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Abstract

Use is made of the Vlasov—Maxwell equations to describe the electron—ion two-stream instability driven by the directed
axial motion of a high-intensity ion beam propagating through a stationary population of (unwanted) background electrons.
The ion beam is treated as continuous in the zdirection, and the electrons are electrostatically confined in the transverse
direction by the space-charge potential produced by the excess ion charge. The analysis is carried out for arbitrary beam
intensity, consistent with transverse confinement of the beam particles, and arbitrary fractional charge neutralization by the
background electrons. For the case of overlapping step-function ion and electron density profiles, corresponding to
monoenergetic electrons and ions in the transverse direction, detailed stability properties are calculated, including the
important effects of an axial momentum spread, over a wide range of system parameters for dipole perturbations with
azimuthal mode number /= 1. The two-stream instability growth rate is found to increase with increasing beam intensity,
increasing fractional charge neutralization, and decreasing proximity of the conducting wall. It is shown that Landau
damping associated with a modest axial momentum spread of the beam ions and background electrons has a strong
stabilizing influence on the instability. © 2000 Elsevier Science B.V. All rights reserved.

Periodic focusing accelerators and transport sys-
tems [1-4] have a wide range of applications ranging
from basic scientific research, to applications such as
spallation neutron sources, tritium production, nu-
clear waste transmutation, and heavy ion fusion. At
the high beam currents and charge densities of prac-
tical interest, it is increasingly important to develop
an improved theoretical understanding of the influ-
ence of the intense self fields produced by the beam
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space charge and current on detailed equilibrium,
stability and transport properties. For a one-compo-
nent high-intensity beam, considerable progress has
been made in describing the self-consistent evolution
of the beam distribution function f,(x,p,t) and the
self-generated electric and magnetic fields in kinetic
analyses [5—9] based on the Vlasov—Maxwell equa-
tions. In many practical accelerator applications,
however, an (unwanted) second charge component is
present. For example, a background population of
electrons can result by secondary emission when
energetic particles strike the chamber wall, or through
ionization of background neutral gas by the beam
ions. When a second charge component is present, it
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has been recognized for many years, both in theoreti-
cal studies and in experimental observations[10-21],
that the relative streaming motion of the high-inten-
sity beam particles through the background charge
species provides the free energy to drive the classical
two-stream instability, appropriately modified to in-
clude the effects of dc space charge, relativistic
kinematics, transverse beam dynamics, presence of a
conducting wall, etc. A well-documented example is
the electron-proton (e-p) instability observed in the
Proton Storage Ring [16-18], although a similar
instability also exists for other ion species, including
(for example) electron—ion interactions in electron
storage rings [19-21].

In a recent theoretical calculation [10,11] that
focuses on the moderate-intensity ion beams charac-
teristic of proton linacs and storage rings, we devel-
oped a detailed kinetic description of the electron—ion
two-stream instability based on the VIasov—Maxwell
equations. While that analysis [10,11] incorporated
the effects of finite transverse geometry and trans-
verse kinetic effects, it neglected the (stabilizing)
influence of an axial momentum spread of the inter-
acting charge components. In this Letter, building on
the techniques developed in this earlier work [10,11],
we examine two-stream stability properties, incorpo-
rating the important effects of an axial momentum
spread on detailed stability behavior.

The present analysis considers a high-intensity ion
beam with distribution function f(x, p,t), and char-
acteristic radius r, and average axial momentum
v,M, B,C propagating in the z-direction through a
background population of electrons with distribution
function f(x,p,t). The ions have high directed axial
velocity V, = B,c in the z-direction, and the back-
ground electrons are assumed to be nonrelativistic
and approximately stationary with zero average axial
velocity, [d3pv, f, = 0 in the |aboratory frame. In the
smooth-beam approximation, the ion beam is as-
sumed to be continuous in the zdirection, and the
applied transverse focusing force on a beam ion is
modeled by

