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Abstract

Collective processes in intense charged particle beams for heavy ion fusion are studied using a 3D multispecies
nonlinear perturbative particle simulation method, which solves self-consistently the nonlinear Vlasov–Maxwell

equations. The newly-developed Beam Equilibrium Stability and Transport code is used to simulate the nonlinear
stability properties of intense beam propagation, surface and body eigenmodes in a high-intensity beam, and the
electron-ion two-stream instability, which occurs when a small population of (unwanted) electrons is present in the

system. # 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Periodic focusing accelerators and transport
systems [1,2] play an important role in heavy ion
fusion (see for example [3]). At the high beam
currents and charge densities of practical interest
for heavy ion fusion, it is increasingly important to
develop an improved theoretical understanding of
the influence of the intense self fields produced by
the beam space charge and current on detailed
equilibrium, stability and transport properties.
To achieve this goal, it is necessary to study
the self-consistent evolution of the beam distribu-
tion function fbðx; p; tÞ and the self-generated
electric and magnetic fields in a kinetic description

[4–7] based on the nonlinear Vlasov–Maxwell
equations.

Recently, the df formalism, a low-noise, non-
linear perturbative particle simulation technique
for solving the Vlasov–Maxwell equations, has
been developed for intense beam applications, and
applied to matched-beam propagation in a peri-
odic focusing field [8,9], and other related studies.
The present paper reports recent advances in
applying the df formalism to investigate nonlinear
collective processes in intense charged particle
beams. The Beam Equilibrium Stability and
Transport (BEST) code [10] described here is a
newly-developed 3D multispecies nonlinear per-
turbative particle simulation code, which
solves self-consistently the Vlasov–Maxwell equa-
tions and can be applied to a wide range of
important collective processes in intense beams,
such as collective mode excitations [1,11,12], and
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periodically-focused beam propagation [7]. The
3D and multispecies capability of the simulation
code are required by the physics of the collective
processes under investigation. In general, collec-
tive processes are nonlinear and have 3D spatial
structure, and a second or third species of charged
particles is often introduced into the system, either
intentionally or unintentionally. For example,
when a second background charge species is
present, it has been recognized, both in theoretical
studies and in experimental observations [13–16],
that the relative streaming motion of the high-
intensity beam particles through the background
charge species provides the free energy to drive the
two-stream instability, which has a 3D mode
structure.

Following a brief description of the nonlinear
df formalism (Section 2), this paper presents
detailed simulation results (Section 3) for the
nonlinear stability properties of intense beam
propagation, surface- and body-mode collective
excitations, and the electron–ion two-stream in-
stability, with particular emphasis on the parameter
regime characteristic of the high-intensity beams for
heavy ion fusion.

2. Nonlinear df formalism

The theoretical model employed here that
incorporates collective effects is based on the
nonlinear Vlasov–Maxwell equations. We consider
a thin, continuous, high-intensity ion beam ( j=b),
with characteristic radius rb propagating in the z-
direction through background electron and ion
components ( j=e, i), each of which is described by
a distribution function fjðx; p; tÞ [6,7,13]. The
charge components ( j=b, e, i) propagate in the
z-direction with characteristic axial momentum
gjmjbjc; where Vj ¼ bjc is the average directed
axial velocity, gj ¼ ð1� b2j Þ

�1=2 is the relativistic
mass factor, ej and mj are the charge and rest mass,
respectively, of a jth species particle, and c is the
speed of light in vacuo. While the nonlinear df
formalism outlined here is readily adapted to the
case of an applied periodic focusing field, for
present purpose we make use of a smooth-focusing
model in which the applied focusing force is

described by

F foc
j ¼ �gjmjo2

bjx?; ð1Þ

where x? ¼ x #ex þ y #ey is the transverse displace-
ment from the beam axis, and obj ¼ const is the
effective applied betatron frequency for transverse
oscillations. Furthermore, in a frame of reference
moving with axial velocity bjc, the motion of a jth
species particle is assumed to be nonrelativistic.
The space-charge intensity is allowed to be
arbitrarily large, subject only to transverse con-
finement of the beam ions by the applied focusing
force, and the background electrons are confined
in the transverse plane by the space-charge
potential f(x, t) produced by the excess ion charge.
In the electrostatic and magnetostatic approxima-
tions, we represent the self-electric and self-
magnetic fields as Es ¼ �rfðx; tÞ and Bs ¼ r�
Azðx; tÞ #ez½ 
: The nonlinear Vlasov–Maxwell equa-
tions in the 6D phase space (x, p) can be
approximated by [13]

