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Alfvé n waves in gyrokinetic plasmas
W. W. Lee and H. Qin
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

~Received 16 April 2003; accepted 16 May 2003!

A brief comparison of the properties of Alfve´n waves that are based on the gyrokinetic description
with those derived from the magnetohydrodynamics~MHD! equations is presented. The critical
differences between these two approaches are the treatment of the ion polarization effects. As such,
the compressional Alfve´n waves in a gyrokinetic plasma can be eliminated through frequency
ordering, whereas geometric simplifications are needed to decouple the shear Alfve´n waves from the
compressional Alfve´n waves within the context of MHD. Theoretical and numerical procedures of
using gyrokinetic particle simulation for studying microturbulence and kinetic-MHD physics
including finite Larmor radius effects are also presented. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1590666#
al
e

t
is
th

th
te
s-
w
ew

t
ra
el
r
h

n-
e

is
co

o-
ap

o-
g
in
rs
y
-
he
c
to
ic
ti

tic

l
ort
r is
e
rts
tic
re-

sible
bu-

of
m-

-
the
ap-
ua-
I. INTRODUCTION

Recently, Qinet al.1 have generalized the convention
low-frequency gyrokinetic theory to the high frequency r
gime. According to this newgyrocenter-gauge kinetic theory,
the most critical ordering one needs in order to separate
fast gyromotion from the slow-moving gyrocenter motion
to assume that the ion gyroradii are much smaller than
scale lengths of the equilibrium magnetic field, i.e.,r i /LB0

!1. Under this assumption, they proceed to show that
kinetic description of magnetized plasmas in the gyrocen
coordinates is fully equivalent to the Vlasov–Maxwell sy
tem in the particle coordinates. Thus, in this view, the lo
frequency gyrokinetic theory is a subset of the n
gyrocenter-gauge kinetic theory when one averages out
gyrophase information. Using this simple concept of sepa
ing gyromotion from gyrocenter motion, we have first dev
oped in this paper a fully electromagnetic gyrokinetic theo
in the limit of r i→0 based on a more intuitive approac
rather than the usual Lie-perturbation2 and pullback
transformation1,3,4 methodology. The purpose is to demo
strate in a more transparent fashion that the unique treatm
of polarization effects of the ions in the gyrokinetic theory
the key that enables us to add and suppress shear and
pressional Alfve´n waves without resorting to additional ge
metrical simplifications. These additional orderings are
parently needed to separate the shear Alfve´n waves from the
compressional Alfve´n waves in the one-fluid magnetohydr
dynamic~MHD! theory.5 The unique treatment of separatin
ion polarization drift from the rest of gyrocenter motion
the electrostatic low-frequency gyrokinetic theory was fi
pointed out by Lee6 and has been studied by man
others.1,3,4,7–10It culminates with the recovery of the com
pressional Alfve´n waves and the Bernstein harmonics in t
gyrokinetic formalism3 and the development of gyrokineti
equilibrium.4 The first part of the article is an attempt
make contact with the MHD theory from the gyrokinet
point of view. We then proceed to discuss the gyrokine
formulations and numerical issues for finiter i that enable us
to complement the existing numerical tools for gyrokine
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particle simulation11–13 to be used on massively paralle
computers for studying electromagnetic turbulent transp
and the related kinetic-MHD physics. The present pape
organized as follows: In Sec. II, Alfve´n waves based on th
MHD equations are revisited. Their gyrokinetic counterpa
are discussed in Sec. III. The electromagnetic gyrokine
Vlasov–Maxwell equations in general geometry and the
lated numerical issues are presented in Sec. IV. The pos
use of these equations for simulating electromagnetic tur
lence and MHD modes as well as the possible scenario
transport time scale simulation on massively parallel co
puters along with the conclusions are given in Sec. V.

II. MHD ALFVÉN WAVES

In order to understand gyrokinetic Alfve´n physics, let us
first revisit Alfvén waves using the one-fluid MHD descrip
tion. The particular derivations presented here are for
purpose of facilitating the comparisons between the two
proaches. The governing equations are: the continuity eq
tion,

]rm

]t
1¹•rV50,

the momentum equation,

rmS ]V

]t
1V•¹VD5

1

c
J3B2¹p,

Ohm’s law,

E1
1

c
V3B5hJ,

Faraday’s law,

¹3E52
1

c

]B

]t
,

and Ampère’s law,

¹3B5
4p

c
J,
6 © 2003 American Institute of Physics
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3197Phys. Plasmas, Vol. 10, No. 8, August 2003 Alfvén waves in gyrokinetic plasmas
whererm is the mass density,V is the fluid velocity,J is the
current, andp5pi1pe is the pressure. Forh50, drm50,
dp50 andB5B01dB, the governing equations in simpl
geometry take the familiar form of

rmoS ]dV

]t
1dV•¹dVD1

B

4p
3~¹3dB!50, ~1!

