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Abstract

Use is made of the Vlasov–Maxwell equations to describe the electron–ion two-stream instability driven by the directed
Ž .axial motion of a high-intensity ion beam propagating through a stationary population of unwanted background electrons.

The ion beam is treated as continuous in the z-direction, and the electrons are electrostatically confined in the transverse
direction by the space-charge potential produced by the excess ion charge. The analysis is carried out for arbitrary beam
intensity, consistent with transverse confinement of the beam particles, and arbitrary fractional charge neutralization by the
background electrons. For the case of overlapping step-function ion and electron density profiles, corresponding to
monoenergetic electrons and ions in the transverse direction, detailed stability properties are calculated, including the
important effects of an axial momentum spread, over a wide range of system parameters for dipole perturbations with
azimuthal mode number lls1. The two-stream instability growth rate is found to increase with increasing beam intensity,
increasing fractional charge neutralization, and decreasing proximity of the conducting wall. It is shown that Landau
damping associated with a modest axial momentum spread of the beam ions and background electrons has a strong
stabilizing influence on the instability. q 2000 Elsevier Science B.V. All rights reserved.

Periodic focusing accelerators and transport sys-
w xtems 1–4 have a wide range of applications ranging

from basic scientific research, to applications such as
spallation neutron sources, tritium production, nu-
clear waste transmutation, and heavy ion fusion. At
the high beam currents and charge densities of prac-
tical interest, it is increasingly important to develop
an improved theoretical understanding of the influ-
ence of the intense self fields produced by the beam
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space charge and current on detailed equilibrium,
stability and transport properties. For a one-compo-
nent high-intensity beam, considerable progress has
been made in describing the self-consistent evolution

Ž .of the beam distribution function f x, p,t and theb

self-generated electric and magnetic fields in kinetic
w xanalyses 5–9 based on the Vlasov–Maxwell equa-

tions. In many practical accelerator applications,
Ž .however, an unwanted second charge component is

present. For example, a background population of
electrons can result by secondary emission when
energetic particles strike the chamber wall, or through
ionization of background neutral gas by the beam
ions. When a second charge component is present, it
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has been recognized for many years, both in theoreti-
w xcal studies and in experimental observations 10–21 ,

that the relative streaming motion of the high-inten-
sity beam particles through the background charge
species provides the free energy to drive the classical
two-stream instability, appropriately modified to in-
clude the effects of dc space charge, relativistic
kinematics, transverse beam dynamics, presence of a
conducting wall, etc. A well-documented example is

Ž .the electron-proton e-p instability observed in the
w xProton Storage Ring 16–18 , although a similar

instability also exists for other ion species, including
Ž .for example electron–ion interactions in electron

w xstorage rings 19–21 .
w xIn a recent theoretical calculation 10,11 that

focuses on the moderate-intensity ion beams charac-
teristic of proton linacs and storage rings, we devel-
oped a detailed kinetic description of the electron–ion
two-stream instability based on the Vlasov–Maxwell

w xequations. While that analysis 10,11 incorporated
the effects of finite transverse geometry and trans-

Ž .verse kinetic effects, it neglected the stabilizing
influence of an axial momentum spread of the inter-
acting charge components. In this Letter, building on

w xthe techniques developed in this earlier work 10,11 ,
we examine two-stream stability properties, incorpo-
rating the important effects of an axial momentum
spread on detailed stability behavior.

The present analysis considers a high-intensity ion
Ž .beam with distribution function f x, p,t , and char-b

acteristic radius r and average axial momentumb

g m b c propagating in the z-direction through ab b b

background population of electrons with distribution
Ž .function f x, p,t . The ions have high directed axiale

velocity V sb c in the z-direction, and the back-b b

ground electrons are assumed to be nonrelativistic
and approximately stationary with zero average axial
velocity, Hd3pÕ f ,0 in the laboratory frame. In thez e

smooth-beam approximation, the ion beam is as-
sumed to be continuous in the z-direction, and the
applied transverse focusing force on a beam ion is
modeled by