@
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In the nonlinear df formalism, we divide
the total distribution function into two parts,
fj ¼ fj0 þ dfj ; where fj0 is a known equilibrium
solution to the nonlinear Vlasov–Maxwell
equations (2) and (3), and the numerical
simulation is carried out to determine only
the detailed nonlinear evolution of the perturbed
distribution function dfj. This is accomplished
by advancing the weight function defined by
wj � dfj=fj ; together with the particles’
positions and momenta. The equations of motion
for the particles, obtained from the character-
istics of the nonlinear Vlasov equation (2), are
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given by

dxji

dt
¼ ðgjmjÞ

�1pji;

dpji

dt
¼ �gjmjo2

bjx?ji � ej rf�
vzji

c
r?Az

� �
: ð4Þ

Here the subscript ‘‘ji’’ labels the ith simulation
particle of the jth species. The weight functions wj,
as functions of phase space variables, are carried
by the simulation particles, and the dynamical
equations for wj are easily derived from the
definition of wj and the nonlinear Vlasov equation
(2). Following the algebra in Refs. [8–10], we obtain

dwji

dt
¼ �ð1� wjiÞ

1

fj0
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c
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� �
; ð5Þ

where df ¼ f� f0 and dAz ¼ Az � Az0: Here, the
equilibrium solutions f0; Az0; fj0

� �
solve the stea-

dy-state (@/@t=0) Vlasov–Maxwell equations (2)
and (3) with @/@z=0 and @/@y=0. A wide variety
of axisymmetric equilibrium solutions to Eqs. (2)
and (3) have been investigated in the literature.
The perturbed distribution dfj is obtained through
the weighted Klimontovich representation [1]

dfj ¼
Nj

Nsj

XNsj

i¼1

wjidðx� xjiÞdðp� pjiÞ; ð6Þ

where Nj is the total number of actual jth species
particles, and Nsj is the total number of simulation
particles for the jth species. Maxwell’s equations
are also expressed in terms of the perturbed fields
and perturbed density according to

r2df ¼ �4p
X

j

ejdnj ; r2dAz ¼ �
4p
c

X
j

djzj ; ð7Þ

where

dnj ¼
Z

d3p dfjðx; p; tÞ ¼
Nj

Nsj

XNsj

i¼1

wjiSðx� xjiÞ;

djzj ¼ ej

Z
d3p vzjdfjðx; p; tÞ

¼
ejNj

Nsj

XNsj

i¼1

vzjiwjiSðx� xjiÞ: ð8Þ

Here, S(x� xji) represents the method of distribut-
ing particles on the grids in configuration space.

The nonlinear particle simulations are carried
out by iteratively advancing the particle motions,
including the weights they carry, according to
Eqs. (4) and (5), and updating the fields by solving
the perturbed Maxwell’s equations (7) with appro-
priate boundary conditions at the cylindrical,
perfectly conducting wall. In the longitudinal
direction, periodic boundary conditions are used.
The equations for df and dAz, expressed in
cylindrical coordinates, are solved using an FFT
method in the y- and z-directions and a finite
difference method in the r-direction. Even though
it is a perturbative approach, the df method is fully
nonlinear and simulates completely the original
nonlinear Vlasov–Maxwell equations. Compared
with conventional particle-in-cell simulations, the
noise level in df simulations is significantly
reduced. This is because the statistical noise, which
is of order OðN�1=2