Froc = _mebwgb( Xéx+yéy)’ (1)

where x | = x€, + y&é, is the transverse displacement
from the beam axis, (y, — 1)m,c? is the characteris-

tic directed ion kinetic energy, m, is the ion rest
mass, c is the speed of light in vacuo, and wg, =
const. is the effective betatron frequency for trans-
verse ion motion in the applied focusing field. For
the background electrons, assuming that the ion den-
sity exceeds the background electron density, the
space-charge force on an electron, FS =€V, ¢, pro-
vides transverse confinement of the background elec-
trons by the electrostatic space-charge potentia
d(x,t). It is further assumed that the ion motion in
the beam frame is nonrelativistic, and that the trans-
verse momentum components of the beam ions and
the characteristic spread in axial momentum are small
compared with the directed axial momentum. The
space-charge intensity in the present analysis is al-
lowed to be arbitrarily large, subject only to trans-
verse confinement of the beam ions by the focusing
force in Eq. (1. Findly, the present analysis is
carried out in the electrostatic and magnetostatic
approximations, and the self-generated electric and
magnetic fields are represented as ES= — Vp(x,t)
and B®= VA,(x,t) X &,, where the electrostatic po-
tential d(x,t) is determined self-consistently from
Poisson’s equation. Treating the axial velocity pro-
file of the beam ions as approximately uniform over
the beam cross section, V,,(x,t) = B, ¢ = const., and
assuming that the electrons carry zero axial current
in the laboratory frame, the z-component of vector
potential A,(x,t) is determined self-consistently in
the magnetostatic approximation from VZ2A, =
—4mZ,eB,n,. Here, +Z e is the ion charge, and
ny(x,t) = [d3pf,(x,p,t) is the ion number density.

Making use of the assumptions outlined above,
collective interactions between the beam ions and the
background electrons are described by the nonlinear
Vlasov—Maxwell equations for the ion and electron
distribution functions, f,(x,p,t) and f(x,p,t), the
space-charge potential ¢(x,t), and the combined
potential (x,t) = H(x,t) — B, A,(X,1). We obtain
[10,11]

ad d )
—+v-— - (ybmbwﬁbXJ_ +ZbeVl¢f) .

at X ap,
ap 9

-Z,e—— f, =0, 2

beaz 8pz}b (2)
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{a_t+,,.&+ev¢-a—p}fe—0, (3

Vap= —47re(zbfd3pfb—fd3pfe)- (4)

V2= —4we(ﬁfd3pf —/d3pf) (%)
Y6 ° )

where v = p/y,m, in Eq. (2), and v = p/m, in Eq.
3.

Egs. (2)—(5) constitute a complete description of
the collective interaction of the beam ions with the
background electrons based on the Vlasov—Maxwell
equations. In the present analysis, we further assume
that the beam propagates axially through a perfectly
conducting cylindrical pipe with radius r =r,,. En-
forcing [Ees]r:rw = [IEZS:lr:rW = Brs]r:rW =0 readily
gives ¢(r =r,,0,zt)=0,and ¢(r=r,,,6,zt) = 0.
Here, the constant values of the potentialsat r =r,,
have been taken equal to zero.

Finally, under equilibrium conditions (9/dt = 0),
the analysis assumes that ion and electron properties
are spatialy uniform in the z-direction with d/dz =
0. However, the stability analysis assumes small-am-
plitude perturbations with z- and t-variations propor-
tiona to exp(ik,z—iwt), where k, is the axial
wavenumber, and o is the (complex) oscillation
frequency, with Imw > O corresponding to instabil-
ity. For present purposes, the stability analysis as-
sumes perturbations with sufficiently long axial
wavelength and high frequency that

