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Abstract

This paper describes the design concept for a compact Paul trap experimental configuration that fully simulates the

collective processes and nonlinear transverse dynamics of an intense charged particle beam that propagates over large
distances through a periodic quadrupole magnetic field. To summarize, a long nonneutral plasma column ðL4rpÞ is
confined axially by applied DC voltages #V ¼ const: on end cylinders at z ¼ �L, and transverse confinement is provided
by segmented cylindrical electrodes (at radius rw) with applied oscillatory voltages �V0ðtÞ over 908 segments. Because

the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in
a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation
in a compact experimental facility. The nominal operating parameters in the experimental design are: barium ions

ðA ¼ 137Þ; plasma column length 2L ¼ 2 m; wall radius rw ¼ 10 cm; plasma radius rp ¼ 1 cm; maximum wall voltage
#V0 ¼ 400 V; end electrode voltage up to #V ¼ 500 V; and voltage oscillation frequency f0 ¼ 1=T ¼ 60 kHz. # 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Periodic focusing accelerators and transport
systems [1–5] have a wide range of applications
ranging from basic scientific research in high
energy and nuclear physics, to applications such
as spallation neutron sources, tritium production,
heavy ion fusion, and nuclear waste treatment, to
mention a few examples. Of particular interest, at
the high beam currents and charge densities of
practical interest, are the combined effects of the
applied focusing field and the intense self-fields

produced by the beam space charge and current on
determining detailed equilibrium, stability, and
transport properties [1–5]. Through basic experi-
mental studies, analytical investigations based on
the nonlinear Vlasov–Maxwell equations, and
numerical simulations using particle-in-cell models
and nonlinear perturbative simulation techniques,
considerable progress has been made in developing
an improved understanding of the collective
processes and nonlinear beam dynamics character-
istic of high-intensity beam propagation [6–14] in
periodic focusing and uniform focusing transport
systems. Nonetheless, it remains important to
develop an improved basic understanding of the
nonlinear dynamics and collective processes in
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periodically focused intense charged particle
beams, with the goal of identifying operating
regimes for stable (quiescent) beam propagation
over hundreds, even thousands, of lattice periods
of the periodic focusing magnetic field, including a
minimum degradation of beam quality and lumin-
osity. High-intensity accelerator systems and beam
transport lines are typically large physically and
expensive to operate. The purpose of this paper is
to describe the design concept for a compact Paul
experimental trap configuration that fully simu-
lates the collective processes and nonlinear trans-
verse dynamics of an intense charged particle
beam propagating through a periodic quadrupole
magnetic field configuration. The idea of using a
single-species trap to model periodically focused
beam propagation has been discussed by Davidson
et al. [15], and by Okamoto and Tanaka [16],
although the emphasis of their work is on
solenoidal confinement [16], whereas the present
paper focuses on periodic quadrupole confinement
[15].

The equivalence of the Paul trap configuration
to intense beam propagation through a periodic
focusing quadrupole field is discussed in Section 2,
and in Section 3 we describe the experimental
design concept.

2. Paul trap simulator configuration

In practical accelerator applications, if the
spacing between quadrupole magnets corresponds
(for example) to S ¼ 2 m, and the transverse
nonlinear beam dynamics is to be followed in
detail for 500 lattice periods, then the length of the
transport system that is required is 1 km. The
obvious question arises as to whether or not it is
possible to model the nonlinear transverse beam
dynamics in a compact laboratory configuration.
The answer is yes, and the key is to recognize that
the particle motion in the frame of the beam is
nonrelativistic, and that the oscillatory quadrupole
focusing force can be simulated in the laboratory
frame by applying oscillatory voltages to cylind-
rical electrodes in a modified Paul trap [15] as
illustrated in Fig. 1. A Paul trap [17–22] utilizes
oscillatory voltages applied to external electrodes

to provide transverse confinement of the nonneu-
tral plasma in the x–y plane.

