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Alfve n waves in gyrokinetic plasmas
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A brief comparison of the properties of Alfaevaves that are based on the gyrokinetic description
with those derived from the magnetohydrodynami®diD) equations is presented. The critical
differences between these two approaches are the treatment of the ion polarization effects. As such,
the compressional Alfwe waves in a gyrokinetic plasma can be eliminated through frequency
ordering, whereas geometric simplifications are needed to decouple the shéarwdfues from the
compressional Alfve waves within the context of MHD. Theoretical and numerical procedures of
using gyrokinetic particle simulation for studying microturbulence and kinetic-MHD physics
including finite Larmor radius effects are also presented2@3 American Institute of Physics.
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I. INTRODUCTION particle simulatioht™*® to be used on massively parallel
computers for studying electromagnetic turbulent transport

Recently, Qinet al* have generalized the conventional and the related kinetic-MHD physics. The present paper is

low-frequency gyrokinetic theory to the high frequency re-organized as follows: In Sec. I, Alfvewaves based on the

gime. According to this newyrocenter-gauge kinetic theary MHD equations are revisited. Their gyrokinetic counterparts

the most critical ordering one needs in order to separate thgre discussed in Sec. Ill. The electromagnetic gyrokinetic

fast gyromotion from the slow-moving gyrocenter motion is viasov—Maxwell equations in general geometry and the re-

to assume that the ion gyroradii are much smaller than theyted numerical issues are presented in Sec. V. The possible

scale lengths of the equilibrium magnetic field, ig./Ls,  use of these equations for simulating electromagnetic turbu-

<1. Under this assumption, they proceed to show that théence and MHD modes as well as the possible scenario of

kinetic description of magnetized plasmas in the gyrocentetransport time scale simulation on massively parallel com-

coordinates is fully equivalent to the Vlasov—Maxwell sys- puters along with the conclusions are given in Sec. V.

tem in the particle coordinates. Thus, in this view, the low-

frequency gyrokinetic theory is a subset of the new| MHD ALEVEN WAVES

gyrocenter-gauge kinetic theory when one averages out the

gyrophase information. Using this simple concept of separat-  In order to understand gyrokinetic Alfaephysics, let us

ing gyromotion from gyrocenter motion, we have first devel-first revisit Alfven waves using the one-fluid MHD descrip-

oped in this paper a fully electromagnetic gyrokinetic theorytion- The particular derivations presented here are for the

in the limit of p;—0 based on a more intuitive approach Purpose of facilitating the comparisons between the two ap-

rather than the usual Lie-perturbatforand pullback proaches. The governing equations are: the continuity equa-

transformatiofr®* methodology. The purpose is to demon- 10N,

strate in a more transparent fashion that the unique treatment "

of polarization effects of the ions in the gyrokinetic theory is ot +V-pV=0,

the key that enables us to add and suppress shear and com-

pressional Alfve@ waves without resorting to additional geo- the momentum equation,

metrical simplifications. These additional orderings are ap-

parently needed to separate the shear Alfwaves from the Pm

compressional Alfve waves in the one-fluid magnetohydro-

dynamic(MHD) theory® The unique treatment of separating Ohm’s law,

ion polarization drift from the rest of gyrocenter motion in 1

the electrostatic low-frequency gyrokinetic theory was first g+ ZyxB= 7,

pointed out by Le® and has been studied by many c

others:>*7~1%It culminates with the recovery of the com- Faraday’s law,

pressional Alfve waves and the Bernstein harmonics in the

gyrokinetic formalism and the development of gyrokinetic VXE=

equilibrium? The first part of the article is an attempt to cat’