Kirz<1, (6)

where r,, is the characteristic beam radius. Consis-
tent with Eg. (6), we approximate V2= V2=
32/9x?+ 0% /dy? in Egs. (4) and (5), and neglect to
leading order the contributions proportional to
(d/32)8¢ in the linearized versions of Egs. (2) and
(3). Our previous investigations of the electron—ion
two-stream instability [10,11] were carried out in the
limit of cold beam ions and background electrons in
the axial direction, assuming that the phase velocity,
w/k,, of the wave excitations satisfies
|w/k, — ByC|> vy, and |w/K,|> ve,. Where
Utpz = (2sz/'ybmb)l/2 and Utez = (Z-I-ez/me)l/2 are
the characteristic axial thermal speeds of the beam
ions and the background electrons, respectively. An

important feature of the present analysis is the incor-
poration of the effects of a (small) axial momentum
spread on detailed stability behavior.

Under quasisteady equilibrium conditions with
d/dt =0, we assume axisymmetric beam propaga-
tion (/00 =0) and negligible variation with axial
coordinate (d/3dz = 0). It is readily shown from Egs.
(2)—(5) that the equilibrium distribution functions
(9/9t=0) for the beam ions and background elec-
trons are of the general form

fo(r.,p) =Fy(H, ,)Gu(P,),

fe(r.p) =F(H, )G P,). (7)

where r = (x?+y?)2 is the radia distance from
the beam axis, the distributions in axial momentum
are normalized according to [~ . dp,G,(p,) =1, for
j=b,e and H,, and H, . are the single-particle
Hamiltonians defined by

1

H, A= P2 + 2y, M, w2, r?

Lb 2y,m; 1L T2YpMyWgy
+Zye[ (1) = §°],
1 2 0 20

H,o=——p% —e[¢°(r) — ¢°]. (8)

2m, *

Here, for /00 =0=4d/dz, H, , and H , , are exact
single-particle constants of the motion in the equilib-
rium field configuration, and the constants °=
YOr=0) and ¢°= ¢°(r = 0) are the on-axis (r =
0) values.

There is wide latitude in specifying the functional
forms of the equilibrium distribution functions [9—
11]. Once F,(H, ) and F(H,k ) are specified,
however, the equilibrium self-field potentials and
density profiles can be calculated self-consistently
from Egs. (4) and (5) with /90 = 0= d/dz. For our
purposes here, we specialize to the case of monoen-
ergetic electrons and ions [1,10,11,22]

A

A, .
Fo(H.p) = mS(HLb_TLb)!
b'"'b
A, 3
Fe(HJ_e)=m8(HJ_e_TJ_e)' (9

e

In this case, it is found that the density profiles
n’(r), j = b,e, correspond to overlapping step-func-
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tion profiles. Here, fi, and fi, =fZ f, are positive
constants corresponding to the ion and electron den-
sities, f= const. is the fractiona charge neutraliza-
tion,and T, , and T, . are constants corresponding
to the on-axis (r = 0) values of the transverse ion
and electron temperatures, respectively. Without pre-
senting algebraic details [10,11], some algebraic ma-
nipulation of Egs. (4), (5), and (7)—(9) gives the
step-function density profiles n%(r) = A, = const., for
0<r<ry, and nX(r)=0 for r, <r<rW, and j=
b,e. Here, the beam radius rb is related to other
equilibrium parameters by pjr? = 2TL v/ YpM, and
p2r2 = 2T, ,/m,, where for monoenergetic ions and
electrons, the (depressed) betatron frequencies v,
and 7, are defined by

1
f/§=wﬁb—%(7—f)&)§b=const.,

b
~p_ L ypm
72 = 27Z.m, (1—f)w = congt., (10)

where wpb Amh,Z2e?/y,m, is the ion plasma
frequency-squared. The inequdities, 72> 0 and 7.2
>0, are required for existence of the eqwhbrlum
Therefore, we obtain the inequalities (&3,/ wZ,)(1 —

y2f) <2y2 and f<1, as redtrictions on beam in-
tenS|ty and fractional charge neutralization for trans-
verse confinement of the ions and electrons.