and

]dB

]t
5¹3~dV3B!, ~2!

whereB0 is the external magnetic field, and the prefixedd
variables are the perturbed quantities. To facilitate the co
parisons with the gyrokinetic approach, let us take time
rivative of the linearized Faraday’s law, Eq.~2!, and substi-
tute the resulting]dV/]t term by the linearized momentum
equation, Eq.~1!, to obtain

]2dB

]t2 1vA
2@¹3~¹3dB!'#50, ~3!

valid for vA([B0 /A4prmo)@cs . Consequently, we obtain

]2dBi

]t2 2vA
2¹2dBi50, ~4!

and

]2dB'

]t2 2vA
2@¹ i

2dB'1¹'~¹'•dB'!#50, ~5!

wherei and' denote directions parallel and perpendicua
to the external magentic field. Thus, fordBiÞ0, the normal
modes from Eq.~4! are the compressional Alfve´n waves with

v25k2vA
2 ,

where k25k'
2 1ki

2 . In the case of¹'•dB'50, the waves
propagating perpendicular to bothb̂0 and k' according to
Eq. ~5! are the shear-Alfve´n waves with

v25ki
2vA

2 .

Otherwise, for¹'•dB'Þ0, we can take¹' of Eq. ~5! to
obtain

]2

]t2 ~¹'•dB'!2vA
2¹2~¹'•dB'!50.

This equation is related to Eq.~4! through the condition of
¹•dB50 and, hence, they both have compressional Alfv´n
waves ofv25k2vA

2 as the normal modes. Consequently,
dBi50 and¹'•dB'50, this system of equations has on
shear-Alfvén waves.

These conditions can be satisfied by introducing

dB'5¹3Ai5¹Ai3b̂0 ,

whereb̂0 is the unit vector alongB0 . Substituting it into Eqs.
~1! and ~2!, we obtain

ddV'

dt
1

vA
2

B0
F b̂03¹~¹•Ai!1

1

B0
¹2Ai¹'AiG50, ~6!

and
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]Ai

]t
5dV'3~B01dB'!2c¹f, ~7!

wheredVi50 from J3B•b̂050 andd/dt5]/]t1dV'•¹.
From (]Ai /]t)3b̂050, we find from Eq.~7! that

dV'52
c

B0
¹f3b̂0

and¹•dV'50. Equation~7! also gives

1

c

]Ai

]t
1b•¹f50, ~8!

which is essentially the parallel part of the collisionle
Ohm’s law or Faraday’s law, whereb5b̂01dB' /B0 . Taking
the curl of Eq.~6! and keeping only the parallel componen
along b̂0 , we obtain the so-called vorticity equation as

d¹'
2 f

dt
1

vA
2

c
~ b̂•¹!¹'

2 Ai50, ~9!

whereki
2!k'

2 is used together with the approximation of

¹'
2 ~ b̂0•¹!Ai'~ b̂0•¹!¹'

2 Ai , ~10!

which is only valid forb̂0Þb̂0(x'). Equations~8! and~9! are
the well-known reduced MHD equations.5 For exp(ik•x
2 ivt), the corresponding normal modes are the shear
fvén waves ofv25ki

2vA
2 . Thus, we indeed eliminate th

compressional Alfve´n waves and recover the previous ana
sis based ondBi50 and¹'•dB'50. However, we have to
make geometric simplifications in order to achieve this. W
should remark here that the system conserves energy, i.

]

]t E F u¹'fu21
vA

2

c2 u¹'Aiu2Gdx50,

which can be obtained by multiplying the vorticity equatio
Eq. ~9!, by f before integrating inx. Strauss5 has used Eqs
~8! and~9! for studying kink modes in slab geometry. How
ever, the use of Eq.~10! in the derivation makes the regim
of validity for these reduced MHD equation rather limite
The difficulty comes from the treatment of the¹'

2 f term in
the vorticity equation, Eq.~9!, which is the contribution from
the ion polarization drift in the gyrokinetic theory.6,7 Thus,
from one fluid MHD point of view, the elimination of com
pressional Alfve´n waves cannot be accomplished by simp
assuming thatv2!k2vA

2 and it needs additional geometric
ordering in order to extract the¹'

2 f term from the formula-
tion. On the other hand, for gyrokinetic plasmas, by relat
¹'

2 f as the ion polarization drift, a totally different treatme
of the term is employed without additional ordering, whic
we will explain.