F b syg m v 2 xe qye , 1Ž .ˆ ˆŽ .foc b b b b x y

where x sxe qye is the transverse displacementˆ ˆH x y
Ž . 2from the beam axis, g y1 m c is the characteris-b b

tic directed ion kinetic energy, m is the ion restb

mass, c is the speed of light in Õacuo, and v sb b

const. is the effective betatron frequency for trans-
verse ion motion in the applied focusing field. For
the background electrons, assuming that the ion den-
sity exceeds the background electron density, the
space-charge force on an electron, F s se= f, pro-e H
vides transverse confinement of the background elec-
trons by the electrostatic space-charge potential
Ž .f x,t . It is further assumed that the ion motion in

the beam frame is nonrelativistic, and that the trans-
verse momentum components of the beam ions and
the characteristic spread in axial momentum are small
compared with the directed axial momentum. The
space-charge intensity in the present analysis is al-
lowed to be arbitrarily large, subject only to trans-
verse confinement of the beam ions by the focusing

Ž .force in Eq. 1 . Finally, the present analysis is
carried out in the electrostatic and magnetostatic
approximations, and the self-generated electric and

s Ž .magnetic fields are represented as E sy=f x,t
s Ž .and B s=A x,t =e , where the electrostatic po-ˆz z

Ž .tential f x,t is determined self-consistently from
Poisson’s equation. Treating the axial velocity pro-
file of the beam ions as approximately uniform over

Ž .the beam cross section, V x,t ,b csconst., andz b b

assuming that the electrons carry zero axial current
in the laboratory frame, the z-component of vector

Ž .potential A x,t is determined self-consistently inz

the magnetostatic approximation from = 2A sz

y4p Z eb n . Here, qZ e is the ion charge, andb b b b
Ž . 3 Ž .n x,t sHd pf x, p,t is the ion number density.b b

Making use of the assumptions outlined above,
collective interactions between the beam ions and the
background electrons are described by the nonlinear
Vlasov–Maxwell equations for the ion and electron

Ž . Ž .distribution functions, f x, p,t and f x, p,t , theb e
Ž .space-charge potential f x,t , and the combined

Ž . Ž . Ž .potential c x,t sf x,t yb A x,t . We obtainb z
w x10,11

E E E
2qzP y g m v x qZ e= c PŽ .b b b b H b H½ E t E x E pH

Ef E
yZ e f s0 , 2Ž .b b5E z E pz
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E E E
qzP qe=fP f s0 , 3Ž .e½ 5E t E x E p

= 2fsy4p e Z d3pf y d3pf , 4Ž .H Hb b ež /
Zb2 3 3= csy4p e d pf y d pf , 5Ž .H Hb e2ž /g b

Ž .where zsprg m in Eq. 2 , and zsprm in Eq.b b e
Ž .3 .

Ž . Ž .Eqs. 2 – 5 constitute a complete description of
the collective interaction of the beam ions with the
background electrons based on the Vlasov–Maxwell
equations. In the present analysis, we further assume
that the beam propagates axially through a perfectly
conducting cylindrical pipe with radius rsr . En-w

w s x w s x w s xforcing E s E s B s0 readilyu rsr z rsr r rsrw w w

Ž . Ž .gives f rsr ,u , z,t s0, and c rsr ,u , z,t s0.w w

Here, the constant values of the potentials at rsrw

have been taken equal to zero.
Ž .Finally, under equilibrium conditions ErE ts0 ,

the analysis assumes that ion and electron properties
are spatially uniform in the z-direction with ErE zs
0. However, the stability analysis assumes small-am-
plitude perturbations with z- and t-variations propor-

Ž .tional to exp ik zy iv t , where k is the axialz z
Ž .wavenumber, and v is the complex oscillation

frequency, with Im v)0 corresponding to instabil-
ity. For present purposes, the stability analysis as-
sumes perturbations with sufficiently long axial
wavelength and high frequency that

k 2 r 2
<1 , 6Ž .z b

where r is the characteristic beam radius. Consis-b
Ž . 2 2tent with Eq. 6 , we approximate = ,= sH