For small-amplitude perturbations about general
equilibrium distributions, F,(H, ;) and G(p,), j =
b,e, and corresponding self-field potentlals yO(r)
and ¢°(r), a stability analysis proceeds by lineariz-
ing Egs. (2)—(5). Perturbed quantities are expressed
as dy(x,t) = 8y(x Dexplik,z—iwt), 8f(x,p,)
=8f(x, ,pexplik,z—iwt), etc., where x, =
(x,y), and Imw > 0 is assumed, corresponding to
instability (temporal growth). Here, k, =27 n/L is
the axial wavenumber, where n is an integer, and L
is the fundamental axial periodicity length (L = 27 R
for aring, where R isthering radius). The linearized
Vlasov equations are formally integrated by using
the method of characteristics [1,10]' to integrate
along the unperturbed trajectories, x’, (t') and p’,
('), in the equilibrium field configuration. Some

! See, for example, Chapters 2, 4, and 10 of Ref. [1].

straightforward algebra that makes use of Egs. (2)—
(5) and the assumptions enumerated earlier gives

SL(x. ) = —e—Fu(H,.) [ 55(x.)
+i(w—kzuz)f0 dTS(;(X’L)
xexp[—i(w—kzuz)'r]}Ge(pZ),

(11)
~ dJ

ST(x . \p) = Zye bb(Hm){w(xL)

+i(w— kzvz)/_o dTSl[A/(X’L)
Xexp[_i(w_szZ)T]}Gb( pz)’
(12)

where v, = p,/m, in Eq. (11), v, = p,/y,m, in Eq.
(12), and the potential amplitudes, 6¢(x ) and
(x| ), solve

92 9%\ .
[ e

X
= —477e[bed3p5fAb - fdsprAe} , (13)
92 9%\ .

—+—s

(8X2 ayz) ’

= —4me

1 . .
7zbfo|3|oafb—fo|3|oafe}. (14)
b

In Egs. (11) and (12), 7=t —t is the displaced
time variable, and the ‘primed’ orbits, x’, (t') and
p', (t), in the equilibrium field configuration are
assumed [10,11] to pass through the phase-space
point (x , ,p,) attimet =t.
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The kinetic eigenvalue Egs. (11)—(14) have a
wide range of applicability, and can be used to
determine the complex oscillation frequency » and
detailed stahility properties for a wide range of sys-
tem parameters and choices of equilibrium distribu-
tion functions F(H, ;) and G/(p,), j=b,e. The
principal challenge in analyzing Egs. (11)—(14) is
two-fold. First, depending on the equilibrium pro-
files, the transverse orbits x', (t') are often difficult
to calculate in closed analytical form. Second, once
the orhits in the equilibrium fields are determined,
the integrations over t' in Egs. (11) and (12) are
challenging because the orbits occur explicitly in the
arguments of the (yet unknown) eigenfunction ampli-
tudes 8¢(x’,) and S(x').

For present purposes, we specialize to the choice
of monoenergetic ion and electron distributions in
Eqg. (9), and the corresponding step-function equilib-
rium density profiles with n?(r) = f, = const., for
0<r<ry, and n)(r)=0, for Mo <r<r . In this
case, the transverse ion orbit equation for x’l (t') can
be integrated exactly to give

X' (t')=x,cos(vp7) + ——p, Sin(Py7)
Y Vy

(15)

for 0<r'(t') <r,, and the axial orhitis Z(t') =z +
(p,/yp,my)7T. Here, =t —t is the displaced time
variable, and 7, = const. is the (depressed) betatron
frequency defined in Eq. (10). The electron orbit
x', (t') isidentical in form to Eq. (15), provided we
make the replacements y,m, - m, and », — 7, in
Eg. (15). A careful examination of the eigenvalue
Egs. (11)—(14) for the choice of equilibrium distribu-
tions in Eq. (9) [10,11] shows that Eqgs. (11)—(14)
support a class of exact solutions in which the
perturbed potentials have the forms, Blp(x )=
Sag/(r)exp(r/e)—rp/r “exp(i/9), and 8¢>(x )=
8¢, (r)exp(iZ0) = ¢, 1 exp(i#9), in the beam inte-
rior (O<r<r,). Here, ¢y, and ¢, are constant
amplitudes, / is the azimutha mode number, and
we have introduced cylindrical polar coordinates
(r,0) defined by x=rcosf and y=rsing. This
class of exact solutions corresponds to surface-wave
perturbations in which the perturbed density, 61, =