s Þ for the total distribution
function in the conventional particle-in-cell (PIC)
method, is only associated with the perturbed
distribution in the df method. If the same number
of simulation particles is used in the two
approaches, then the noise level in the df method
is reduced by a factor of f/df relative to the PIC
method. Therefore, to achieve the same accuracy
for the perturbed fields, the number of simulation
particles used in the df method is reduced by a
factor of ( f/df )2. Obviously, the noise level in the
df method is comparable to the conventional PIC
method, when df is comparable to f almost
everywhere. However, if this happens over a
relatively long period of time, we can adopt a
dynamic representation for the equilibrium dis-
tribution fj0, such that df is always smaller than f.
In addition, the df method can be used to study
linear stability properties, provided the factor
(1�wji) in Eq. (5) is approximated by unity, and
the forcing term in Eq. (4) is replaced by the
unperturbed force, which is equivalent to integrat-
ing along unperturbed particle orbits for the
linearized system.

Implementation of the 3D multispecies non-
linear df simulation method described above is
embodied in the BEST code [10] developed at the
Princeton Plasma Physics Laboratory. The code
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advances the particle motions using a leap-frog
method, and solves Maxwell’s equations in cylind-
rical geometry. For those particle motions with
much larger characteristic frequency than the
frequency of the mode being studied, the code
uses an adiabatic field pusher to advance the
particles many time steps without solving for the
perturbed fields.

3. Simulation results

We first present application of the code to a
single-species thermal equilibrium ion beam in a
constant focusing field. It is assumed that the beam
is centered inside a cylindrical chamber with
perfectly conducting wall located at r=rw, and
the equilibrium is 1D, depending only on the
radial coordinate r=(x2+y2)1/2. The isotropic
thermal equilibrium distribution function in the
phase space (r, p) is given by

fb0ðr;PÞ ¼
#nb

ð2pgbmbTbÞ
3=2

�exp �
p2?=2gbmb þ gbmbo2

bbr
2=2þ ebðf0 � bbAz0Þ

Tb

( )

�exp �
ðpz � gbmbbbcÞ

2

2gbmbTb

� �
; ð9Þ

where #nb is the number density of beam particles at
r=0, and Tb=const is the temperature of the
beam ions in energy units. The equilibrium self-
field potentials f0 and Az0 can be determined
numerically from the nonlinear Maxwell’s equa-
tions in Eq. (3). As an example, we examine
the nonlinear propagation properties of a heavy
ion beam with gb=1.08, mass number A=133,
and normalized space-charge intensity sb � #o2

pb=
2g2bo

2
bb ¼ 0:95: Here, #o2

pb ¼ 4p #n2be
2
b=gbmb is the

relativistic plasma frequency-squared on axis
(r=0). A 3D small-amplitude random initial
perturbation is introduced into the system, and
the beam is propagated from t=0 to 1200tb, where
tb � o�1

bb : The simulation results show that the
perturbations do not grow and the beam propa-
gates quiescently over large distance, which agrees
with the nonlinear stability theorem [5] for the
choice of monotonically-decreasing equilibrium
distribution function in Eq. (9). Shown in Fig. 1

is a plot of the density perturbation at one spatial
location versus normalized time obbt; for pertur-
bations about the thermal equilibrium distribution
in Eq. (9). The normalized amplitudes of the initial
random perturbation in weights in Fig. 1 are of
order 10�5, which leads to a very small density
perturbation. It is evident from Fig. 1 that the
perturbations remain extremely small, and the
beam propagates quiescently over very large
distances, as expected.