2 2 2 2 Ž . Ž .E rE x qE rE y in Eqs. 4 and 5 , and neglect to
leading order the contributions proportional to
Ž . Ž .ErE z df in the linearized versions of Eqs. 2 and
Ž .3 . Our previous investigations of the electron–ion

w xtwo-stream instability 10,11 were carried out in the
limit of cold beam ions and background electrons in
the axial direction, assuming that the phase velocity,
vrk , of the wave excitations satisfiesz

vrk yb c 4Õ , and vrk 4Õ . wherez b Tb z z Te z
Ž .1r2 Ž .1r2Õ s 2T rg m and Õ s 2T rm areTb z b z b b Te z e z e

the characteristic axial thermal speeds of the beam
ions and the background electrons, respectively. An

important feature of the present analysis is the incor-
Ž .poration of the effects of a small axial momentum

spread on detailed stability behavior.
Under quasisteady equilibrium conditions with

ErE ts0, we assume axisymmetric beam propaga-
Ž .tion ErEus0 and negligible variation with axial

Ž .coordinate ErE zs0 . It is readily shown from Eqs.
Ž . Ž .2 – 5 that the equilibrium distribution functions
Ž .ErE ts0 for the beam ions and background elec-
trons are of the general form

f 0 r , p sF H G p ,Ž . Ž . Ž .b b H b b z

f 0 r , p sF H G p , 7Ž . Ž . Ž . Ž .e e H b e z

Ž 2 2 .1r2where rs x qy is the radial distance from
the beam axis, the distributions in axial momentum

` Ž .are normalized according to H dp G p s1, fory` z j z

jsb,e, and H and H are the single-particleH b H e

Hamiltonians defined by

1
12 2 2H s p q g m v rH b H b b b b22g mb b

0 0ˆqZ e c r yc ,Ž .b

1
2 0 0ˆH s p ye f r yf . 8Ž . Ž .H e H2me

Here, for ErEus0sErE z, H and H are exactH b H e

single-particle constants of the motion in the equilib-
ˆ 0rium field configuration, and the constants c '

0 ˆ 0 0Ž . Ž . Žc rs0 and f 'f rs0 are the on-axis rs
.0 values.

There is wide latitude in specifying the functional
wforms of the equilibrium distribution functions 9–

x Ž . Ž .11 . Once F H and F H are specified,b H b e H e

however, the equilibrium self-field potentials and
density profiles can be calculated self-consistently

Ž . Ž .from Eqs. 4 and 5 with ErEus0sErE z. For our
purposes here, we specialize to the case of monoen-

w xergetic electrons and ions 1,10,11,22

n̂b ˆF H s d H yT ,Ž . Ž .b H b H b H b2pg mb b

n̂e ˆF H s d H yT . 9Ž . Ž .Ž .e H e H e H e2p me

In this case, it is found that the density profiles
0Ž .n r , jsb,e, correspond to overlapping step-func-j
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tion profiles. Here, n and n ' fZ n are positiveˆ ˆ ˆb e b b

constants corresponding to the ion and electron den-
sities, fsconst. is the fractional charge neutraliza-

ˆ ˆtion, and T and T are constants correspondingH b H e
Ž .to the on-axis rs0 values of the transverse ion

and electron temperatures, respectively. Without pre-
w xsenting algebraic details 10,11 , some algebraic ma-

Ž . Ž . Ž . Ž .nipulation of Eqs. 4 , 5 , and 7 – 9 gives the
0Ž .step-function density profiles n r sn sconst., forˆj j

0Ž .0Fr-r , and n r s0 for r -rFr , and jsb j b w

b,e. Here, the beam radius r is related to otherb
2 2 ˆequilibrium parameters by n r s2T rg m andˆ b b H b b b