me}ke con.tact with the MHD theory .from the gyrokir)etig and Ampee’s law,

point of view. We then proceed to discuss the gyrokinetic

formulations and numerical issues for fingethat enable us

to complement the existing numerical tools for gyrokinetic

N V-VV 1J><B \%
A =c P,

1B
41
VXB=—1,
C
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wherep,, is the mass density/ is the fluid velocity,J is the A,
current, andp=p; + p. is the pressure. Fop=0, dp,=0, i OVLX(Bot 9B )V, ()
6p=0 andB=B;+ 6B, the governing equations in simple R
geometry take the familiar form of where §V;=0 from JXB-by=0 andd/dt=d/dt+ 6V, - V.
Py B From (9A,/dt) X by=0, we find from Eq.(7) that
pmo(7+5V~V5V +E><(V><5B)=O, (1) c A
oV, =— B—qux bg
and 0
26B andV- 6V, =0. Equation(7) also gives
EWer'Vd)_O’ (8)

where By is the external magnetic field, and the prefix@d
variables are the perturbed quantities. To facilitate the comwhich is essentially the parallel part of the collisionless

parisons with the gyrokinetic approach, let us take time de©hm's law or Faraday’s law, whele= 60+ 5B, /By. Taking
rivative of the linearized Faraday’s law, E@), and substi-  the curl of Eq.(6) and keeping only the parallel components

tute the resulting/6V/ dt _term by the linearized momentum alongb,, we obtain the so-called vorticity equation as
equation, Eq(1), to obtain

dv? z
P8 1P "R v)vza o, ©)
W‘{‘UA[VX(VXEB)L]:O, (3) dt C

wherek?<k? is used together with the approximation of
valid for v A(=By/4mpn)>cs. Consequently, we obtain e g PP

208, V3 (by- V)A=(by- V)VZA,, (10)
————vaV26B,=0, (4) I Cen _
at which is only valid forbg# by(x, ). Equationg8) and(9) are
and the well-known reduced MHD equatioRsFor expik-x
—iwt), the corresponding normal modes are the shear Al-
#%5B fvén waves ofw?=kZ3. Thus, we indeed eliminate the

L 2 2 _ - .
iz UAlVidBL+ V. (V.- 6B,)]=0, () compressional Alfe waves and recover the previous analy-
o ) sis based odB;=0 andV, - 6B, =0. However, we have to
where|l and L denote directions parallel and perpendicualery,gke geometric simplifications in order to achieve this. We

to the external magentic field. Thus, f6B,#0, the normal  shoyld remark here that the system conserves energy, i.e.,
modes from Eq(4) are the compressional Alfmenvaves with

J
w?= kzvi, EJ
where k?=k{ +kf . In the case oV, -8B, =0, the waves  ich can be obtained by multiplying the vorticity equation,

propagating perpendicular to botiy andk, according to  Eq. (9), by ¢ before integrating irx. Straus® has used Egs.
Eq. (5) are the shear-Alfue waves with (8) and(9) for studying kink modes in slab geometry. How-
w2=kfvi. ever, the use of Eq10) in the derivation makes the regime
of validity for these reduced MHD equation rather limited.

Otherwise, forV, - 6B, #0, we can takeV, of Eq. (5) to  The difficulty comes from the treatment of tN& ¢ term in

2
Ua
|V, |2+ EZ|VJ_AII|2 dx=0,

obtain the vorticity equation, Eq9), which is the contribution from
52 the ion polarization drift in the gyrokinetic thedty. Thus,
W(VL'éBL)—viVZ(VL-5Bl)=0. from one fluid MHD point of view, the elimination of com-

pressional Alfve waves cannot be accomplished by simply
This equation is related to Eg4) through the condition of assuming that?< kzvi and it needs additional geometrical
V-8B=0 and, hence, they both have compressional Alfve ordering in order to extract th%f¢ term from the formula-
waves ofw?=k?v3 as the normal modes. Consequently, fortion. On the other hand, for gyrokinetic plasmas, by relating
6B;=0 andV, - 6B, =0, this system of equations has only quﬁ as the ion polarization drift, a totally different treatment
shear-Alfven waves. of the term is employed without additional ordering, which
These conditions can be satisfied by introducing we will explain.

