure profilep1(x)[p1(c0(x)).

Let

p~x!5p0~x!1p1~x!, ~55!
766 Phys. Plasmas, Vol. 4, No. 3, March 1997
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FIG. 1. ~a! Contour plot for vacuum and plasma solution with circular
boundary (a151). ~b! The core solutionc0 . ~c! Pressure profile@normal-
ized by (eb̄p)

21b0
2].
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r b~u!511r b1~u!, ~56!

an5an
~0!1an

~1! ,bn5bn
~0!1bn

~1! , ~57!

c05c0
~0!1c0

~1! , ~58!

cv5cv
~0!1cv

~1! . ~59!

As before, thean ,bn are the coefficients in the serie
solution of cv which satisfies the Laplace equation. T
an
(0) ,bn

(0) are the unperturbed coefficients, andan
(1) ,bn

(1) are
the first order coefficients with respect to the small distort
from a circular boundary. Also,r b1 is the first order plasma
boundary, andc0

(1) and cv
(1) are the first order core an

vacuum solution. We expand about a conveniently cho
circular boundary equilibrium solution. We can arbitrari
specify the major and minor radii of the circular bounda
solution. We choose them so that the circular boundary
incides with the perturbed plasma boundary at the two po
where it crosses the mid-plane. The perturbed plasma bo
ary then goes throughx561, that is:

r b1~6p!50. ~60!

This simplifies the calculation, becausep(x) andp0(x) have
the same domains inx. We are also free to choosecmax to
have the same value for the circular boundary solution
the perturbed solution. The common value ofcmax can be
normalized to 1.

One of the boundary conditions at the plasma bound
is

cvur511r b1~u!5cv
~0!1cv

~1!ur511r b1~u!515a0
~0!1a0

~1!

1b0
~0!r b1~u!1 (

n51

`

@~an
~1!1bn

~1!!

12an
~0!nrb1~u!#cosnu. ~61!

To first order ind this gives

a0
~1!1 (

n51

`

~an
~1!1bn

~1!!cosnu1S b0~0!12(
n51

`

an
~0!n cosnu D

3r b1~u!50, ~62!

or

r b1~u!52
a0

~1!1(n51
` ~an

~1!1bn
~1!!cosnu

b0
~0!12(n51

` an
~0!n cosnu

. ~63!

To first order ind, the radial derivative at the perturbe
boundary is

]cv
~1!

]r
U
r511r b1~u!

5b0
~1!2b0

~0!r b1~u!1 (
n51

`

@~an
~1!2bn

~1!!

22an
~0!r b1~u!#n cosnu. ~64!

We expand the relation~16! to first order:
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2S ]c0
~0!

]r D
c051

S ]c0
~1!

]r D
c051

54eb̄pF4p0~y!yrb1~u!

14E
21

y

p1~x!dxG , ~65!

where againy[ cosu. It follows that

S ]c0
~1!

]r
D

c051

52~eb̄p!
1/2F p0y

AE
21

y

p0~x!dx

r b1~u!

1

E
21

y

p1~x!dx

AE
21

y

p0~x!dx
G . ~66!

The zero surface-current assumption connects~66! and ~64!
and gives

a0
~1!1b0

~1!1 (
n51

`

@~n11!an
~1!2~n21!bn

~1!#cosnu

5
p0y~eb̄p!

1/2

AE
21

y

p0~x!dx

r b1~u!1

~eb̄p!
1/2E

21

y

p1~x!dx

AE
21

y

p0~x!dx

, ~67!

where we have made use of Equation~62!.
We specify the perturbed boundar

r b1(u)5(n50
` an cosnu. Equation~62! then determines the

perturbed vacuum field. Substituting the perturbed coe
cients into Equation~67!, we get an equation that determine
p1(x) when we impose the constraints:

p1~61!50 . ~68!

When the magnetic field is vertical and uniform at infi
ity, ~62! and ~67! can be simplified into

r b1~u!5 (
n50

`

an cosnu

52
a0

~1!1a1
~1! cosu1(n51

` bn
~1! cosnu

b0
~0!~11 cosu!

, ~69!

and

a0
~1!1b0

~1!12a1
~1! cosu1 (

n51

`

~12n!bn
~1! cosnu

5
p0y~eb̄p!

1/2

AE
21

y

p0~x!dx

r b1~u!1

~eb̄p!
1/2E

21

y

p1~x!dx

AE
21

y

p0~x!dx

. ~70!