To model an axially continuous charged particle
beam (or a very long charge bunch), we consider a
long nonneutral plasma column [Fig. 1(a)] with
length 2L and characteristic radius rp5L, confined
axially by applied DC voltages #V ¼ const: on end
cylinders at z ¼ �L. The particles making up the
(nonrelativistic) nonneutral plasma in Fig. 1(a)
have charge q and mass m. With regard to
transverse confinement of the particles in the x–y
plane, segmented cylindrical electrodes (at radius
rw) have applied oscillatory voltages �V0ðtÞ over
908 segments with the polarity illustrated in
Fig. 1(b). Here, the applied voltage V0ðtÞ is
oscillatory with [15]

V0ðtþ TÞ ¼ V0ðtÞ;
Z T

0

dtV0ðtÞ ¼ 0 ð1Þ

where T ¼ const: is the period, and f0 ¼ 1=T is the
oscillation frequency. While different electrode
shapes will result in an oscillatory quadrupole
potential near the cylinder axis, the configuration
shown in Fig. 1(b) is particularly simple and
amenable to direct calculation. Neglecting end
effects ð@=@z ¼ 0Þ, and representing the applied
electric field by Ea ¼ �r?faðx; y; tÞ, where r? 	
Ea ¼ 0 and r? 
 Ea ¼ 0, it is readily shown that
the solution to r2

?faðx; y; tÞ ¼ 0 that satisfies the
appropriate boundary conditions at r ¼ rw in
Fig. 1(b) is given near the axis ðr5rwÞ by [15]

qfaðx; y; tÞ ¼
1
2mkqðtÞðx

2 � y2Þ ð2Þ

where the oscillatory quadrupole focusing coeffi-
cient kqðtÞ is defined by

kqðtÞ �
8qV0ðtÞ
mpr2w

: ð3Þ

From Eqs. (1) and (3), note that kqðtþ TÞ ¼ kqðtÞ
and

R T
0 dtkqðtÞ ¼ 0. Moreover, kqðtÞ has dimen-

sions of ðtimeÞ�2. Most importantly, the leading-
order correction [15] to Eq. (2) is of order
ð1=3Þðr=rwÞ

4. Therefore, for example, if the char-
acteristic radial dimension rp of the plasma column
in Fig. 1 satisfies rp=rw90:1, then the corrections
to the simple quadrupole potential in Eq. (2) are
smaller than one part in 104 over the transverse
region occupied by the plasma particles.
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We now construct the Hamiltonian for the
transverse particle motion in Fig. 1, neglecting
axial variations ð@=@z ¼ 0Þ. Denoting the (dimen-
sional) transverse particle velocities by ’x ¼ dx=dt
and ’y ¼ dy=dt, and the self-field electrostatic
potential due to the plasma space charge by
fsðx; y; tÞ, it readily follows that the Hamiltonian
H?ðx; y; ’x; ’y; tÞ describing the transverse particle
motion is given by

H?ðx; y; ’x; ’y; tÞ ¼ 1
2mð ’x

2 þ ’y2Þ þ 1
2mkqðtÞðx

2 � y2Þ

þ qfsðx; y; tÞ; ð4Þ

where use has been made of Eq. (2). Consistent
with Eq. (4) and Fig. 1, we summarize here the
nonlinear Vlasov–Poisson equations describing the
self-consistent evolution of the distribution func-
tion f ðx; y; ’x; ’y; tÞ and self-field electrostatic poten-
tial fsðx; y; tÞ in the transverse phase space
ðx; y; ’x; ’yÞ. Of course, the characteristics of the
nonlinear Vlasov equation correspond to the
single-particle orbit equations calculated from
Eq. (4), with dx?=dt ¼ m�1 @H?=@ ’x? and
d ’x?=dt ¼ �m�1 @H?=@x?. It readily follows that
the nonlinear Vlasov–Poisson equations consistent
with the Hamiltonian in Eq. (4) can be expressed
as

@

@t
þ ’x

@

@x
þ ’y

@

@y
� kqðtÞxþ

q

m

@

@x
fs

� �
@

@ ’x

�

� �kqðtÞyþ
q

m

@

@y
fs

� �
@

@ ’y

�
fb ¼ 0 ð5Þ

and

@2

@x2
þ

@2

@y2

� �
fs ¼ �4pq

Z
d ’x d ’yf ð6Þ

where nðx; y; tÞ ¼
R
d ’x d ’yf is the particle number

density.
For the intense beam system being simulated,

we consider a thin, intense charged particle beam
with characteristic radius rb and average axial
momentum gbmbbbc propagating in the z-direction
through a periodic focusing quadrupole magnetic
field with axial periodicity length S. Here, rb5S is
assumed, ðgb � 1Þmbc