0B, =VXA;=VAXby, IIl. GYROKINETIC ALFVE N WAVES

whereb, is the unit yector alon®,. Substituting it into Eqgs. The basic idea of gyrokinetic formulation of the Vlasov—
(1) and(2), we obtain Maxwell system is to first transform the distribution function
F from the particle coordinatex{v,t) to the gyrocenter co-
dsv,

2
VAl - 1
+ B_A boXV(V-A)+ B—VZA“VLAH =0, (6)  ordinates R,v;,u,¢,t), whereu=v?/2, ¢ is the gyroangle,
0 0 and subscriptdl and L denote the directions parallel and
and perpendicular to th8 field, respectively. This is valid in the

dt
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limit of pi<lg, as stated earlidrand, in doing so, we sepa- quency. To recover the ion polarization response, let us first
rate the gyrocenter motion from the gyromotion. Hereis use the drift kinetic equation including only the polarization
the ion gyroradius antlg_ is the scale length of the external drift to obtain
magnetic field. In the low-frequency limit @<, , i.e., the an 9 f "
%
P

iqcdv=0,

frequency of interest is much smaller than the ion cyclotron ige

frequency, along with the additional ordering @/ T <1,

6B<B, kpi<1, andk, p;=1, a gyrophase-averaging pro- wheredv=dv du. It then yields

cess can then be used to eliminat@as a phase variable, so 5

that each particle can be viewed as a charged ring centered at _i Wpi v2

the gyrocenter. When the distribution functiénin the gy- Po™am 6,7 1o,

rocenter coordinates is transformed back to the particle co- ) ) o ) ]

ordinates to obtain number and current densities used byynerepp(=enp) |szthe ion polarization density. From Pois-

Maxwell's equations, one then recovers the ion polarizatiorsO"'S €quation oV“¢=4mp we have

effects through the pull-back transformation. For detail, w2

please refer to Refs. 1,3,4,6—11. V2h+ ﬁpleE(ﬁ: —4mpye, (13
Here, we will present a derivation of the electromagnetic i

gyrokinetic-Maxwell equations based on the drift kinetic wherep=py.+p, and

equation in the limit ofp;— 0. This is a special case consis-

tent with the condition ofpi<LBo given by Ref. 1 for the

separation of the gyrocenter motion from the gyromotion

itself. In fact, this is the only ordering we need for the rest ofC

the derivation. Moreover, the gyromotion is inconsequentia

for now since the gyroradius is zerpThe connection be-

tween gyrokinetic ordering and drift kinetic ordering is

through the parametek, p(ed/To—v €A /cTy)<1* The

physics associated witty #0 will be discussed later in Sec.

IV.] We start first from the Vlasov equation,

Mo 7
at X

Pgc= e(nigc_ negc) = ej (Figc_ Fegc)dv

omes from the drift kinetic equation, Edq1l). Since
Iwgi/Qi2>1 andk, <k, for our regime of interest, the first
term in Eq.(13) can be ignored and we then recover the
well-known quasineutral gyrokinetic Poisson’s equation in
the limit of p;~0.° Combining Eq.(13) with the drift kinetic
equation, Eq(11), we have the governing gyrokinetic equa-
tions in the electrostatic approximation.

dF, oF, JF, q, c 1 5 F, 0 For the finite effects, let us now turn our attention to
— ="y + | E+-VvXB|- = :
dt ax  m,\¢c N Ampere’s law,
and letv=v,+ Vg, with VXB= 4_7TJ+ 198
c cot’
c .
VExB=§E">< bo., whereE=E"+E" and the superscripf denotes the trans-

verse quantity, i.e.y-E'=0. For w?<k?c?, the transverse
we then obtain the usual drift kinetic equation in simple ge-induction current can be ignored, i.6E'/t~0, wherew is
ometry in the electrostatic limit as, the frequency of interest. This is the so-called Darwin

model® Furthermore, by lettinglE-/dgt~0 and takingV -

JF JF Ao _ oF f Ampere’s | the well-k ineutralit
age age | Ya age _ of Ampere’s law, we recover the well-known quasineutrality
+ (v + . — =0. L
o TVt Vexe) M, B v, 0 (@D condition of
In the electrostatic limit, we have V.J=0.
El=-V¢, E-=—Db, Vo, Thus, if we are only interested in the low-frequency waves,

we can neglect displacement currents altogether in Aeipe
where ¢ is the electrostatic potentiall, is the unit vector law. We will discuss this point later in this section. By using
along the external magnetic field, and the supersdripe- the Coulomb gauge @d=V XA andV-A=0, we then have
notes the longitudinal quantity sind&xV ¢=0.