III. GYROKINETIC ALFVÉ N WAVES

The basic idea of gyrokinetic formulation of the Vlasov
Maxwell system is to first transform the distribution functio
F from the particle coordinates (x,v,t) to the gyrocenter co-
ordinates (R,v i ,m,w,t), wherem[v'

2 /2, w is the gyroangle,
and subscriptsi and' denote the directions parallel an
perpendicular to theB0 field, respectively. This is valid in the
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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limit of r i!LB0
as stated earlier,1 and, in doing so, we sepa

rate the gyrocenter motion from the gyromotion. Here,r i is
the ion gyroradius andLB0

is the scale length of the extern
magnetic field. In the low-frequency limit ofv!V i , i.e., the
frequency of interest is much smaller than the ion cyclot
frequency, along with the additional ordering ofef/Te!1,
dB!B, kir i!1, andk'r i'1, a gyrophase-averaging pro
cess can then be used to eliminatew as a phase variable, s
that each particle can be viewed as a charged ring center
the gyrocenter. When the distribution functionF in the gy-
rocenter coordinates is transformed back to the particle
ordinates to obtain number and current densities used
Maxwell’s equations, one then recovers the ion polarizat
effects through the pull-back transformation. For det
please refer to Refs. 1,3,4,6–11.

Here, we will present a derivation of the electromagne
gyrokinetic-Maxwell equations based on the drift kine
equation in the limit ofr i→0. This is a special case consi
tent with the condition ofr i!LB0

given by Ref. 1 for the
separation of the gyrocenter motion from the gyromot
itself. In fact, this is the only ordering we need for the rest
the derivation. Moreover, the gyromotion is inconsequen
for now since the gyroradius is zero.@The connection be-
tween gyrokinetic ordering and drift kinetic ordering
through the parameterk'r(ef/Te2v ieAi /cTe)!1.14 The
physics associated withr iÞ0 will be discussed later in Sec
IV.# We start first from the Vlasov equation,

dFa

dt
[

]Fa

]t
1v•

]Fa

]x
1

qa

ma
S E1

1

c
v3BD • ]Fa

]v
50,

and letv5vi1vE3B with

vE3B5
c

B
EL3b̂0 ,

we then obtain the usual drift kinetic equation in simple g
ometry in the electrostatic limit as,

]Fagc

]t
1~vi1vE3B!•

]Fagc

]x
1

qa

ma
Ei

]Fagc

]v i
50. ~11!

In the electrostatic limit, we have

EL52¹f, Ei
L52b̂0•¹f,

wheref is the electrostatic potential,b̂0 is the unit vector
along the external magnetic field, and the superscriptL de-
notes the longitudinal quantity since¹3¹f50.

However, the parallel drift, the perpendicularEL3B
drift and the parallel acceleration alone are not sufficien
capture all the relevant physics. Specifically, we have to
clude the ion polarization effects as well. In the electrosta
limit, the polarization drift is

vp
L52

mc2

eB2

]¹'f

]t
. ~12!

It is interesting to note that this drift does not show up in t
drift kinetic equation, becausevp

L/vE3B}v/V i!1, wherev
is the frequency of interest andV i is the ion cyclotron fre-
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quency. To recover the ion polarization response, let us
use the drift kinetic equation including only the polarizatio
drift to obtain

]np

]t
1

]

]x
•E vp

LFigcdv50,

wheredv[dv idm. It then yields

rp5
1

4p

vpi
2

V i
2 ¹'

2 f,

whererp(5enp) is the ion polarization density. From Pois
son’s equation of¹2f54pr we have

¹2f1
vpi

2

V i
2 ¹'

2 f524prgc , ~13!

wherer5rgc1rp and

rgc[e~nigc2negc!5eE ~Figc2Fegc!dv

comes from the drift kinetic equation, Eq.~11!. Since
vpi

2 /V i
2@1 andki!k' for our regime of interest, the firs

term in Eq. ~13! can be ignored and we then recover t
well-known quasineutral gyrokinetic Poisson’s equation
the limit of r i'0.6 Combining Eq.~13! with the drift kinetic
equation, Eq.~11!, we have the governing gyrokinetic equ
tions in the electrostatic approximation.

For the finite-b effects, let us now turn our attention t
Ampère’s law,

¹3B5
4p

c
J1

1

c

]E

]t
,

whereE5EL1ET and the superscriptT denotes the trans
verse quantity, i.e.,¹•ET50. For v2!k2c2, the transverse
induction current can be ignored, i.e.,]ET/]t'0, wherev is
the frequency of interest. This is the so-called Darw
model.15 Furthermore, by letting]EL/]t'0 and taking¹•

of Ampère’s law, we recover the well-known quasineutrali
condition of

¹•J50.