Figure 2 shows the equilibrium solution for a perturb
plasma boundary with small ellipticity,
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h

r b1~u!520.03~12 cos 2u!. ~71!

The detailed calculation for the perturbed vacuum field an
the perturbed pressure is given in Appendix B.

Figure 3 shows the equilibrium solution for a perturbed
plasma boundary with small ellipticity and triangularity,

r b1~u!520.05~12 cos 2u!10.015~cosu2 cos 3u!.
~72!

The detailed calculation is again given in Appendix B.
The perturbation does not alter the main topological fea

tures we found in the presence of a circular boundary. Eve
though the global picture ofcv changes after the perturba-
tion, the K-shaped structure with three equal angles at t
leftmost boundary is kept to first order ofd.

Considering Equations~60! and~62!, we must have two
relations between thean

(1) ,bn
(1) :

a0
~1!1 (

n51

`

~an
~1!1bn

~1!!~21!n50, ~73!

FIG. 2. ~a! Contour plot for vacuum solution (a1
(0)51). ~b! Pressure profile

@normalized by (eb̄p)
21(b0

(0))2]. The dashed line is the unperturbed solu-
tion, and the solid line is the perturbed one.
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n51

`

~an
~1!1bn

~1!!~21!nn250. ~74!

From Equations~67! and ~60!, we obtain another relation
between the coefficients:

a0
~1!1b0

~1!1 (
n51

`

@~n11!an
~1!2~n21!bn

~1!#~21!n50.

~75!

Physically, this means that to first order ind the poloidal
field at the leftmost boundary in the mid-plane is zero. This
conclusion is consistent with Eq.~17!.

Using the relations~73!, ~74! and ~75!, we find that to
first order ind all the first and second derivatives vanish at
the leftmost boundary in the mid-plane. As in Sec. III, we
find:

FIG. 3. ~a! Contour plot for vacuum solution (a1
(0)51). ~b! Pressure profile

@normalized by (eb̄p)
21(b0

(0))2]. The dashed line is the unperturbed solu-
tion, and the solid line is the perturbed one.
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]3cv
~1!

]r ]u2
U
r51,u5p

52 U]3cv
~1!

]r 3
U
r51,u5p

, ~76!

]3cv
~1!

]r 2]u
U
r51,u5p

5
]3cv

~1!

]u3
U
r51,u5p

50. ~77!

Here we have taken the radial and poloidal derivatives of
Laplace equation forcv

(1) with the conditions that all the
second derivatives at the leftmost boundary in the mid-pl
vanish.

Following the argument in Sec. III, we find that the t
pological structure forcv5cv

(0)1cv
(1) is the same as that fo

the unperturbedcv
(0) with a circular boundary. See Fig. 2 an

Fig. 3 for the perturbed boundary and perturbed vacuum
lution.

V. DISCUSSION AND CONCLUSIONS

For a fixed boundary equilibrium solution, such as th
described in Ref. 3, we are free to independently specify
shape of the boundary as well as two profiles. We can,
example, specifyp(c) plus one other profile such asq(c),
or G(c), or x(c). The fixed boundary equilibrium solutio
does not take into account the constraints arising from c
pling to a vacuum field outside the plasma. The extensio
a free-boundary solution requires the existence of an ap
priate vacuum field that can support the given profiles a
plasma shape. We need to be concerned about whethe
the vacuum field to which we couple is physically realizab
with a reasonable set of external field coils.

Specification of the fixed boundary solution determin
p(c0(x)). For a circular boundary, this quantity is related
the external vacuum field through Equation~30!. The higher
n Fourier components of the vacuum field decay rapi
away from the external field coils. It is not desirable to ha
the external field coils very close to the plasma, and in pr
tice only a few lown values of thean will be non-negligible.
Equation ~30! then dictates the limited class ofp(c0(x))
profiles that are in practice consistent with a circular plas
boundary. This is a strong constraint on the practically re
izable highebp equilibrium solutions that emerges from o
analysis.

In experiments, we impose the part of the vacuum fi
produced by the coils. The profiles in the plasma are de
mined by the ohmic current drive and by any supplement
current drive, and by the density and temperature profi
which are in turn determined through transport proces
The equilibrium equations self-consistently determine
shape of the plasma boundary in the presence of these
files and the imposed external field. The solutions obtai
in this paper correspond to those profiles which yield
nearly circular boundary. For a given boundary shape, an
set ofan determined by the external coils, the vacuum field
determined by Equation~62!. Equation~67! in turn gives the
p(x) profile required to yield the specified boundary with t
given external field. One profile in the plasma interior r
mains arbitrary. We find that at highebp the pressure profile
Phys. Plasmas, Vol. 4, No. 3, March 1997
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plays a key role in determining the boundary shape, in c
trast with the situation at lowb, where the shape is only
weakly affected by the pressure profile.