2 2 ˆn r s2T rm , where for monoenergetic ions andê b H e e
Ž .electrons, the depressed betatron frequencies n̂ b

and n are defined byê

1
12 2 2n sv y y f v sconst. ,ˆ ˆb b b pb2 2ž /g b

1 g mb b2 2n s 1y f v sconst. , 10Ž . Ž .ˆ ˆe pb2 Z mb e

where v 2 s4p n Z 2e2rg m is the ion plasmaˆ ˆpb b b b b

frequency-squared. The inequalities, n 2 )0 and n 2ˆ ˆb e

)0, are required for existence of the equilibrium.
Ž 2 2 .ŽTherefore, we obtain the inequalities v rv 1yˆ pb b b

2 . 2g f -2g and f-1, as restrictions on beam in-b b

tensity and fractional charge neutralization for trans-
verse confinement of the ions and electrons.

For small-amplitude perturbations about general
Ž . Ž .equilibrium distributions, F H and G p , jsj H j j z

0Ž .b,e, and corresponding self-field potentials, c r
0Ž .and f r , a stability analysis proceeds by lineariz-

Ž . Ž .ing Eqs. 2 – 5 . Perturbed quantities are expressed
ˆŽ . Ž . Ž . Ž .as dc x,t sdc x exp ik zy iv t , d f x, p,tH z b

ˆ Ž . Ž .sd f x , p exp ik zy iv t , etc., where x sb H z H
Ž .x, y , and Im v)0 is assumed, corresponding to

Ž .instability temporal growth . Here, k s2p nrL isz

the axial wavenumber, where n is an integer, and L
Žis the fundamental axial periodicity length Ls2p R

.for a ring, where R is the ring radius . The linearized
Vlasov equations are formally integrated by using

w x1the method of characteristics 1,10 to integrate
X Ž X. Xalong the unperturbed trajectories, x t and pH H

Ž X.t , in the equilibrium field configuration. Some

1 w xSee, for example, Chapters 2, 4, and 10 of Ref. 1 .

Ž .straightforward algebra that makes use of Eqs. 2 –
Ž .5 and the assumptions enumerated earlier gives

E
ˆ ˆd f x , p sye F H df xŽ . Ž . Ž .e H e H e H½E HH e

0 Xˆqi vyk Õ dtdf xŽ . Ž .Hz z H
y`

=exp yi vyk Õ t G p ,Ž . Ž .z z e z5
11Ž .

E
ˆ ˆd f x , p sZ e F H dc xŽ . Ž . Ž .b H b b H b H½E HH b

0 Xˆqi vyk Õ dtdc xŽ . Ž .Hz z H
y`

=exp yi vyk Õ t G p ,Ž . Ž .z z b z5
12Ž .

Ž .where Õ sp rm in Eq. 11 , Õ sp rg m in Eq.z z e z z b b
ˆŽ . Ž .12 , and the potential amplitudes, df x andH

ˆ Ž .dc x , solveH

E 2 E 2

ˆq df2 2ž /E x E y

3 3ˆ ˆsy4p e Z d pd f y d pd f , 13Ž .H Hb b e

E 2 E 2

ˆq dc2 2ž /E x E y

1
3 3ˆ ˆsy4p e Z d pd f y d pd f . 14Ž .H Hb b e2g b

Ž . Ž . XIn Eqs. 11 and 12 , ts t y t is the displaced
X Ž X.time variable, and the ‘primed’ orbits, x t andH

X Ž X.p t , in the equilibrium field configuration areH
w xassumed 10,11 to pass through the phase-space

Ž . Xpoint x , p at time t s t.H H
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Ž . Ž .The kinetic eigenvalue Eqs. 11 – 14 have a
wide range of applicability, and can be used to
determine the complex oscillation frequency v and
detailed stability properties for a wide range of sys-
tem parameters and choices of equilibrium distribu-

Ž . Ž .tion functions F H and G p , jsb,e. Thej H j j z
Ž . Ž .principal challenge in analyzing Eqs. 11 – 14 is

two-fold. First, depending on the equilibrium pro-
X Ž X.files, the transverse orbits x t are often difficultH

to calculate in closed analytical form. Second, once
the orbits in the equilibrium fields are determined,