Thus, if we are only interested in the low-frequency wav
we can neglect displacement currents altogether in Ampe`re’s
law. We will discuss this point later in this section. By usin
the Coulomb gauge ofB5¹3A and¹•A50, we then have

¹2A52
4p

c
J,

where

J5Jgc1eE vp
TFigcdv,

Jgc is the gyrocenter current from the drift kinetic equatio
and

vp
T52

mc2

eB2

1

c

]2A'

]2t
~14!
icense or copyright, see http://pop.aip.org/pop/copyright.jsp



rs
-

m
-

e
io
to
c

-

o
-
se
ic

e
m
w

an
r

n,

q.
the

p-
.

al-

atz

ua-

,

tic
a-

-

a-

w-
for
tic
l

3199Phys. Plasmas, Vol. 10, No. 8, August 2003 Alfvén waves in gyrokinetic plasmas
is the transverse polarization drift for the ions, as fi
pointed out by Qinet al.3 Consequently, gyrokinetic Am
père’s law becomes

¹2A2
1

vA
2

]2A'

]t2 52
4p

c
Jgc , ~15!

which, for Jgc50 andA�Þ0 and with the ansatz of exp(ik
•x2 ivt), give rises to the compressional Alfve´n normal
modes as

v25k2vA
2 ,

wherevA[cV i /vpi . However, forJgcÞ0 andv2!k2vA
2 ,

the explicitly time-dependent part of Eq.~15! can be ignored,
wherev is the frequency of interest. Thus, when the co
pressional Alfve´n waves are not essential, e.g., in low
frequency gyrokinetic~or drift-kinetic! plasmas, they can b
suppressed easily without invoking additional approximat
as in the case for MHD discussed in Sec. II. We will refer
this approximate form of the equation as the low-frequen
gyrokinetic Ampère’s law. This important feature will be dis
cussed later. The drift kinetic equation, Eq.~11!, is now
modified by

vE3B5
c

B0
EL3b̂0 , vi5v ib,

Ei5Ei
L1Ei

T52b•¹f2
1

c

]Ai

]t
, ~16!

b[
B

B
'b̂01

dB

B0
5b̂01

¹3A

B0
,

and f and A are given by Eqs.~13! and ~15!, respectively.
Here, the conservation ofmB([v'

2 /2B0) is assumed, which
we will discuss later. Consequently, only the parallel part
Faraday’s law,E5(1/c)(]A/]t)2¹f, is used. These equa
tions are similar to those presented in the earlier work ba
on more rigorous derivations8,9 and are the electromagnet
version of the gyrokinetic system in slab geometry.

We have so far shown how, in the drift kinetic limit, th
transverse part of the polarization drift gives rise to the co
pressional Alfve´n waves. Let us now proceed to show ho
the longitudinal part of the polarization drift plays such
essential role for the shear Alfve´n waves. The zeroth-orde
velocity moments of the drift kinetic equation, Eq.~11!,
gives

drgc

dt
1b•¹Jigc50, ~17!

where

rgc5eE ~Figc2Fegc!dv,

Jigc5eE v i~Figc2Fegc!dv,

and

d

dt
[

]

]t
2

c

B
¹f3b̂0•¹.
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With the substitution of the gyrokinetic Poisson’s equatio
Eq. ~13!, and the gyrokinetic Ampe`re’s law, Eq.~15!, in the
quasineutral low-frequency limit, we have

d¹'
2 f

dt
1

vA
2

c
~b•¹!¹2Ai50. ~18!

This is the gyrokinetic version of the vorticity equation, E
~9!, and the first term on the right-hand side comes from
polarization density in Eq.~13!. Most importantly, as one can
see, unlike for the MHD case, no additional geometric a
proximation described by Eq.~10! is needed in obtaining Eq
~18!, neither do we need to assumeki

2!k'
2 . LettingEi50 in

the drift kinetic equation, we recover the collisionless par
lel Ohm’s law, Eq.~8!, in its nonlinear form as

1

c

]Ai

]t
1b•¹f50. ~19!

These two equations, Eqs.~18! and~19! are often referred as
the reduced two-field MHD equations, which, for the ans
of exp(ik•x2 ivt), give the shear-Alfve´n normal modes as

v25ki
2vA

2 .

Thus, we easily make contact with the reduced MHD eq
tions, Eqs.~8! and~9!. However, Eqs.~18! and~19! are more
general by including terms associated withb̂, as defined in
Eq. ~16!, and with¹2 instead of¹'

2 . Moreover, we should
remark here, Eqs.~18! and ~19! are valid for sheared slab
but not Eqs.~8! and~9!. As we know,Ei50 is a special case
for the drift kinetic equation. In general, to study the kine
shear Alfvén waves, we have to solve the drift kinetic equ
tion, Eq. ~11!, along with Eq.~13!, Eq. ~15! and Eq.~16!.
~See, e.g., Ref. 13.! In the cold electron limit, the shear Al
fvén eigenmodes arev25ki

2vA
2/(11c2k2/vpe

2 ), while, in the
warm electron limit, they becomev25ki

2vA
2(11k'

2 rs
2),

wherers[r iATe /Ti .
The parallel Ampe`re’s law can be calculated as

¹2Ai52
4p

c (
a

qaE v iFagcdv. ~20!