As a second example, we study the linear surface
mode for perturbations about a thermal equili-
brium ion beam in the space-charge-dominated
regime, with flat-top density profile. These modes
are of practical interest because they can be
destabilized by a two-stream electron–ion interac-
tion when background electrons are present [13–
16]. The BEST code, operating in its linear
stability mode, has recovered very well-defined
eigenmodes with mode structures and eigenfre-
quencies which agree well with theoretical pre-
dications [1,13]. For the dipole mode with
azimuthal mode number l=1, the dispersion
relation for these modes is given by [13]

o ¼ kzVb 
#opbffiffiffi
2

p
gb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

r2b
r2w
;

s
ð10Þ

where rb is the radius of the beam edge, and rw is
location of the conducting wall. In Eq. (10), #o2

pb ¼
4p #nbe2b=gbmb is the ion plasma frequency-squared,
and #opb=

ffiffiffi
2

p
gbKobb has been assumed in the

space-charge-dominated regime. Shown in Fig. 2 is
a comparison between plots of the eigenfrequency

Fig. 1. Time history of dnb= #nb for small-amplitude perturba-

tions about a thermal equilibrium ion beam.
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versus rw/rb obtained from the simulations (dia-
monds and triangles) and that predicted by
Eq. (10) (solid curves). It is clear from Fig. 2 that
the simulation results agree very well with the
theoretical predictions.

In addition to the surface modes, there exists a
discrete spectrum of collective body-mode oscilla-
tions in high-intensity charged particle beams.
Here, we study the axisymmetric body modes with
l=0 and kz=0 for perturbations about a moder-
ate-intensity beam with sb � #o2

pb=2g
2
bo

2
bb ¼ 0:44:

The system is perturbed at t=0 by an initial
density perturbation, which varies smoothly across
the beam radius, with zero net perturbed charge
density, and normalized amplitude 10�4. In gen-
eral, discrete eigenmodes can be recovered from
the spectrum of the time history of the perturba-
tions. Shown in Fig. 3 is the spectrum of the
density perturbation at one spatial location, from
which we can clearly identify the first four body
eigenmodes of the system at frequencies o1 ¼
1:53obb; o2 ¼ 2:98obb; o3 ¼ 4:50obb; and o4 ¼
6:03obb: The corresponding potential perturba-
tions, dfnðrÞ; for each eigenmode are plotted in
Fig. 4. We follow the convention in previous
analytical and numerical studies [1,11,12], and
use the notation n=1, 2, 3, . . . to label the radial
mode number of the discrete eigenmodes. Any
(oscillatory) perturbation can be expanded as
dfðr; tÞ ¼

P
n andfnðrÞexpð�iontÞ; where an is the

mode amplitude. Numerically, dfnðrÞ is extracted
from dfðr; tÞ by determining the Fourier compo-

nent of dfðr; tÞ oscillating at frequency on. As is
evident from Fig. 4 and consistent with previous
analytical and numerical studies, the eigenfunction
dfnðrÞ has n zeros when plotted as a function of r.

The oscillatory eigenmodes studied above are of
practical interest because under certain circum-
stances they can be destabilized by other physical
effects. For example, the body modes can be
destabilized by pressure anisotropy, when the
perpendicular pressure is sufficiently large in
comparison with the parallel pressure P? > Pjj

[12,18]. The presence of an unwanted second
species of charged particles, such as electrons,
can also provide the free energy to drive the system

Fig. 2. Plot of the normalized oscillation frequency o=obb

versus rw=rb for l=1 surface-mode excitations.

Fig. 3. Frequency spectrum of axisymmetric body eigenmodes.

Fig. 4. Radial mode structure of the body eigenmodes in Fig. 3.
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unstable. The instability observed in the Proton
Storage Ring [15,16] is believed to be the electron–
proton two-stream instability, and has been
simulated using the BEST code [17]. We present
here illustrative simulation results for the electron–
ion two-stream instability. In the simulations, the
equilibrium distribution functions fj0(r, p) are
chosen to be the bi-Maxwellian generalizations of
Eq. (9), with temperature Tj? ¼ const in the x–y
plane, and temperature Tjjj ¼ const in the
z-direction. Because the two-stream instability is
strongest when the beam ions are cold in the
parallel direction [13] (no Landau damping by
parallel kinetic effects), we take Tbjj ¼ 0 and Tejj ¼
0 in the simulations presented here. The stabilizing
influence of longitudinal Landau damping by
parallel ion kinetic effects at increasing values of
Tbjj=Tb? is reported in Refs. [17,19,20].