X Ž . Ž .the integrations over t in Eqs. 11 and 12 are
challenging because the orbits occur explicitly in the

Ž .arguments of the yet unknown eigenfunction ampli-
ˆ X ˆ XŽ . Ž .tudes df x and dc x .H H

For present purposes, we specialize to the choice
of monoenergetic ion and electron distributions in

Ž .Eq. 9 , and the corresponding step-function equilib-
0Ž .rium density profiles with n r sn sconst., forˆj j

0Ž .0Fr-r , and n r s0, for r -rFr . In thisb j b w
X Ž X.case, the transverse ion orbit equation for x t canH

be integrated exactly to give

1
X Xx t sx cos n t q p sin n tŽ . Ž . Ž .ˆ ˆH H b H b

g m n̂b b b

15Ž .

XŽ X. XŽ X.for 0Fr t -r , and the axial orbit is z t szqb
Ž . Xp rg m t . Here, ts t y t is the displaced timez b b

Ž .variable, and n sconst. is the depressed betatronˆ b
Ž .frequency defined in Eq. 10 . The electron orbit

X Ž X. Ž .x t is identical in form to Eq. 15 , provided weH
make the replacements g m ™m and n ™n inˆ ˆb b e b e

Ž .Eq. 15 . A careful examination of the eigenvalue
Ž . Ž .Eqs. 11 – 14 for the choice of equilibrium distribu-

Ž . w x Ž . Ž .tions in Eq. 9 10,11 shows that Eqs. 11 – 14
support a class of exact solutions in which the

ˆ Ž .perturbed potentials have the forms, dc x sH
ˆ ˆ ll ˆŽ . Ž . Ž . Ž .dc r exp i llu sc r exp i llu , and df x sll ll H
ˆ ˆ llŽ . Ž . Ž .df r exp i llu sf r exp i llu , in the beam inte-ll ll

ˆ ˆŽ .rior 0Fr-r . Here, c and f are constantb ll ll

amplitudes, ll is the azimuthal mode number, and
we have introduced cylindrical polar coordinates
Ž .r,u defined by xsrcosu and ysrsinu . This
class of exact solutions corresponds to surface-wave
perturbations in which the perturbed density, d n sˆ j

Hd3pd f , jsb,e, is localized at the beam surfacej
Ž .rsr . What is most remarkable is that the orbitb

X ll Ž X.integrals over terms proportional to r exp i llu s
w XŽ X. XŽ X.x ll Ž . Ž .x t q iy t occurring in Eqs. 11 and 12 can
be evaluated in closed analytical form, and Maxwell’s

Ž . Ž . Ž .Eqs. 13 and 14 solved exactly inside 0Fr-rb
Ž . w xand outside r -rFr the beam 10,11 . Enforc-b w

ˆ Ž .ing the appropriate boundary conditions on df rll
ˆ Ž .and dc r at rsr and rsr then gives a closedll b w

dispersion relation for the complex eigenfrequency
v.

Derivation of the kinetic dispersion relation from
Ž . Ž .Eqs. 11 – 14 closely parallels the analysis in Ref.

w x w x10 and 11 . Without presenting algebraic details,
for perturbations with azimuthal mode number ll
and axial wavenumber k , we obtain the dispersionz

relation

22 v̂pb llq G vŽ .b2 ll 2 2llg n̂1y r rrŽ . b bb w

22 v̂pe ll= q G vŽ .e22 ll lln̂1y r rrŽ . eb w

v 2 v 2ˆ ˆpe pb ll lls P G v G v , 16Ž . Ž . Ž .e b2 2lln llnˆ ˆe b

where v 2 s4p n e2rm , v 2 s4p n Z 2e2rg m ,ˆ ˆ ˆ ˆpe e e pb b b b b
Ž .and n and n are the depressed betatron frequen-ˆ ˆb e

Ž .cies defined in Eq. 10 . The ion and electron suscep-
llŽ . Ž .tibilities, G v , jsb,e, occurring in Eq. 16 arej

defined by

ll1 ll !
llG v syŽ . Ýj ll m! llym !Ž .2 ms0

=
` lly2m n G pŽ . Ž .ˆ j j z

dp ,H z
vyk Õ y lly2m nŽ . Ž . ˆy` z z j

17Ž .