Equation~20! together with the gyrokinetic Poisson’s equ
tion, Eq. ~13! as well as the drift kinetic equation, Eqs.~11!
and ~16!, form a complete set of equations describing lo
frequency physics for magnetically confined plasmas
studying both gradient-driven microinstabilities and kine
MHD modes fork'r i!1. The reason that the longitudina
induction current,]EL/]t, can be ignored in Ampe`re’s law
for low-frequency waves is as follows. From Eq.~19!, which
giveskif5vAi /c sinceEi50, and from¹•A50, the term
in question is small ifv2!k2c2 and/orv2!ki

2c2. This set of
equations is energy conserving. It can be shown that

]

]t F K (a ma

2 E v i
2Fagcdv idmL

x

1
vpi

2

V i
2

1

8p
^u¹'fu2&x

1
1

8p
^u¹Aiu2&xG50,

where^¯&x denotes spatial average.
icense or copyright, see http://pop.aip.org/pop/copyright.jsp



n
-

tic

-

on
a

h
s
n
n

i

fo
e

y.
ti

d

s

ns
,
a-
ry.

-

3200 Phys. Plasmas, Vol. 10, No. 8, August 2003 W. W. Lee and H. Qin
The inclusion of the gyrocenter current in the perpe
dicular direction inJgc5Jigc1J'gc is related to general ge
ometry and will be carried out in the next section.

IV. ELECTROMAGNETIC GYROKINETIC
VLASOV–MAXWELL EQUATIONS IN GENERAL
GEOMETRY

For our purpose so far, we have assumed that par
gyroradiusr→0 in calculatingngc andJigc and have shown
the origin of polarization effects in the gyrokinetic Max
well’s equations. However, from the earlier analyses,7,11 it
has been pointed out that the drift kinetic equation, Eq.~11!,
actually describes the evolution of the distribution functi
F(R) in gyrocenter coordinates, whereas Maxwell’s equ
tions, Eqs.~13! and ~15!, requirengc(x) and Jgc(x) in par-
ticle coordinates. The two coordinates are related througx
5R1r, and rÞ0 gives rise to the finite Larmor radiu
~FLR! effects. It is the transformation of the distributio
function F from R to x that first captured the polarizatio
effects6,7 in gyrokinetic Poisson’s equations. Qinet al.1,3,4

call it the pullback transformation. We have demonstrated
Sec. III that ion polarization effects in the limit of smallk'r i

can be recovered without resorting to coordinates trans
mation. However, to capture the FLR effects in the oth
aspects of gyrokinetics, we have to letrÞ0 in calculating
field quantities and pushing particles in general geometr

Thus, the characteristics of the nonlinear gyrokine
Vlasov equation,

]Fagc

]t
1

dR

dt
•

]Fagc

]R
1

dv i

dt

]Fagc

]v i
50, ~21!

in general geometry including toroidal effects for finitek'ra

are8–10

dR

dt
5v ib* 1

v'
2

2Va0
b̂03¹ ln B02

c

B0
¹f̄3b̂0 ,

dv i

dt
52

v'
2

2
b* •¹ ln B02

qa

ma
S b* •¹f̄1

1

c

]Āi

]t
D ,

where

b* [b1
v i

Va0
b̂03~ b̂0•¹!b̂0 ,

b5b̂01
¹3Ā

B0
,

Fagc5(
j 51

Na

d~R2Ra j !d~m2ma j !d~v i2v ia j !,

Na is the total number of particles,ra is the gyroradius of
the speciesa, Va0[qaB0 /mac, and the gyrophase average
potentials are

S f̄

Ā
D ~R!5 K E S f

A D ~x!d~x2R2r!dxL
w

,

with ^¯&w[rdw/2p. Here, for our present purpose, we a
sume that
Downloaded 20 Sep 2007 to 198.35.1.65. Redistribution subject to AIP l
-

le

-

n

r-
r

c

-

mB[v'
2 /2B0'const ~22!

and the background Maxwellian distribution is

Fagc
M 5

n

A2pv ta
3

expS 2
v'

2 1v i
2

2v ta
2 D .