Matching to the external vacuum field enables us to
amine the topology of the flux surfaces. Consistent with
picture of a separatrix moving in asebp is increased, the
plasma is bounded by a separatrix in our highebp equilib-
rium solutions. As we raiseb I b̄p in an equilibrium with
circular boundary, the aperture decreases as describe
Equation~42!. This relation is a consequence of our assum
tion that there is no surface current at the plasma-vacu
interface. If we allow a surface current to exist at the plas
vacuum interface, it can prevent the separatrix from mov
in as the pressure is increased. Even in the absence
surface current, we can construct a flux conserving seque
of equilibria by controlling the current profile aspmax is
raised to keep theq profile invariant. In that case, the curre
increases withpmax to keepb I b̄p invariant, consistent with
Equation~42!.

APPENDIX A: THE DERIVATION OF EQUATION (7)

We expand Equation~3! order by order in the paramete
a. To the ordera0 we get:

G0~c0!50. ~A1!

To the ordera1,a2, . . . ,am21:

G1~c0!50,G2~c0!50, . . . ,Gm21~c0!50. ~A2!

To the orderam:

p~c0!1Gm~c0!50. ~A3!

To the order ofam11,am12, . . . ,am1n21:

Gm11~c0!50,Gm12~c0!50, . . . ,Gm1n21~c0!50.
~A4!

To the order ofam1n

2xp8~c0!1Gm1n~c0!50. ~A5!

The last equation is Equation~7!.

APPENDIX B: CALCULATION OF THE FIRST ORDER
SOLUTION WITH A PERTURBED BOUNDARY

We normalize p0(x), p1(x) by (eb̄p)
21(b0

(0))2 and
a0
(1) ,a1

(1) andbn
(1) by b0

(0) then substitute Equation~69! into
~70!, multiply both sides of the equation by 11 cos(u), and
equate the corresponding Fourier coefficients. This pro
dure leads us to the following set of equations:

2 f 05a0
~1!11.5a1

~1!1b0
~1!10.5b1

~1! ,

2 f 152a0
~1!12a1

~1!1b0
~1! ,

2 f 251.5a1
~1!10.5b1

~1!2b2
~1!20.5b3

~1! ,

2 f 3522b3
~1!2b4

~1! ,

•••

2 f m52
m23

2
bm21

~1! 2~m21!bm
~1!2

m21

2
bm11

~1!

~m.2!, ~B1!
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where thef n are the Fourier component of*21
cos(u)p1(x)dx,

E
21

cos~u!

p1~x!dx5 (
n50

`

f n cosnu.

The quantityp1(x) is given by

p1~x!5 (
n50

`

f n
dTn~x!

dx
5 (

n50

`

f nnUn21~x!, ~B2!

whereTn(x) andUn(x) are Chebyshev polynomials of th
first kind and second kind.

Equation~69! gives:

a0
~1!52a020.5a1 ,

a1
~1!1b1

~1!52a02a120.5a2 ,

b2
~1!520.5a12a220.5a3 ,

•••

bn
~1!520.5an212an20.5an11 ~n.1!.

Whenan is specified,a0
(1) , a1

(1) , bn
(1) andp1(x) can be

determined from the above equations together with c
straint p1(61)50. The constraint is needed because
above equations have two undetermined degrees of freed
b0
(1) is determined through Equation~75!.
For example, whenr b1(u)520.03(12 cos 2u), we ob-
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tain a0
(1)50.03, a1

(1)520.075, an
(1)50(n.1),

b0
(1)520.18, b1

(1)50.09, b2
(1)520.03, b3

(1)520.015,
bn
(1)50(n.3), and p1(x)520.1820.12x10.18x2

10.12x3. The solution is shown in Fig. 2.
When r b1(u)520.05(12 cos 2u)10.015(cosu

2 cos 3u), we obtain a0
(1)50.0425, a1

(1)50.01,
an
(1)50(n.1), b0

(1)520.03, b1
(1)50, b2

(1)520.05,
b3
(1)520.01, b4

(1)50.0075, bn
(1)50(n.4), and p1(x)

50.28x10.3x220.28x320.3x4. The solution is shown in
Fig. 3.
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