Illustrated in Fig. 5 are the initial linear simula-
tion results for the electron–ion two-stream
instability for a heavy ion beam (A=133, Zb=1)
near the space-charge limit, with gb ¼ 1:08;
f � #ne= #nb ¼ 0:1 ðo2

pb=2o
2
bbÞð1 � f � b2bÞ ¼ 0:994;

Tb?=gbmbV
2
b ¼ 4:49�10�7; Te?=gbmbV

2
b ¼ 7:43�

10�6; obe ¼ 0; and Ve=0 (stationary electrons).
The density perturbation amplitude dnb at one
spatial location is plotted versus obbt in Fig. 5
during the linear growth phase of the instability.
The simulations show that the most unstable mode
is the (l, n)=(0,1) body mode, with axial wave-
number kz and real part of the eigenfrequency o
satisfying the resonance conditions oKoe and
kzVbKoe þ ob; where ob and oe are the char-

acteristic collective oscillation frequencies of the
beam ions and electrons [1,13]. In this case, the
linear growth rate in the simulation is measured to
be Im o=0.036obb. Shown in Fig. 6 are typical
simulation results for the linear and nonlinear
phases of the electron–proton two-stream instabil-
ity in a moderately intense proton beam with sb �
#o2
pb=2g

2
bo

2
bb ¼ 0:074; gb ¼ 1:85; Tb?=gbmbV

2
b ¼

3:61�10�6; Te?=gbmbV
2
b ¼ 5:86�10�7; f � #ne= #nb

¼ 0:1; Ve ¼ 0 and obe=0. These system para-
meters correspond to the typical operating para-
meters in the Proton Storage Ring experiment
[15,16]. We see clearly from Fig. 6 the initial linear
growth phase and the nonlinear saturation of the
instability. For the parameters considered here, the
instability nonlinearly saturates at t � 400o�1

bb at a
normalized amplitude of dnb= #nb � 0:3%: Different
from the electron–ion two-stream stability for the
heavy ion fusion parameters in Fig. 5, the simula-
tions in Fig. 6 indicate that the most unstable
mode for the electron–proton two-stream instabil-
ity is predominantly a surface dipole mode with
l=1.

4. Conclusions

In conclusion, a 3D multispecies nonlinear
perturbative particle simulation method has been
developed to study collective processes in intense
charged particle beams described self-consistently
by the Vlasov–Maxwell equations. The simulation

Fig. 5. Electron–ion two-stream instability for illustrative

heavy ion fusion parameters.

Fig. 6. Linear and nonlinear phases of the electron–proton

two-stream instability for illustrative parameters in the Proton

Storage Ring experiment.
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results show that an isotropic thermal equilibrium
ion beam in a constant focusing field is nonlinearly
stable and can propagate quiescently over hun-
dreds of lattice periods. For the l=1 surface
eigenmodes excited in a uniform-density beam, the
simulation results agree well with analytical pre-
dictions [13]. Axisymmetric body modes have also
been studied, and the basic features of these body
eigenmodes are in qualitative agreement with
previous studies [1,11,12]. Instabilities driven by
pressure anisotropy are being investigated using
the df method. Finally, introducing a background
component of electrons, strong electron–ion two-
stream instabilities are modeled in the simulations.
More detailed properties of the electron–ion two-
stream instability, such as the nonlinear dynamics
and saturation mechanism, are presently under
investigation. As a 3D multispecies perturbative
particle simulation code, the newly-developed
BEST code provides several unique capabilities.
Since the simulation particles are used to simulate
only the perturbed distribution functions and the
perturbed self-fields, the simulation noise is
reduced significantly. The perturbative approach
also enables the code to investigate different
physics effects separately, as well as simulta-
neously. The code can be easily switched between
linear and nonlinear operation, and used to study
both linear stability properties and nonlinear beam
dynamics. These features, combined with 3D and
multispecies capabilities, provide an effective tool
to investigate the electron–ion two-stream instabil-
ity, periodically focused solutions in alternating
gradient field configurations, halo formation, and
many other important problems in nonlinear beam
dynamics and accelerator physics.
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