2 is the directed axial kinetic
energy of the beam particles, gb ¼ ð1� b2bÞ

�1=2 is
the relativistic mass factor, Vb ¼ bbc is the average
axial velocity, qb and mb are the particle charge
and rest mass, respectively, and c is the speed of

light in vacuo. In addition, the particle motion in
the beam frame is assumed to be nonrelativistic.
We introduce the scaled time variable s ¼ bbct,
and the (dimensionless) transverse velocities x0 ¼
dx=ds and y0 ¼ dy=ds. Then, within the context of
the assumptions summarized above, the nonlinear
beam dynamics in the transverse, laboratory-
frame phase space ðx; y;x0; y0Þ is described self-
consistently by the nonlinear Vlasov–Maxwell
equations for the distribution function fbðx; y; x0;
y0; sÞ and the space-charge potential fsðx; y; sÞ. For
a thin beam ðrb5SÞ, the transverse focusing force
on a beam particle produced by the periodic
quadrupole field can be approximated over the
cross-section of the beam by [1,3,14]

Ffoc ¼ �kqðsÞ½x#ex � y#ey� ð7Þ

where ðx; yÞ is the transverse displacement of a
particle from the beam axis, and the s-dependent

Fig. 1. (a) Axial confinement of a long ðL4rpÞ nonneutral

plasma column is provided by applied DC voltages #V ¼ const:
on end cylinders at z ¼ �L; (b) Transverse confinement of the

nonneutral plasma column is provided by cylindrical electrodes

at r ¼ rw with applied oscillatory voltages �V0ðtÞ over 908
segments with V0ðtþ TÞ ¼ V0ðtÞ and

R T
0 dt V0ðtÞ ¼ 0.
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focusing coefficient kqðsþ SÞ ¼ kqðsÞ is defined
by

kqðsÞ ¼
qbB

0
qðsÞ

gbmbbbc2
: ð8Þ

Here, the field gradient B0
qðsÞ is defined by

B0
qðsÞ ¼ ð@Bq

x=@yÞð0;0Þ ¼ ð@Bq
y=@xÞð0;0Þ. Note from

Eq. (8) that kqðsÞ has the dimensions of
ðlengthÞ�2, and from Eq. (7) that Ffoc has the
dimensions of ðlengthÞ�1.

The striking feature of the transverse Hamilto-
nian and nonlinear Vlasov–Poisson equation in
Eqs. (4)–(6), valid for the Paul trap configuration
in Fig. 1, is that they are identical in form to the
corresponding equations describing the transverse
dynamics of an intense nonneutral beam propa-
gating through a periodic quadrupole magnetic
field [1,3,14] provided we make the replacements

t! s; m! gbmb ð ’x; ’yÞ ! ðx0; y0Þ

q

m
fsðx; y; tÞ !

qb

g3bmbb
2
bc

2
fsðx; y; sÞ

kqðtÞ½Eq: ð3Þ� ! kqðsÞ½Eq: ð8Þ� ð9Þ

in the nonlinear Vlasov equation (5), and
R
d ’x d ’y

f !
R
dx0dy0fb in Poisson’s equation (6). Because

the transverse focusing force is similar in wave-
form to that produced by a discrete set of periodic
quadrupole magnetics in a frame moving with the
beam, the Paul trap configuration offers the
possibility of simulating intense beam propagation
over large distances in a compact experimental
facility. The Paul trap configuration considered
here is intended to simulate continuous beam
propagation in a periodic focusing transport line.
In this regard, it is important that the trapped
plasma be sufficiently long ðL4rpÞ that the
characteristic bounce frequency for axial motion
in Fig. 1 be much smaller than the characteristic
transverse oscillation frequency in the applied
oscillatory voltage V0ðtÞ.

The Hamiltonian in Eq. (4) and the nonlinear
Vlasov–Poisson equations (5) and (6) describe only
the transverse dynamics of the long nonneutral
plasma column ðL4rpÞ in Fig. 1, and z-variations
and axial particle motions are not included in the
description. While such a model is expected to
provide a good description of the transverse