fd3p6f, j =b,e, is localized at the beam surface
(r= rb) What is most remarkable is that the orbit
integrals over terms proportional to r'“exp(iZ9’) =
[x(t') + iy ()] occurring in Egs. (11) and (12) can
be evaluated in closed analytical form, and Maxwell’s
Egs. (13) and (14) solved exactly inside (0O <r <r)
and outside (r, <r <r,) the beam [10,11]. Enforc-
ing the appropriate boundary condrtrons on 6¢/(r)
and 8y,(r)at r=r, and r =r,, then gives a closed
dispersion relation for the complex eigenfrequency
w.

Derivation of the kinetic dispersion relation from
Egs. (11)—(14) closely parallels the analysis in Ref.
[10] and [11]. Without presenting algebraic details,
for perturbations with azimuthal mode number /
and axial wavenumber k,, we obtain the dispersion

relation
o)

2 4
Pe v/
X|—————— + 51 (o
[1—(rb/rw)2/ < )]
~2

02 @5
- O (16)

2 Agb
1= (ro/r)? | i

where &5, = 4wh.€?/m,, wf, = 4w, Z2e*/y,m,,
and 7, and 7, are the (depressed) betatron frequen-
cies defined in Eq. (10). The ion and electron suscep-
tibilities, I;(w), j = b,e, occurring in Eq. (16) are
defined by

, 1 7 /|
Ii7(w) = _?mgo mi(/—m)!
(£=2m)3,G( p,)
Xf_wdpz[(w—kzuz) —(/—2m)p]’

(17)

for general azimuthal mode number /, and (yet
unspecified) distribution in axial momentum G,( p,).
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In carrying out the integration over p, in Eq. (17),
Imw > 0 is assumed [23] (See footnote 1).

Eq. (16) is the final form of the kinetic dispersion
relation, derived from the linearized Vlasov—Maxwell
equations for small-amplitude perturbations about
the monoenergetic equilibrium distributions in Eq.
(9) and the corresponding step-function density pro-
files. As such, Eqg. (16) can be used to determine the
complex oscillation frequency « over a wide range
of system parameters, including normalized beam
intensity (&3,/2y5wfy,), fractional charge neutral-
ization (f = A,/Z,N,), azimuthal mode number (£),
axial wavenumber (k,), choice of G,(p,), etc., sub-
ject only to the simplifying assumptions summarized
earlier in this Letter. In the absence of electrons
(f, = 0), the dispersion relation (16) supports stable
collective oscillations of the ion beam, and reveals a
rich harmonic content at frequencies w —k,V, =
+ v, +20,, - ,+/D,. When background elec-
trons are present (i, # 0), however, Eq. (16) sup-
ports unstable solutions (IMw > 0) with instability
resulting from the axial streaming (V, # 0) of the
beam ions through the background electrons, at least
in the limit where the ion and electron axial motions
are ‘cold’ [10,11], with G, (p,) = 8(p, — yp,myV,)
and G p,) = 8(p,).

The p,-integration in Eq. (17) can be carried out
for a variety of choices of G;(p,) ranging from a
shifted Maxwellian, to a step-function distribution, to
a Lorentzian distribution. For analytical simplicity,
we consider here the case of Lorentzian distributions
with

4,
77[( P, — YomyV,)® + Aﬁ] '

Gb( pz) =

G p,) = , (18)

77( pZ2 + Ag)

where A; =const. >0 is a measure of the axial
momentum spread, and p, and v, are related by
p,=my\V, for the electrons, and p,= y,my, for
beam the ions. Note from Eg. (18) that V,=
/7 ..dp,u,Gy(p,), and 0= [~ dp,v,G.p,), which
corresponds to the beam ions streaming axialy
through a stationary electron background. Substitut-

ing Eq. (18) into Eqg. (17) and integrating over p, for
Imw > 0 readily gives the simple expression

()

1 7 /!
B 2 mi(/—m)!