However, the parallel drift, the perpendicul&-xB V2A=— 4_77\],

drift and the parallel acceleration alone are not sufficient to c
capture all the relevant physics. Specifically, we have to inWh
clude the ion polarization effects as well. In the electrostatic
limit, the polarization drift is

ere

J=Jgc+ ef VpFigedv,

L MV, ¢
YoT TR gt (12) Jgc is the gyrocenter current from the drift kinetic equation
and
It is interesting to note that this drift does not show up in the 5
drift kinetic equation, becauség/vEXBmw/Qi<l, wherew V= mc” E AL (14
is the frequency of interest arid; is the ion cyclotron fre- p eB’c ot
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is the transverse polarization drift for the ions, as firstWith the substitution of the gyrokinetic Poisson’s equation,
pointed out by Qinet al®> Consequently, gyrokinetic Am- Eq. (13), and the gyrokinetic Ampe’s law, Eq.(15), in the

pere’s law becomes quasineutral low-frequency limit, we have
1 PA,  Am dvi¢ v
VA o2 o2~ g Jeer (15) St ?A(b-V)VZAﬁO. (19)

which, forJ,.=0 andA,; #0 and with the ansatz of ex(  This is the gyrokinetic version of the vorticity equation, Eq.
-X—iwt), give rises to the compressional Alfvenormal (9), and the first term on the right-hand side comes from the

modes as polarization density in Eq13). Most importantly, as one can
2= K22 see, unlike for the MHD case, no additional geometric ap-
A proximation described by E@10) is needed in obtaining Eq.
whereva=cQ;/w,;. However, ford,.#0 andw?<k?3,  (18), neither do we need to assurke<k’ . LettingE;=0 in

the explicitly time-dependent part of E@.S) can be ignored, the drift kinetic equation, we recover the collisionless paral-
where w is the frequency of interest. Thus, when the com-lel Ohm’s law, Eq.(8), in its nonlinear form as
pressional Alfve waves are not essential, e.g., in low-

L e 1 A,
frequency gyrokineticor drift-kinetic) plasmas, they can be ——+b-V¢=0. (19
suppressed easily without invoking additional approximation ~ © at

as in the case for MHD discussed in Sec. II. We will refer toThese two equations, Eqd.8) and(19) are often referred as
this approximate form of the equation as the low-frequencythe reduced two-field MHD equations, which, for the ansatz

gerklnetlc Ampees law. This |mp0rtant feature will be dis- of exp(k X—I wt) g|ve the shear- A|fve normal modes as
cussed later. The drift kinetic equation, Ed.1), is now

modified by w’=kfv}.
c Thus, we easily make contact with the reduced MHD equa-
VEXB:B_E X bo, V=vb, tions, Eqs(8) and(9). However, Eqs(18) and(19) are more
general by including terms associated withas defined in
E—E'4+El=—b Vo 1A (16) Eq. (16), and withV? instead ofV? . Moreover, we should
=== c ot remark here, Eq(18) and (19) are valid for sheared slab,

but not Eqs(8) and(9). As we know,E;=0 is a special case
b= wa) n §:6 n VXA for the drift kinetic equation. In general, to study the kinetic
B ° °" By shear Alfven waves, we have to solve the drift kinetic equa-

ti Eqg. (11), al ith Eq.(13), Eqg. (1 Eq.(16).
and 4 andA are given by Eqs(13) and(19), respectively. (Igge eoI g( I%e:1 ci;?n\/\t"r:e C(ﬂd( esl)e,ctr?)n(lirsr:itar':rclje s%éa?Al-
h