dynamics of the plasma column for L4rp, there
are important limitations on the range of applic-
ability [15] of the Paul trap analogy for simulating
the propagation of a continuous beam through a
periodic focusing lattice. Most importantly, the
nonneutral plasma column illustrated in Fig. 1 is
confined axially, and the particles execute axial
bounce motion between the ends of the plasma
column (at z ¼ �L). If we denote the character-
istic thermal speed of a particle by vTh (assumed
for present purposes to be similar in the axial and
transverse directions), then the characteristic
bounce frequency for the axial motion of a particle
is #oz ¼ 2p=Tz, where Tz � 4L=vTh is the period.
We denote the characteristic oscillation frequency
for transverse particle motion in the oscillatory
quadrupole potential by #oq ¼ 2p=Tq (see Section 3),
where Tq is the period for transverse motion. At
low-to-moderate density, the period Tq and
characteristic plasma radius rp are related approxi-
mately by Tq � 2rp=vTh. Therefore, in an approx-
imate sense, the transverse and axial oscillation
frequencies and periods stand in the ratio #oz= #oq ¼
Tq=Tz � rp=2L51 (by assumption). On a time
scale t� Tz, the (finite-length) effects of the axial
bounce motion of particles in the Paul trap
configuration illustrated in Fig. 1 may become
important, and limit the validity of the Paul trap
analogy with the propagation of a continuous
beam through a periodic quadrupole lattice. For
sufficiently large L4rp, however, the axial bounce
period Tz can be very long. As illustrative
parameters, consider the case where
rp ¼ 1 cm; 2L ¼ 200 cm, and the frequency f0 ¼
1=T of the applied oscillatory voltage V0ðtÞ is
2pf0 ¼ 4 #oq. In this case, Tz � 200Tq � 800T ,
where T is the oscillation period of V0ðtÞ. In this
case, a typical particle in Fig. 1 experiences the
effects of 800 oscillation periods of the quadrupole
focusing potential (800 equivalent lattice periods)
before it executes one axial bounce in the trap. For
small values of rp=rw, the nonlinear image charge
force are small compared to the high-fill-factor
induction linacs envisioned for heavy ion fusion.
Therefore, to simulate such systems with the Paul
trap simulator, it will be necessary to form a
moderately large-radius plasma with rp=rw in the
range 0.3–0.5.
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3. Experimental design

3.1. Illustrative operating range

Illustrative examples [15] of oscillatory wave-
forms for the quadrupole focusing coefficient
range from a sinusoidal waveform with
kqðtÞ ¼ #kq sinð2pt=TÞ, where #kq ¼ const: and T ¼
1=f0 is the oscillation period, to a periodic step-
function lattice with maximum amplitude #kq and
filling factor Z. The oscillatory applied potential in
Eq. (3) [or, equivalently, in Eq. (8)] typically
results in a nonneutral plasma column (or intense
charged particle beam) that has a pulsating
elliptical cross-section in the x–y plane [1–3,14].
In this regard, it is convenient to denote the on-
axis ðr ¼ 0Þ plasma density by #n and the corre-
sponding plasma frequency by #op � ð4p #nq2=mÞ1=2.
From Eq. (3), we further denote the characteristic
angular oscillation frequency #oq for the transverse
motion of a single particle in the (maximum)
focusing field by

#oq � j #kqj1=2 ¼
8q #V0

pmr2w

����
����
1=2

ð10Þ

where #V0 ¼ jV0ðtÞjmax is the maximum applied
voltage. Transverse confinement [1–3,14] of the
nonneutral plasma by the field requires
#op=

ffiffiffi
2

p
5 #oq. On the other hand, to avoid the so-

called envelope instability [3] associated with an
overly strong focusing field, the oscillation fre-
quency f0 should be several times larger than
#oq=2p. Combining these inequalities gives
#op=

ffiffiffi
2

p
5 #oq52pf0, or equivalently,

1ffiffiffi
2

p
2p

4p #nq2

m

� �1=2

5
1

2p
8q #V0

pmr2w

����
����
1=2

5f0: ð11Þ

The inequalities in Eq. (11) are expected to assure
robust transverse confinement of the plasma
particles by the oscillatory voltage in Fig. 1.

Eq. (11) applies to either a single-species pure
ion plasma or to a pure electron plasma. For a
singly ionized pure ion plasma (ion mass
number¼ A), such as barium or lithium, Eq. (11)

becomes

1:49
 102
#n

A

� �1=2

52:5
 105
#V0

Ar2w

� �1=2

5f0

ð12Þ

where #n; #V0; rw, and f0 are expressed in units of
cm�3; V; cm, and s�1, respectively. As illustrative
design parameters for a barium ion plasma
(A ¼ 137), we take #V0 ¼ 400 V and rw ¼ 10 cm.
Eq. (12) then gives the requirements that
#n51:1
 107 cm�3, and f0 exceeding several tens
of kHz in order to satisfy the right-most inequality
in Eq. (12).