Žfor general azimuthal mode number ll , and yet
. Ž .unspecified distribution in axial momentum G p .j z
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Ž .In carrying out the integration over p in Eq. 17 ,z
w x Ž .Im v)0 is assumed 23 See footnote 1 .

Ž .Eq. 16 is the final form of the kinetic dispersion
relation, derived from the linearized Vlasov–Maxwell
equations for small-amplitude perturbations about
the monoenergetic equilibrium distributions in Eq.
Ž .9 and the corresponding step-function density pro-

Ž .files. As such, Eq. 16 can be used to determine the
complex oscillation frequency v over a wide range
of system parameters, including normalized beam

Ž 2 2 2 .intensity v r2g v , fractional charge neutral-ˆ pb b b b
Ž . Ž .ization fsn rZ n , azimuthal mode number ll ,ˆ ˆe b b

Ž . Ž .axial wavenumber k , choice of G p , etc., sub-z j z

ject only to the simplifying assumptions summarized
earlier in this Letter. In the absence of electrons
Ž . Ž .n s0 , the dispersion relation 16 supports stableˆe

collective oscillations of the ion beam, and reveals a
rich harmonic content at frequencies vyk V ,z b

"n , "2n , PPP ," lln . When background elec-ˆ ˆ ˆb b b
Ž . Ž .trons are present n /0 , however, Eq. 16 sup-ˆe

Ž .ports unstable solutions Im v)0 with instability
Ž .resulting from the axial streaming V /0 of theb

beam ions through the background electrons, at least
in the limit where the ion and electron axial motions

w x Ž . Ž .are ‘cold’ 10,11 , with G p sd p yg m Vb z z b b b
Ž . Ž .and G p sd p .e z z

Ž .The p -integration in Eq. 17 can be carried outz
Ž .for a variety of choices of G p ranging from aj z

shifted Maxwellian, to a step-function distribution, to
a Lorentzian distribution. For analytical simplicity,
we consider here the case of Lorentzian distributions
with

Db
G p s ,Ž .b z 2 2p p yg m V qDŽ .z b b b b

De
G p s , 18Ž . Ž .e z 2 2p p qDŽ .z e

where D sconst.)0 is a measure of the axialj

momentum spread, and p and Õ are related byz z

p sm V for the electrons, and p sg m Õ forz e z z b b z
Ž .beam the ions. Note from Eq. 18 that V sb

` Ž . ` Ž .H dp Õ G p , and 0sH dp Õ G p , whichy` z z b z y` z z e z

corresponds to the beam ions streaming axially
through a stationary electron background. Substitut-

Ž . Ž .ing Eq. 18 into Eq. 17 and integrating over p forz

Im v)0 readily gives the simple expression

G ll vŽ .j

ll1 ll !
sy Ýll m! llym !Ž .2 ms0

=
lly2m nŽ . ˆ j

.
< <vyk V q i k Õ y lly2m nŽ . ˆŽ .z j z T j z j

19Ž .

Here, V s0 for the electrons, and Õ is a measuree T j z

of the characteristic axial thermal speed, defined by
Õ sD rg m for the beam ions, and Õ sTb z b b b Te z

D rm for the background electrons. Substitutinge e
Ž . Ž .Eq. 19 into Eq. 16 , the resulting dispersion rela-

tion can be used to investigate the effects of an axial
momentum spread on detailed properties of the elec-
tron–ion two-stream instability for general azimuthal
mode number ll over a wide range of system param-
eters.