Here, the conservation 2/2B,) is assumed, whic
Qls(=v1/28o) fvén eigenmodes are? vi/(1+czk2/w ), While, in the

we will discuss later. Consequently, only the parallel part of lect limit, th b 1+k2
Faraday’s lawE = (1/c)(dA/dat)—V ¢, is used. These equa- WA'M €lectron limi ey ecomen?=kjva(1+ki pd),

tions are similar to those presented in the earlier work basefereps=pivTe/Ti. ,
on more rigorous derivatiof$ and are the electromagnetic The parallel Ampees law can be calculated as
version of the gyrokinetic system in slab geometry. At
We have so far shown how, in the drift kinetic limit, the VA =— ?2 Qaf U F ogcdV. (20
transverse part of the polarization drift gives rise to the com- “
pressional Alfve waves. Let us now proceed to show how Equation(20) together with the gyrokinetic Poisson’s equa-
the longitudinal part of the polarization drift plays such antion, Eqg.(13) as well as the drift kinetic equation, Eq4.1)
essential role for the shear Alfuevaves. The zeroth-order and(16), form a complete set of equations describing low-
velocity moments of the drift kinetic equation, E@¢l1l), frequency physics for magnetically confined plasmas for
gives studying both gradient-driven microinstabilities and kinetic
d MHD modes fork, p;<<1. The reason that the longitudinal
pg°+b.VJH =0, (17)  induction currentgE“/gt, can be ignored in Ampe’s law
dt 9 for low-frequency waves is as follows. From Ed9), which
where givesk,¢=wA,/c sinceE;=0, and fromV-A=0, the term
in question is small iftv®><k?c? and/orw?<kZc?. This set of
_ f (Fige—FegodV equations is energy conserving. It can be shown that

2

{<E JU|Fagchd/’“> +57 28 <|VL¢|2>X

‘]HgC: ej U\I(Figc_ Fegc)dva

and 1
+ g<|VAH|2>X =

where(---), denotes spatial average.
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The inclusion of the gyrocenter current in the perpen- ;. =42/2B ~const (22)
dicular direction indg.=Jjgc+J, ¢c IS related to general ge-

ometry and will be carried out in the next section. and the background Maxwellian distribution is

M n vf + vf
Fage™ 3 exp| — >
IV. ELECTROMAGNETIC GYROKINETIC 2oy, 204,
VLASOV-MAXWELL EQUATIONS IN GENERAL - . . .
GEOMETRY Q The validity of Eq.(22) is discussed in Appendix.

The field equations are still given by Ed43) and(15),

For our purpose so far, we have assumed that particlshere the charge and current densities now beéothe
gyroradiusp—0 in calculatingng andJ;4. and have shown
the origin of polarization effects in the gyrokinetic Max- ch(X):E qa<f Fagc(R)é(R—X+p)devd,tL> ,
well's equations. However, from the earlier analy5&5sit @ ¢
has been pointed out that the drift kinetic equation, @&dj), (23
actually describes the evolution of the distribution functiongnd
F(R) in gyrocenter coordinates, whereas Maxwell's equa-
tions, Egs.(13) and (15), requireng.(x) andJgy(x) in par-
ticle coordinates. The two coordinates are related through
=R+p, and p#0 gives rise to the finite Larmor radius => qa<f (vy+v, +vy)
(FLR) effects. It is the transformation of the distribution “

Jge(X) = Jyge(3) + IV () + 3¢ 4 (%)

function F from R to x that first captured the polarization

effect$’ in gyrokinetic Poisson’s equations. Qt all®* XF 49¢(R) 5(R—X+P)dev|dM> ; (24)
call it the pullback transformation. We have demonstrated in ¢

Sec. Il that ion polarization effects in the limit of sméll p; where

can be recovered without resorting to coordinates transfor- 2 2

mation. However, to capture the FLR effects in the other v = ! boX (by- V)by+ —LBOXV InBy,

aspects of gyrokinetics, we have to j@# 0 in calculating Qoo 2Q0 40

field quantities and pushing particles in general geometry. gnd e JTgC’ and Jggc are calculated frony,, v, , and
Thus, the characteristics of the nonlinear gyrokineticy,  respectively.