The validity of Eq.~22! is discussed in Appendix.
The field equations are still given by Eqs.~13! and~15!,

where the charge and current densities now become7–11

rgc~x!5(
a

qaK E Fagc~R!d~R2x1r!dRdv idm L
w

,

~23!
and

Jgc~x!5Jigc~x!1J'gc
M ~x!1J'gc

d ~x!

5(
a

qaK E ~vi1v'1vd!

3Fagc~R!d~R2x1r!dRdv idm L
w

, ~24!

where

vd[
v i

2

Va0
b̂03~ b̂0•¹!b̂01

v'
2

2Va0
b̂03¹ ln B0 ,

and Jigc , J'gc
M , and J'gc

d are calculated fromvi , v' , and
vd , respectively.

If we are only interested in physics withk'
2 r i

2!1, we
can assume thatr→0 in the evaluation off̄, Āi in Eq. ~21!
and r(x) in Eq. ~23!, i.e., there is no difference betweenx
and R. This approximation is also true for the calculatio
for the parallel current,Jigc , and the magnetic drift current
J'gc

d . In this sense, we recover the drift-kinetic approxim
tion of the Vlasov–Maxwell system in general geomet
However, we need to assume thatk'

2 r i
2 is small but finite in

order to account for the finite Larmor radius~FLR! effects
which relate diamagnetic current,J'gc

M , to the plasma pres
sure. In the Fourierk-space, it takes the form of

J'gc
M ~x!5(

a
qa(

k
E Fagc~k!eik•x^v'eik•r&wdv idm,

~25!

where k'5k'(cosuê11sinuê2), v'5v'(coswê1

1sinwê2), andr5(v' /Va)(2sinwê11coswê2). From

exp~2 ik•r!5expF i
k'v'

Va0
sin~w2u!G

5 (
n52`

1`

JnS k'v'

Va0
Dein(w2u),

we have

^v'e2 ik•r&w5 iv'J1S k'v'

Va0
D ~2sinuê11cosuê2!, ~26!

whereJn is the Bessel function of then-th order. Substituting
it into the equation forJ'gc

M , Eq. ~25!, we obtain, for
k'v' /Va!1,
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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J'gc
M ~x!52(

a
¹'3

cb̂0

B0
pa' , ~27!

where pa'5ma*(v'
2 /2)Fagc(x)dv idm and J1(k'v' /Va)

'k'v' /Va is used. The perpendicular current associa
with magnetic drifts becomes

J'gc
d 5

c

B0
(
a

@pai~¹3b̂0!'1pa'b̂03~¹ lnB0!#, ~28!

where pai5ma*v i
2Fagc(x)dv idm, and b̂03(b̂0•¹)b̂05(¹

3b̂0)' is used. Therefore, we have4

J'gc5J'gc
M 1J'gc

d

5
c

B0
(
a

@ b̂03¹pa'1~pai2pa'!~¹3b̂0!'#. ~29!

For p5pai5pa' , we recover the usual expression for pre
sure balance as

J'gc5
c

B0
(
a

b̂03¹pa . ~30!

Gyrokinetic Ampère’s law Eq. ~15!, in the low frequency
limit, can now be written as

¹2A52
4p

c
~Jigc1J'gc

M 1J'gc
d !, ~31!

where the three gyrocenter currents are defined in Eq.~24!.
Since we assume that gyroradius is much smaller than
scale length of the magnetic field inhomogeneity, the curr
associated with the magnetic drift given by Eq.~28! is ad-
equate for our purpose. However, the expressions for
diamagnetic currents in Eqs.~27!, ~29!, and ~30! are only
valid for k'

2 ra
2!1. The calculations forJigc andJ'gc

M in Eq.
~24! for k'r i'1 along with the FLR considerations forrgc

in Eq. ~23! as well asf̄ andĀi in Eq. ~21! will be discussed
later.

Taking the zeroth-order velocity moments of Eq.~21!
yields

d

dt
rgc1b̂•¹Jigc1¹'•J'gc

d 50,

valid to the lowest order in terms of gyroradius vs magne
inhomogeneity,r/ŁB , wherergc , Jigc , andJ'gc

d are given
by Eqs.~23!, ~24!, and~28!, respectively, and

d

dt
[

]

]t
2

c

B
¹f̄3b̂0•¹.

Substituting with Eq.~13! and Eq.~31!, we have

d

dt
¹'

2 f1
vA

2

c
~ b̂•¹!¹2Ai24p

vA
2

c2 ¹'•J'gc
d 50. ~32!

This is the toroidal version of Eq.~18!. Assuming thatpa

5pai5pa' and

dpa

dt
50
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together with Eq.~19!, we obtain a more complete version o
the Strauss’s reduced highb equations16 without any geo-
metrical simplifications. This example serves to emphas
the point that gyrokinetic Vlasov–Maxwell equations co
tain all the MHD physics, within the limit of gyrokinetic
ordering.