- ? m=0
y (/—2m)?, |
[(0 =KV, +ilk,Jog,) = (£—2m) 3]
(19)

Here, V, = O for the electrons, and vy, is a measure
of the characteristic axial thermal speed, defined by
Urp, = Ay/vpM, for the beam ions, and v+, =
A./m, for the background electrons. Substituting
Eqg. (19) into Eqg. (16), the resulting dispersion rela
tion can be used to investigate the effects of an axial
momentum spread on detailed properties of the elec-
tron—ion two-stream instability for general azimuthal
mode number # over awide range of system param-
eters.

A careful examination of Eg. (16) for A,# 0
shows that the strongest instability (largest growth
rate) occurs for azimuthal mode number /= 1, cor-
responding to a simple (dipole) displacement of the
beam ions and the background electrons. For /= 1,
we substitute Eg. (19) into Eg. (16), and introduce
the electron and ion collective oscillation frequen-
cies, w, and wy,, defined by

DN

pe r2

_lnm e, 1—fr—§
r2 ]’

s
W2+ 305|1- —

N

227,m, ™

<D

A2 2

Wy Mo

e §+—p(1——2)
r

2y?

w

2 1~2 1 rg
= wgp + 30| F—— 1, (20)
yb rW

2 2

where @7, has been expressed as @p, =

(ypmy/Z,m)fa],. Substituting into Eq. (16) and
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rearranging terms, the /= 1 dispersion relation can
be expressed in the compact form

[(w —k,V, + i|kz|Usz)2 — wﬁ]
X[(w+i|kZ|UTez)2—wez] = wf, (21)
where w; is defined by

2
YoMy .,
S Wpp -
mee

ro
%f(l——z

rW

(22)

4
Wi

In the cold limit (vq,,=0=ve,), and in the
absence of background electrons (f = 0 and w; = 0),
Eq. (21) gives stable collective oscillations of the ion
beam with frequency w — k,V, = + w,, where w, is
defined in Eq. (20). For f +# 0, however, the ion and
electron terms on the left-hand side of Eq. (21) are
coupled by the w{ term on the right-hand side,
leading to one unstable solution with Imw > 0 for a
certain range of axial wavenumber k,. The instabil-
ity is two-stream in nature, and results from the
directed ion motion with axia velocity V, through
the (stationary) background electrons. A careful ex-
amination [10,11] of Eq. (21) shows that the unsta-
ble, positive-frequency branch has frequency and
wavenumber (w,k,) closely tuned to the values
(wq,K,o) defined by wy= +w, and wy— kv, =
—wyp, or equivaently, k,,=(w,+ w,)/V,. This
gives
Wq Wy

b
kzO

ot o V, . (23)
Because w, < w, intheregimes of practical interest
[Eqg. (20)], it follows from Eq. (23) that the phase
velocity of the unstable mode is downshifted only
dightly from the directed beam velocity V,, and
could be strongly affected by Landau damping by
the beam ions for modest values of vy,,/V, # 0.
Returning to the full dispersion relation (21) for
vrj, # 0, it is important to recognize that Eq. (21) is
applicable over a wide range of normalized beam
intensity (&5,/2y{wj,) and fractional charge neu-
traization (f) consistent with 7Z>0 and 72> 0.
That is, Eg. (21) can be applied to the moderate-in-
tensity ion beams (&3,/2y{wZy, < 0.2, say) in the
proton linacs and storage rings envisioned for the
Spallation Neutron Source (SNS) and the Proton

Storage Ring (PSR) [16—18]. On the other hand, Eq.
(21) can also be applied to the low-emittance, very
high-intensity ion beams (&3,/2y,wZ, = 1) envi-
sioned for heavy ion fusion [4].