Vlasov equation, If we are only interested in physics witkf p?<1, we
OF 4gc AR OF qc  dvy 9F 4c can assume thgi— 0 in the evaluation off, A, in Eq. (21
T dt R T at v, O (2)  andp(x) in Eq. (23), i.e., there is no difference betwean

and R. This approximation is also true for the calculations

in general geometry including toroidal effects for fifkep,  for the parallel current))q., and the magnetic drift current,

-10 . o .
aré .Jfgc. In this sense, we recover the drift-kinetic approxima-
dR i A c _ . tion of the Vlasov—Maxwell system in general geometry.
St ~vib* + 55— boX VInBo— 5=V xby, However, we need to assume tldip? is small but finite in
a0 0

order to account for the finite Larmor radiysSLR) effects

do, Uf q. 1 (;K” which relate diamagnetic currenl‘l"gc, to the plasma pres-
—=——b*-VInBy— — | b*-Vo+ - —], sure. In the Fouriek-space, it takes the form of
dt 2 m, c dt
where Woc)=2 a2 f Fagc(K)e' (v, e #) dv du,
U - ~ ~
b* =b+ Q—"box(bo-V)bo, (25)
a0 where k, =k, (cosé®, +sin6&,), vV, =v, (CoSed,
VXA +sing&y), andp= (v, /Q,)(—singé, +cosed,). From
b: b0+ y
Bo . kv
EX[I—Ik-p)ZEXL{I sm(qo—e)}
N, an
Fage= 2, 8(R=Rj) 81— 1) 801~ vyay), e
=1 => Jn(:) gin(e—10)
N, is the total number of particlep,, is the gyroradius of n=-e Qo
the specieg, Q ,,=q,By/m,c, and the gyrophase averaged e have
potentials are
—ik- . kLUL . ~ ~
) b (vie P =iv, o (—singe,+coshe,), (26)
N (R)= f A (X)8(x—R—p)dx) «0
¢ wherel,, is the Bessel function of the-th order. Substituting

with (---) ,=¢de/2m. Here, for our present purpose, we as-it into the equation forJi"gc, Eqg. (25, we obtain, for

sume that kiv, 1Q,<1,
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ch, together with Eq(19), we obtain a more complete version of
Wye0=—2> V. X5~ Pal » (27)  the Strauss’s reduced high equation&® without any geo-
“ 0 metrical simplifications. This example serves to emphasize
where DMZmaf(vf/Z)Fagc(X)dvud,u and J;(k, v, /Q,) the point that gyrokinetic Vlasov—Maxwell equations con-
~k, v, /Q, is used. The perpendicular current associatedain all the MHD physics, within the limit of gyrokinetic

with magnetic drifts becomes ordering. _
Now let us turn our attention to FLR effects. Foyp;

~1, the calculation of the perpendicular current, E2p),
involves the Bessel functiord,; . As shown earliet for the

. N . calculation of the charge density which contains the Bessel
where p o =m,Jv{F .go(X)dvdu, andbyx (by-V)bo=(V  Function J,, it is best to evaluate these functions in the

C ~ ~
Jigc=8—02 [Pai(VX Do), +PuiBeX (VINBg)], (28)

X byg), is used. Therefore, we hate configuration space rather than the Foukespace. Let us
J oM g follow the same recipe and use the discrete representation of
Lge=JlgeTJlge F(R,u,vy,t) in Eq. (21). Therefore, the charge density in

c . . Eq. (13), given by
=g, 2 [B0X VP +(Pa=Pas (VX Bo), . (29

ch(X):E qa<f Fagc(R)5(R_x+P)devdM>
For p=p,=Pa.. ,» We recover the usual expression for pres- “ ¢

sure balance as _ . (33
in Fourierk space, becomes

c R
Jige=5 2 boXVp,. (30) Lo
e Bog 0 P ch(x):z Qa; fFagc(k)elk X<elk p>¢,dv”d,u.
Gyrokinetic Ampee’s law Eq.(15), in the low frequency

. . Substituting the discrete expression i , we have
limit, can now be written as 9 P g