Now let us turn our attention to FLR effects. Fork'r i

'1, the calculation of the perpendicular current, Eq.~25!,
involves the Bessel function,J1 . As shown earlier11 for the
calculation of the charge density which contains the Bes
Function J0 , it is best to evaluate these functions in th
configuration space rather than the Fourierk space. Let us
follow the same recipe and use the discrete representatio
F(R,m,v i ,t) in Eq. ~21!. Therefore, the charge density i
Eq. ~13!, given by

rgc~x!5(
a

qaK E Fagc~R!d~R2x1r!dRdv idm L
w

~33!
in Fourierk space, becomes

rgc~x!5(
a

qa(
k
E Fagc~k!eik•x^eik•r&wdv idm.

Substituting the discrete expression intorgc , we have

rgc~x!5(
a

qa(
j 51

N

^d~x2xa j !&w

5(
a

qa(
j 51

N K E d~R2Ra j !d~x2R2ra j !dRL
w

5(
a

qa(
k

eik•x(
j 51

N

e2 ik•Ra j^e2 ik•ra j&w /V,

where the relationship of

d~x!5(
k

eik•x/V

is used, andV is the volume. The parallel currentJigc , from
Eq. ~24!, now becomes

Jigc5(
a

qa(
j 51

N

v ia j^d~x2xa j !&w

5(
a

qa(
k

eik•x(
j 51

N

v ia je
2 ik•Ra j^e2 ik•ra j&w /V.

~34!

Likewise, from Eq.~21!, we have

S f̄

Ā
D ~Ra j !5 K S f

A D ~xa j !L
w

5(
k

S f
A D ~k!eik•Ra j^eik•ra j&w . ~35!

The quantity representing gyrophase averaging forrgc ,
Jigc , f̄, andĀ,

^e6 ik•ra j&w5J0~k'ra j !,

can be calculated by a charged ring in thex-space11 as
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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^e6 ik•ra j&w5 (
n52`

`

Jn~k'ra j !
1

L (
l 51

L

expS i2pnl

L D

5 (
n52`

`

Jn~k'ra j !
1

2L
sin 2pn

cos
np

L

sin
np

L

5J01O~J6mL!, m51,2,3,... , ~36!

whereL is the number of points in a ring for the numeric
calculation. ForL→`, we recoverJ0 . However, only four
points are needed (L54), if we use a grid size ofr i in the
simulation and, consequently, are only interested ink'r i

,2, for which J0@J4 . In such a system, electrons can
represented by the gyrocenters sincere!r i .

We can use the similar treatment for the perpendicu
current density, given by perpendicular part of Eqs.~24! or
~25!. Thus, we have

J'gc
M ~x!5(

a
qa(

j 51

N

^v'a jd~x2xa j !&w

5(
a

qa(
j 51

N K E v'a jd~R2Ra j !

3d~x2R2ra j !dRL
w

5(
a

qa(
k

eik•x(
j 51

N

e2 ik•Ra j^v'a je
2 ik•ra j&w /V,

~37!

where ^v'a je
2 ik•ra j&w representing gyrophase averaging

given by Eq.~26!. Similar to Eq.~36!, we can represent thi
gyrophase averaging process by a rotating charged rin
obtain

^v'e2 ik•ra j&w5 (
n52`

`

Jn~k'ra j !e
2 inu

v'

L

3(
l 51

L

expS i2pnl

L D S cos
2p l

L
ê11sin

2p l

L
ê2D

5 (
n52`

`

Jn~k'ra j !e
2 inu

v'

2L

3 (
1,2

cosF S 11
1

L D ~n61!pG
3

sin~n61!p

sin@~n61!p/L#
~ ê17 i ê2!

5 iv'J1~2sinuê11cosuê2!

1O~J616mL!, m51,2,3,... . ~38!

For L→`, we recover Eq.~26!. SinceJ1@J3 for k'r i,2,
we can again use 4 points (L54) to represent a rotating
Downloaded 20 Sep 2007 to 198.35.1.65. Redistribution subject to AIP l
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to

charged ring as shown in Fig. 1. Thus, Eq.~37! with L54 is
a more accurate way to calculate the perpendicular cur
for finite k'ra j than that of Eq.~27!.