Ž .A careful examination of Eq. 16 for n /0ˆe
Žshows that the strongest instability largest growth

.rate occurs for azimuthal mode number lls1, cor-
Ž .responding to a simple dipole displacement of the

beam ions and the background electrons. For lls1,
Ž . Ž .we substitute Eq. 19 into Eq. 16 , and introduce

the electron and ion collective oscillation frequen-
cies, v and v , defined bye b

r 2
b12 2 2v 'n q v 1yˆ ˆe e pe2 2ž /rw

1 g m r 2
b b b2s v 1y f ,ˆ pb 2ž /2 Z m rb e w

v 2 r 2ˆ pb b2 2v 'n q 1yˆb b 2 2ž /2g rb w

1 r 2
b12 2sv q v fy , 20Ž .ˆb b pb2 2 2ž /g rb w

where v 2 has been expressed as v 2 sˆ ˆpe pe
Ž . 2 Ž .g m rZ m fv . Substituting into Eq. 16 andˆb b b e pb
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rearranging terms, the lls1 dispersion relation can
be expressed in the compact form

2 2< <vyk V q i k Õ yvŽ .z b z Tb z b

2 2 4< <= vq i k Õ yv sv , 21Ž .Ž .z Te z e f

where v is defined byf

22r g mb b b14 4v ' f 1y v . 22Ž .ˆf pb4 2ž / Z mr b ew

Ž .In the cold limit Õ s0sÕ , and in theTb z Te z
Ž .absence of background electrons fs0 and v s0 ,f

Ž .Eq. 21 gives stable collective oscillations of the ion
beam with frequency vyk V s"v , where v isz b b b

Ž .defined in Eq. 20 . For f/0, however, the ion and
Ž .electron terms on the left-hand side of Eq. 21 are

coupled by the v 4 term on the right-hand side,f

leading to one unstable solution with Im v)0 for a
certain range of axial wavenumber k . The instabil-z

ity is two-stream in nature, and results from the
directed ion motion with axial velocity V throughb

Ž .the stationary background electrons. A careful ex-
w x Ž .amination 10,11 of Eq. 21 shows that the unsta-

ble, positive-frequency branch has frequency and
Ž .wavenumber v,k closely tuned to the valuesz

Ž .v ,k defined by v sqv and v yk V s0 z 0 0 e 0 z 0 b
Ž .yv , or equivalently, k s v qv rV . Thisb z 0 e b b

gives

v v0 b
yV ,y V . 23Ž .b bk v qvz 0 e b

Because v <v in the regimes of practical interestb e
w Ž .x Ž .Eq. 20 , it follows from Eq. 23 that the phase
velocity of the unstable mode is downshifted only
slightly from the directed beam velocity V , andb

could be strongly affected by Landau damping by
the beam ions for modest values of Õ rV /0.Tb z b

Ž .Returning to the full dispersion relation 21 for
Ž .Õ /0, it is important to recognize that Eq. 21 isT j z

applicable over a wide range of normalized beam
Ž 2 2 2 .intensity v r2g v and fractional charge neu-ˆ pb b b b
Ž . 2 2tralization f consistent with n )0 and n )0.ˆ ˆb e
Ž .That is, Eq. 21 can be applied to the moderate-in-

Ž 2 2 2 .tensity ion beams v r2g v Q0.2, say in theˆ pb b b b

proton linacs and storage rings envisioned for the
Ž .Spallation Neutron Source SNS and the Proton

Ž . w xStorage Ring PSR 16–18 . On the other hand, Eq.
Ž .21 can also be applied to the low-emittance, very

Ž 2 2 .high-intensity ion beams v r2g v ™1 envi-ˆ pb b b b
w xsioned for heavy ion fusion 4 .

Typical results for the unstable solution to Eq.
Ž . Ž .21 are illustrated in Fig. 1 for Õ s0sÕTb z Te z

Ž .and in Fig. 2 for Õ /0, and Õ sÕ . TheTb z Tb z Te z

system parameters in Figs. 1 and 2 correspond to
Ž . Ž . 2m rm s1836 protons , g y1 m c s800MeV,b e b b

r rr s0.5, and fs1.b w

Shown in Fig. 1, for Õ s0sÕ , are plots ofTb z Te z
Ž . Ž . ŽIm v rv and Revyv rv versus k yb b e b b z

Ž . Ž .Fig. 1. Plots of a normalized growth rate Im v rv , and bb b
Ž .normalized real frequency Rev y v rv versus shifted axiale b b

Ž .wavenumber k y k V rv obtained from the dispersionz z 0 b b b
Ž .relation 21 for the unstable branch with positive real frequency.