Typica results for the unstable solution to Eq.
(21) are illustrated in Fig. 1 (for vq,,=0=v1e,)
and in Fig. 2 (for vq,,# 0, and v, = v1e,)- The
system parameters in Figs. 1 and 2 correspond to
m,/m, = 1836 (protons), (y, — 1)m,c? = 800MeV,
ry/rw=205 and f=1.

Shown in Fig. 1, for vq,, = 0= v+,,, are plots of
(Imw)/wg, and (Rew — w,)/wg, versus (k,—

1.5 T T T T
(a)
©%,/27205,=0.50

1.0 .
a
3
~
3
£
— 05 ]

0.0

(kz—kzo)vb/wﬂb
0.2 T T T

@3,/ 273w5,=0.05

|
o
=)

Re(6w)/wgy

|
©
©

-0.5 . . .
-0.4 -0.2 0.0 0.2 0.4

(kz_kzb)vb/wﬁb

Fig.1. Plots of (a) normalized growth rate Imw / wgy,, and (b)
normalized real frequency (Rew — w,)/ wgy, versus shifted axial
wavenumber (k, — k,o)Vy, / wg,, obtained from the dispersion
relation (21) for the unstable branch with positive real frequency.
System parameters correspond t0 vy, =0= v1g,, M,/ M=
1836 (protons), (y, — 1)m,c? =800 MeV, ry, /1, = 0.5, and f =
0.1. Curves are shown for severa values of normalized beam
intensity @3, /2y5wgy, ranging from 0.05 to 0.5.
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K,0)Vp/ wgp,, Where k= (w,+ w,)/V,, obtained
from Eg. (21) for the unstable branch for several
values of @3 /2yZwf, ranging from 0.05 to 0.5. At
low beam intensities, the instability growth rate in
Fig. Lisrelatively small and has a narrow bandwidth
in k,-space, symmetric about k, = K,,. On the other
hand, as the normalized beam intensity @3, /25w,
is increased to 0.5, the instability bandwidth in-
creases significantly in Fig. 1, and the growth rate
becomes substantial, with (IM ), = 1.2 wp,,. AS
reported previously [10,11], the two-stream growth
rate caculated from Eq. (21) also increases with
increasing fractional charge neutralization f, and
increasing values of r,, /r.

To illustrate the stabilizing influence of parallel
kinetic effects on the two-stream instability, shown
in Fig. 2 is plot of (IMw)/wg, versus (k,—
K,0)/ wgy,, Obtained from Eq. (21) for the unstable
branch for fixed value of the normalized beam inten-
sity, @3,/2yiw3, =007, and values of vqy,/V,
ranging from O to 0.01. Furthermore, for purpose of
illustration, in Fig. 2 we have fixed the axial momen-
tum spread of the electrons by the value v, = vy,
Because the characteristic phase velocity of the un-
stable mode is downshifted only dlightly from the
directed beam velocity V, [Eq. (23)], it is expected
that Landau damping by parallel kinetic effects can

0.4: T T T
vaz/Vb=0 é
03F 3
& s ]
3 o.2F e

3
E ]
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0.0t Il 1 ]
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Fig.2. Plot of normalized growth rate Imw / wgy, Vversus shifted
axial wavenumber (k, — K,o)V}, / wgy, obtained from Eq. (21) for
the unstable branch with positive real frequency. System parame-
ters correspond to &3, /2ygwf, = 0.07, v1e; = vrpy My /M=
1836 (protons), (y, — Dm,c? =800 MeV, ry, /1, =05, and f =
0.1. Curves are shown for several values of normalized ion
thermal spread v+, / V,, ranging from O to 0.01.

have a strong stabilizing influence at modest values
of vq,,/V,. That this is indeed the case is evident
from Fig. 2, which shows a substantial reduction in
maximum growth rate and eradication of the instabil-
ity over the instability bandwidth as v,,/V, is
increased from O to 0.01.