With these numerical gyrophase averaging schemes
calculating^¯&w in Eqs.~33!, ~34!, ~35!, and~37! in place,
we can then use them in Eqs.~13!, ~15! or ~31!, ~21! and~35!
to push particles by following the procedures outlined in R
11. We should remark here that Eq.~13! is only valid for
small k'r i and we need to use the original form of ion p
larization in Refs. 6, 7, 11 for finitek'r i . Namely, we
should replace the (vpi

2 /V i
2)¹2f(x) term in Eq. ~13! by

solving instead

~tI /lD
2 !~f2f̃ !524prgc , ~39!

where

f̃~x![E f̄~R!Fi~R,m,v i!d~R,m,v i!dRdmdv i ,

tI [Te /Ti , lD[ATe/4pn0e2 and f̄ is defined in Eq.~35!.
The use of these simulation techniques described here
electromagentic microturbulence and kinetic MHD phys
will be published elsewhere.

V. SUMMARY AND CONCLUSIONS

Since the inception of the gyrokinetic partic
simulation6,11 and the first tokamak microturbulenc
simulation,17 major progress in computational capability an
physics understanding have been made, for example, by
ing the gyrokinetic Global Toroidal Code~GTC! on the mas-
sively parallel computers to study zonal flow physics18 with
collisonal effects19 and, most recently, to study the size sc
ing on the reactor size plasmas (a51000rs) ~Ref. 20! on the
IBM SP Power3 at National Energy Research Supercom
ing Center~NERSC!. For this particular size-scaling stud
the largest run took 72 wallclock hours with one billion io
particles ~8 particles/cell! using the adiabatic electron ap
proximation for 7000 time steps running on 1024 process
~25M particle* step/sec) with 10% efficiency for each pro
cessor. These exercises underscore the importance of u
gyrokinetic PIC codes on the parallel architecture to ca
out realistic simulations of turbulence transport in tokama
and stellarators.

FIG. 1. Four-point approximation for a rotating ion ring.
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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These are very encouraging results. The next step i
introduce the all-important electron dynamics and
finite-b effects into a global gyrokinetic particle code. R
cently, several numerical schemes have been proposed
that purpose by further splitting the adiabatic response fr
the perturbed electron distributions using the split-wei
particle simulation schemes.12,13,21–23 These schemes re
solved a longstanding puzzle in gyrokinetic particle simu
tion and thier relative merit and their applications to gyro
netic particle codes will be discussed elsewhere. Bey
that, we can also envision the possibility of developing n
algorithms for simulating electromagnetic microturbulen
on the transport time scale (;1 s) using a gloabl gyrokinetic
particle code together with the capability presented in t
paper for calculating magnetic equilibria and the unique f
ture of steady state transport observed in the GTC sim
tions, i.e., the the establishment of steady state trans
within 1 ms of real time.

Moreover, the relationship between MHD and gyrokin
ics presented here hopefully will encourage further explo
tion of using gyrokinetic particle techniques for studyin
MHD physics and the gyrophase averaging scheme prop
in Fig. 1 may provide a method for introducing FLR effec
in MHD equilibrium calculations.
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APPENDIX: MAGNEITC MOMENT

In an inhomogeneous plasma with time dependent e
tromagnetic perturbations, the magnetic momentm that is
conserved is different from the usualmB5v'

2 /2B0 , which,
strictly speaking, is only conserved in a homogeneous tim
independent magnetic field. The relationship betweenm and
mB has been derived in Refs. 1, 3, 4 as

m5mBS 12
mc

e

v i

B0
b̂0•¹3b̂0D1

e

m2c S e

c
A•

]r0

]w
1

]S

]w D ,

~A1!

where the second term on the RHS is the correction du
the inhomogeneity of the equilibrium field and the third te
is the correction due to time dependent electromagnetic
turbations. A is the perturbed vector potential,r0[2v
3b̂0 /V0 is particle’s gyroradius,w is the gyrophase coordi
nate, andS is the gyrocenter gauge satisfying
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r-

]S

]t
1Ṙ

]S

]R
1V̇i

]S

]Vi
1ẇ

]S

]w

5ef̃~R1r0 ,t!2
e

c
V"Ã~R1r0 ,t!. ~A2!

Here f̃(R1r0 ,t) andV"Ã(R1r0 ,t) are the gyrophase de
pendent parts off(R1r0 ,t) and V•A(R1r0 ,t), respec-
tively,

f̃~R1r0 ,t!5f~R1r0 ,t!2^f~R1r0 ,t!&,
~A3!

V"Ã~R1r0 ,t!5V•A~R1r0 ,t!2^V•A~R1r0 ,t!&.

We note that in the present of electromagnetic perturbatio
the dynamics ofmB is gyrophase dependent even thought
definition is gyrophase independent. That is why the defi
tion of m has a gyrophase dependent component so tha
time derivative can be gyrophase independent, which a
matter of fact, vanishes. However, sinceb̂0•¹3b̂05(¹
3B0) i /B0 is usually small andA is the perturbation, we can
assume thatm'mB is nearly constant and is independent
phase.
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