N
Am Pgc¥)=2 da 2, (5(X—Xq)))
V2A=—T(JHQC+JYQC+339C), (31) g¢ = I77e
N
where the three gyrocenter currents are defined in(24). = q.> <f S(R—R,)8(x—R—p <)dR>
Since we assume that gyroradius is much smaller than the = f=1 ‘” “ o

scale length of the magnetic field inhomogeneity, the current
associated with the magnetic drift given by E88) is ad- _ ik-x —iK-R,i/ a—iK-py:

= e e aj(e iy, IV,
equate for our purpose. However, the expressions for the % qazk: ,Zl X D
diamagnetic currents in Eq$27), (29), and (30) are only
valid for k% p3<<1. The calculations fod,q; andJY in Eq.
(24) for k, pj=1 along with the FLR considerations fpy

in Eq. (23) as well asp andA, in Eq. (21) will be discussed

where the relationship of

5(x)=§k: ek ¥y

later. , _ is used, and/ is the volume. The parallel curredf,., from
. Taking the zeroth-order velocity moments of HQ1) Eq. (24), now becomes
yields N
d - Jige= w2 Ujai{ 6(X—X,i
giPact B Vet Vi -0 ge=0, o Ea: a 2‘1 1ei (O~ Xei )
N
yalid to the Ipwest order in terms of gyroracciiius VS m_agnetic => q,> kx> vHal_e—ik-Raj<e—ik~paj>(plv_
inhomogeneityp/t g, wherepgyc, Jjqc, andJ 4. are given a k =1
by Egs.(23), (24), and(28), respectively, and (34)
d 9 ¢ _— . Likewise, from Eq.(21), we have
—=———=V¢XbyV
dt ot B
wing wi 2R =( (2o
Substituting with Eq(13) and Eq.(31), we have Al A7 .
EV2¢+ Ué(f}V)WA —4wvf\v 239 =0 (32) => (¢ (k)e'¥ Rai(e* Paj) (35)
dt '+ c I EZ' 1 Y1gc : - A ¢
This is the toroidal version of Eq18). Assuming thatp, Th_e quan_tity representing gyrophase averagingpfg,
= paH: pai and Jch* ¢, andA,
dp, (e pai) = Jo(Ky pag),
dt can be calculated by a charged ring in thepacé' as
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(e*Tk Paj) = 2 Jn( klpal)Lz ex I27Tn|)

nwr
) COS—

1 L
= Em 3n(Kipaj) 5psin 2am

< . nmw
SIn—
L

=Jot+tO0J+m), mM=123,..., (36
FIG. 1. Four-point approximation for a rotating ion ring.
wherelL is the number of points in a ring for the numerical
calculation. ForL—«, we recoverd,. However, only four
points are needed.=4), if we use a grid size gb; in the
simulation and, consequently, are only interestedk im;
<2, for which Jo>J,. In such a system, electrons can be
represented by the gyrocenters sipge<p; .
We can use the similar treatment for the perpendlcular
current density, given by perpendicular part of E@1) or
(25). Thus, we have

charged ring as shown in Fig. 1. Thus, Eg7) with L=4 is
a more accurate way to calculate the perpendicular current
for finite k, p,,; than that of Eq(27).
With these numerical gyrophase averaging schemes for
calculating(---),, in Egs.(33), (34), (35), and(37) in place,
we can then use them in Eq43), (15) or (31), (21) and(35)
to push particles by following the procedures outlined in Ref.
N 11. We should remark here that E@.3) is only valid for
Jygc(x)zg an (V1 o O(X— X)) small |.(Lpi 'and we need to use thg priginal form of ion po-
larization in Refs. 6, 7, 11 for finit&k, p;. Namely, we
should replace theu3/Q7)V2p(x) term in Eqg.(13) by

N
:Ec; qagl <JVMJ' S(R—Ry) solving instead
(TINB) (= B)=—4mpy, (39)
xé(x—R—paj)dR>
o where
N
=3 .3 e“"szl e K Rai(y, , 071K Pai) 1V, ?J)(x>zf S(RFi(R,u,0) 8(R, t,0))dRd udo