3.2. Experimental design and diagnostics

In this section, we describe in more detail the
design concept for a Paul Trap Simulator Experi-
ment (PTSX) being developed at the Princeton
Plasma Physics Laboratory (Figs. 2–4). As illu-
strated in Fig. 2, the apparatus is approximately
3 m in overall length, and consists mainly of a 1000

O.D. electropolished stainless-steel chamber with
metal-sealed flanges to allow bakeout to 1508C. A
centrally located, six-way cross accommodates the
laser-induced fluorescence (LIF) diagnostic de-
scribed later in Section 3.2. Either radial (through
the six-way cross) or paraxial (through windows at
the axial ends of the device) illumination of the ion
population by the excitation laser is possible. The
vacuum system consists of a 1000 l=s turbomole-
cular pump in combination with a cryopump with
a rated pumping speed for water of 4000 l=s, with
one pump located at either end of the vessel. The

Fig. 2. Elevation view of the Paul Trap Simulator Experiment.
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pumping utilizes ‘‘Tee’’ sections in order to permit
good axial access to the device.

The central confinement section of the Paul trap
consists of four 200 cm long, azimuthally segmen-
ted stainless-steel electrodes which produce the
quadrupole fields, as shown in Fig. 3. The dia-
meter of the confining electrode array is 20 cm. In
the central section of the trap, the gap between
electrodes is locally enlarged to allow passage of a
laser beam for the LIF diagnostic. In addition, a
section of blackened high-transparency metallic
mesh forms the electrodes in this section of the
device, to allow imaging of the ion emission
without disturbing the electric field configuration.
An amplifier powers the electrodes in opposing
pairs by means of a step-up transformer with two
secondary windings. The amplifier is driven by a
programmable waveform generator in order to
permit adjustment of the waveform amplitude,
pulse shape, and period in real time. A commercial
audio amplifier with a low-impedance output (e.g.,
3 dB bandwidth, 0:1 Hz–300 kHz; 750 W total out-
put into 4 O) is used to drive the electrodes through
the step-up transformer to 100–1000 V (peak).

The two end electrode sets in Fig. 3 are different.
At the source end, there is a separate 40 cm long
set of azimuthally segmented stainless-steel elec-
trodes identical (except in length) to the central
electrode set. The barium ion source is located

midway along the length of this section of the
device. At the opposite end is a simple 40 cm long
cylindrical electrode. A separate pair of amplifiers
power the segmented-source end electrodes,

Fig. 3. Electrode arrangement in the Paul Trap Simulator Experiment. Initial operation would utilize a single cylindrical end electrode.

A segmented end-electrode permits dumping the ion population for diagnostic purposes, while maintaining good radial confinement as

the ions transit the end electrode region into an analyzer.

Fig. 4. Electrode potential in the Paul Trap Simulator Experi-

ment. In (a) and (b), the solid lines represent the voltage on two

of the four confining electrodes; the remaining two electrodes

are excited in phase opposition, as indicated in (b). For the

filament ion source, a simple DC bias is applied as shown in (a),

and adjusted to produce the necessary ion current. For the

gridded, high-current source, the bias arrangement shown in (b)

is employed.

R.C. Davidson et al. / Nuclear Instruments and Methods in Physics Research A 464 (2001) 502–511 507

IX. POSTER SESSION B



coupled as in the central electrodes by transfor-
mers. In addition, confining biases on the end
electrodes are provided by programmable DC
power supplies to also permit real-time adjustment
and, if desired, gating of the confining potential.
For the segmented end-electrode set, the confining
bias is applied at the transformer output winding.

The most suitable ion source for the Paul Trap
Simulator Experiment is still under investigation.
Initial experiments would utilize a simple barium-
coated platinum or rhenium filament as an ion
source [23], with rhenium being the favored
material for good contact ionization efficiency. In
this case, the spiral-wound filament is located at
the midpoint of the segmented end-electrode
section, as shown in Fig. 3. In addition, a high-
transparency grid is located in front of the
filament, and a reflecting electrode is located
behind the filament. Each electrode is separately
biased. This system should be adequate for the
simulation of low-intensity ion beams. If higher
ion fluxes are required than can be supplied by the
filament, then a barium-loaded rhenium plate will
be substituted for the filament assembly. In this
case, the plate will be radiatively heated from
behind by a tungsten filament to about 10008C.
This assembly can also be fitted with an accelerat-
ing grid approximately 0:5 cm in front of the plate.
The development of such a source will be an
important prelude to the study of space-charge-
dominated systems.