The dispersion relation (21) can be used to derive
an analytica criterion [24] for stabilization of the
two-stream instability by parallel kinetic effects, valid
for normalized beam intensity s, = &} /2y, o},
ranging from the moderate values (s, < 0.2) of inter-
est in proton machines, to the space-charge domi-
nated beams (s, — 1) of interest in heavy ion fusion.
For our purpose here, we present the stability crite-
rion for moderate values of s, = &%, /2y, w}, < 0.2.
It is convenient to express éw = w — w, and 6k, =
k, —k,,, where k,o=(w,+ w,)/V,, and o, and
o, ae defined in Eq. (20). For s, < 1, because
|dw| < w,, we [see Figs. 1 and 2, and Eqg. (20)], it
follows that the dispersion relation (21) can be ap-
proximated by the quadratic form.

(8w +ilk,lvry, — 6k, V) (6w +ilK,lvre,)

wf
. (24)
4wewb

for (w,k,) in the vicinity of (wg,k,q). The solution
to Eq. (24) with y=Im(dw) > 0 corresponds to
instability (temporal growth), with maximum growth
rate occurring for 6k,=0 (see Fig. 2). For cold
beam ions and background electrons with v ., = 0=
v, SEting 8k, = 0in Eq. (24) gives the maximum
growth rate (IMdw), o, = (0f /4w, w,)*?. On the
other hand, as vq,, and v, ae increased, the
maximum growth rate decreases, and it can be shown
from Eq. (24) that the spectrum of unstable modes is
completely stabilized (Imdw < 0) whenever
K2oUTpal1er > 0f /4w, OF equivalently,
UTbzVTez wf4
Vbz 4wewb( W, + wb)z ,

where w,, w,, and o, are defined in Egs. (20) and
(22).

In the regimes of practical interest, the right-hand
side of Eq. (25) is very small, and only modest
momentum spreads are required to provide complete
stabilization of the two-stream instability. For exam-
ple, assuming r,/r, <1 and s, <1, and taking

(25)
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Ure, = Uy, fOr purpose of illustration, Eq. (25) can
be expressed as

1/4
AP > Ey;/zfl/zstm( Me ) ’ (26)
YoMpVp 2 YoMy

where Ap,, /vy, MyVy = v,/ Vo, APy = 4y is the
axial momentum spread [see Eq. (18)], and s, =
@5/ 2yp0f, is the normalized beam intensity. As
illustrative parameters, for f=0.1, s, =0.07, y,=
1.85 and m,/m, = 1836, Eq. (26) predicts complete
stabilization for Ap,, /vy, m,V, > 1.4%.

In conclusion, we have outlined here the derive-
tion of the fully kinetic dispersion relation (21)
describing the electron—ion two-stream instability for
an intense ion beam propagating through a stationary
population of background electrons. For k2r2 < 1,
the dispersion relation (21) incorporates the leading-
order effects of an axial momentum spread in the ion
and electron components, and can be used to investi-
gate detailed stability properties over a wide range of
normalized beam intensity (@3, /25 w},), fractional
charge neutralization (f = A,/ Z, fi,), azimuthal mode
number (#), and axial wavenumber (k,). For dipole
perturbations (/= 1), it has been shown that Landau
damping by parallel kinetic effects can have a strong
stabilizing influence on the electron—ion two-stream
instability. The condition for complete stabilization
of the two-stream instability by parallel kinetic ef-
fectsis given by Eqg. (25) (valid for moderate values
of beam intensity), which corresponds to a relatively
small axial momentum spread [see Eq. (26)]. If the
beam ions and background electrons are initially
cold axialy, it is expected that a nonlinear conse-
guence of the two-stream instability would be to
cause an increase in axial momentum spread, thereby
leading to a (quasilinear) stabilization of the instabil-
ity.
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