3
_ 87 7=To/T;, \p=\T4mnee? and ¢ is defined in Eq.(35).
where(vm]-e*'k'l’a% representing gyrophase averaging isThe use of these simulation techniques described here on
given by Eq.(26). Similar to Eq.(36), we can represent this electromagentic microturbulence and kinetic MHD physics
gyrophase averaging process by a rotating charged ring t@ill be published elsewhere.
obtain

©

Cikep —ingYL
<Vie ik pa%}:nz ‘]n(kLpaj)e lnHT V. SUMMARY AND CONCLUSIONS

Since the inception of the gyrokinetic particle
cosz—WIé +sin2—7ﬂ” simulatio®!! and the first tokamak microturbulence
L * L € simulation!’ major progress in computational capability and
physics understanding have been made, for example, by us-
_ S 3k o-ing VL ing the gyrokinetic Global Toroidal Cod&TC) on the mas-
W= In(KLpaj) 2L sively parallel computers to study zonal flow phy&fosith
collisonal effects’ and, most recently, to study the size scal-
> cos{( 14 1) (n+ 1)77} ing on the reactor size plasmaas:( 100Q;) (Ref. 20 on the
£ IBM SP Power3 at National Energy Research Supercomput-
ing Center(NERSQ. For this particular size-scaling study,
sin(n+1)m the largest run took 72 wallclock hours with one billion ion
S (8T i&) . . . . )
sim(n*=1)w/L] particles (8 particles/cell using the adiabatic electron ap-
proximation for 7000 time steps running on 1024 processors
(25M particle step/sec) with 10% efficiency for each pro-
+0Jsq2m), mM=1,23,.... (39 cessor. These exercises underscore the importance of using
gyrokinetic PIC codes on the parallel architecture to carry
For L—o, we recover Eq(26). SinceJ;>J; for k, p;<<2,  out realistic simulations of turbulence transport in tokamaks
we can again use 4 pointd €4) to represent a rotating and stellarators.

XZ ex

oo

|27Tn|)

=iv,J1(—sin 6, +cosh&,)
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These are very encouraging results. The next step istgs . 9S . 9S  4S
introduce the all-important electron dynamics and theEJFRﬁJFVua_VHJ“P%
finite-B effects into a global gyrokinetic particle code. Re-
cently, several numerical schemes have been proposed for
that purpose by further splitting the adiabatic response from
the perturbed electron distributions using the split-weight ~ —
particle simulation schemé&321-23 These schemes re- Here #(R+pop,t) andV-A(R+po,1) are the gyrophase de-
solved a longstanding puzzle in gyrokinetic particle simula-Pendent parts ofh(R+po,t) and V-A(R+po,t), respec-
tion and thier relative merit and their applications to gyroki- iVely:
netic particle codes yvill be discus;gd elsewhere..Beyond :ﬁ(R-ﬁ-po,t):¢(R+p0,t)—<¢(R+p0,t)>,
that, we can also envision the possibility of developing new (A
algorithms for simulating electromagnetic microturbulence ~ V-A(R+pg,t)=V-A(R+pg,t) —(V-A(R+ po,t)).
on the transport time scale-(1 s) using a gloabl gyrokinetic

particle code together with the capability presented in thidVe note th_at in the_ present of electromagnetic perturbatio_ns,
paper for calculating magnetic equilibria and the unique feath® dynamics ojug is gyrophase dependent even thought its

ture of steady state transport observed in the GTC simulad€finition is gyrophase independent. That is why the defini-
tions, i.e., the the establishment of steady state transpofPn Of « has a gyrophase dependent component so that its
within 1 ms of real time. time derivative can be gyrophase independent, which as a
Moreover, the relationship between MHD and gyrokinet-matter of .fact, vanishes. However, sindg- V.X bo=(V
ics presented here hopefully will encourage further explora Bo);/Bo is usually small and\ is the perturbation, we can
tion of using gyrokinetic particle techniques for studying assume thatt~ ug is nearly constant and is independent of
MHD physics and the gyrophase averaging scheme proposdiiase.
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