The technique for filling the Paul trap with
barium ions envisioned for this experiment is
somewhat different from that employed in pre-
vious experiments. Confined ions will execute
bounce motion in the trap between the end
electrode sets. Hence, it is desirable to fill the trap
relatively rapidly, in a time comparable to an ion
bounce time. For barium ions injected at an energy
comparable to the temperature of the hot emitter
ð0:1 eVÞ, the directed ion velocity is
3:7
 104 cm=s, and the bounce time is about
11 ms.

In the case of a moderate intensity system, the
particle density in the trap will be about 106 cm�3.
Therefore, the total number of particles in the trap
will be about 6:3
 108 for a column radius of
1 cm, so the required ion current is only 9 nA in

order to fill the trap in 11 ms. However, since the
segmented electrode set in which the ion source is
located is biased with waveforms ranging from
sinusoidal to alternating step-function in pulse
shape, it is necessary to bias the ion source to near
the peak (negative) voltage of the electrode wave-
form in order to extract ions at a low energy, as
shown in Fig. 4. In this case, ions are extracted
from approximately one-half the source area
during the time that Velectrode5Vsource, so that the
duty factor for ion extraction is Z=2, where Z is the
filling factor. For Z=2 � 0:25, the required peak
ion current to fill the trap in 11 ms rises to about
40 nA. For a 2 cm diameter spiral filament source,
a very modest difference potential will be enough
to overcome space-charge effects and supply the
necessary current.

The study of space-charge-dominated systems
requires higher ion density. If the maximum
particle density required is 107 cm�3, the total
number of particles in the trap will rise to
6:3
 109, so the required ion current will rise to
400 nA when the duty factor is included. The
required current density is still modest ð1:2
 10�7

A=cm2Þ if the source is now a barium-loaded
rhenium plate, 2 cm in diameter. A modest (few
volt) difference potential between the ion source
and the peak electrode voltage would be sufficient
to supply the required ion current.

Once the desired number of ions has been
loaded into the trap, a DC bias identical to that
applied to the cylindrical electrode at the other
end of the trap is applied to all four segments of
the source end electrodes. The pulsed electrode
voltage (if any) is gated off, and the evolution of
the confined ion population in the trap can be
studied.

There are many ways of detecting ions in a trap.
The easiest is to extract the ions from the trap
using a high voltage pulse, and then counting
them. This destroys the ion population. A non-
destructive technique is to measure the ions with
laser-induced fluorescence (LIF). The principle of
LIF is to excite an electron from a lower energy
level to a higher state in an atom or ion with a
tunable laser source and to observe the photon
emission when it transitions back to a lower
energy state. This is a resonant process and the
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cross-section for absorption of the laser photon is
very high, resulting in low power requirements for
the laser pulse. Laser-induced fluorescence is used
in many chemistry and physics applications to
measure such parameters as particle density,
velocity distribution, and electric and magnetic
fields [19,24–27].

With the advent of ion Paul traps, some very
impressive spectroscopy experiments have been
performed using laser-induced fluorescence. The
unique (and benign) features for spectroscopic
studies in traps are characterized by collision-free
storage of a sample, isolated in space and devoid
of uncontrollable influences such as collisions with
walls or perturbing external fields. Werth [26] has
demonstrated the imaging of a single barium ion in
a trap. Traps have been proposed as frequency
standards. Opto-microwave experiments have ex-
amined the line-Q of the ground state hyperfine
transitions in alkali-like ions. For beryllium ions,
linewidths down to 12 mHz from the Zeeman
transition at 292 MHz have been observed. The
stability is similar to that obtained with cesium
beams. The basic parameter underlying resonant
laser excitation is the probability of excitation per
particle. The absorption cross-section in the visible
region is very large, and a photon density of N �
1011 cm�2 s�1 Hz�1 is sufficient to saturate the
desired state. Consequently, a laser with a spot size
of 1=2 mm and less than 1=4 W of power is
adequate.

In the Paul Trap Simulator Experiment, it is
proposed to use laser-induced fluorescence to
diagnose the barium ion plasma microstate,
including the ion density profile and the ion
velocity distribution parallel and perpendicular to
the axis of the trap. Measurements will be carried
out in the plane equidistant between the two end
electrodes of the trap. By sweeping the frequency
of the probing laser across the resonance transi-
tion, the velocity distribution parallel to the axis of
the plasma column will be measured, because the
laser light will be Doppler-shifted. This will be
accomplished with a tunable CW dye laser, there-
by allowing for a measurement of emittance. The
fluorescence light will be measured with a CCD
camera and an interference filter looking perpen-
dicular to the laser beam. The CCD camera will

make simultaneous measurements along the chord
of the laser beam through the plasma. The intent is
to have the volume of measurement to be on the
order of a cube with 1 mm side dimensions. The
laser light and detector assembly will be translated
in order to measure the density profile and the
velocity distribution in both directions.

The laser-induced fluorescence measurements
will yield the ion density profile of the barium
ions, as well as the ion velocity distribution
parallel and perpendicular to the axis of the trap.
The velocity–space measurements will allow for
the study of ion emittance in quadrupole beam
transport. By spoiling the waveform of the bias
potential of the Paul trap, the effects of beam
mismatch on emittance growth and halo particle
production can be investigated. Furthermore,
sufficiently long integration times will allow for
the measurement of the halo particle density
profile. Finally, the development of laser-induced
fluorescence as a diagnostic to investigate heavy
ion beam transport will allow LIF to be applied as
a diagnostic tool in heavy ion fusion facilities.

Finally, in the Paul Trap Simulator Experiment,
it is proposed to use a high-frequency electric
probe to characterize the collective oscillations
excited in the plasma. The transverse electric field
oscillation is on the order of 30–66 kHz. The
oscillating bias voltage applied to the poles of the
trap and the ion space-charge potential determine
the transverse oscillation frequency. The axial
bounce frequency is a function of the distance
between the end electrodes and the thermal
velocity of the ions. The axial bounce frequency
is small ð100 HzÞ because of the small ion thermal
velocity ð3:7
 104 cm=sÞ. To monitor and char-
acterize these oscillations, the electric field probe is
inserted in the trap, and the probe is coupled to a
network analyzer to measure the probe frequency
spectrum. The collective oscillation frequencies
can also be used to estimate the line density and
the space-charge potential.

4. Conclusions

The Paul Trap Simulator Experiment and
associated diagnostic suite described in Section 3
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constitute an enormously flexible facility for
simulating a wide range of nonlinear collective
processes important in the propagation of intense
charged particle beams over large distances. Most
importantly, the flexible source geometry and
ability to vary the voltage waveform V0ðtÞ, either
dynamically or from experiment to experiment,
permit detailed studies to be carried out over a
wide range of density #n, average radius rp, and
choice of equivalent waveform for the quadrupole
focusing field. Furthermore, the laser-induced
fluorescence (LIF) diagnostic capability permits a
detailed investigation of the evolution of the
density profile, rms column radius, transverse
emittance, and velocity distribution function. An
important dimensionless parameter s that mea-
sures the beam intensity [1] is defined by

s �
#o2
p

2 #o2
q

ð13Þ

where #op is the plasma frequency, and #oq is the
effective transverse focusing frequency defined in
Eq. (10). In the moderate-intensity beams encoun-
tered in high energy and nuclear physics applica-
tions [2], the self-field parameter s typically satisfies
s40:2, corresponding to emittance-dominated
beams which are a few or several Debye lengths
in diameter. On the other hand, for the space-
charge dominated beams of interest for heavy ion
fusion [1,3–5], the self-field parameter s can
approach unity, corresponding to a very low
transverse emittance, and near balance of the
applied focusing force and the repulsive space-
charge force. The Paul trap simulator has the
capability to investigate collective nonlinear pro-
cesses for values of the self-field parameter ranging
from moderate self-field intensity to very high
intensity. Furthermore, the waveform for V0ðtÞ,
which simulates the quadrupole focusing magnetic
field, can be dynamically varied during an experi-
ment, e.g., slowly varying amplitude at fixed
frequency, or slowly varying frequency at fixed
amplitude. Experimental studies in such a facility
could include detailed investigations of: beam
mismatch effects and envelope instabilities; collec-
tive wave excitations; chaotic particle dynamics
and production of halo particles; mechanisms for

emittance growth; and the effects of distribution
function on stability properties.
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