System parameters correspond to Õ s0s Õ , m rm sTb z Te z b e
Ž . Ž . 21836 protons , g y1 m c s800 MeV, r r r s0.5, and f sb b b w

0.1. Curves are shown for several values of normalized beam
intensity v 2 r2g 2v 2 ranging from 0.05 to 0.5.ˆ pb b b b



( )R.C. DaÕidson, H. QinrPhysics Letters A 270 2000 177–185184

. Ž .k V rv , where k ' v qv rV , obtainedz 0 b b b z 0 e b b
Ž .from Eq. 21 for the unstable branch for several

values of v 2 r2g 2v 2 ranging from 0.05 to 0.5. Atˆ pb b b b

low beam intensities, the instability growth rate in
Fig. 1 is relatively small and has a narrow bandwidth
in k -space, symmetric about k sk . On the otherz z z 0

hand, as the normalized beam intensity v 2 r2g 2v 2ˆ pb b b b

is increased to 0.5, the instability bandwidth in-
creases significantly in Fig. 1, and the growth rate

Ž .becomes substantial, with Im v ,1.2 v . Asmax b b
w xreported previously 10,11 , the two-stream growth

Ž .rate calculated from Eq. 21 also increases with
increasing fractional charge neutralization f , and
increasing values of r rr .w b

To illustrate the stabilizing influence of parallel
kinetic effects on the two-stream instability, shown

Ž . Žin Fig. 2 is plot of Im v rv versus k yb b z
. Ž .k rv , obtained from Eq. 21 for the unstablez 0 b b

branch for fixed value of the normalized beam inten-
sity, v 2 r2g 2v 2 s0.07, and values of Õ rVˆ pb b pb Tb z b

ranging from 0 to 0.01. Furthermore, for purpose of
illustration, in Fig. 2 we have fixed the axial momen-
tum spread of the electrons by the value Õ sÕ .Te z Tb z

Because the characteristic phase velocity of the un-
stable mode is downshifted only slightly from the

w Ž .xdirected beam velocity V Eq. 23 , it is expectedb

that Landau damping by parallel kinetic effects can

Fig. 2. Plot of normalized growth rate Im v rv versus shiftedb b
Ž . Ž .axial wavenumber k y k V rv obtained from Eq. 21 forz z 0 b b b

the unstable branch with positive real frequency. System parame-
ters correspond to v 2 r2g 2v 2 s0.07, Õ s Õ , m rm sˆ pb b b b Te z Tb z b e

Ž . Ž . 21836 protons , g y1 m c s800 MeV, r r r s0.5, and f sb b b w

0.1. Curves are shown for several values of normalized ion
thermal spread Õ r V ranging from 0 to 0.01.Tb z b

have a strong stabilizing influence at modest values
of Õ rV . That this is indeed the case is evidentTb z b

from Fig. 2, which shows a substantial reduction in
maximum growth rate and eradication of the instabil-
ity over the instability bandwidth as Õ rV isT z b b

increased from 0 to 0.01.
Ž .The dispersion relation 21 can be used to derive

w xan analytical criterion 24 for stabilization of the
two-stream instability by parallel kinetic effects, valid
for normalized beam intensity s 'v 2 r2g v 2ˆb pb b b b

Ž .ranging from the moderate values s Q0.2 of inter-b

est in proton machines, to the space-charge domi-
Ž .nated beams s ™1 of interest in heavy ion fusion.b

For our purpose here, we present the stability crite-
rion for moderate values of s sv 2 r2g v 2 Q0.2.ˆb pb b b b

It is convenient to express dvsvyv and d k se z
Ž .k yk , where k s v qv rV , and v andz z 0 z 0 e b b e
Ž .v are defined in Eq. 20 . For s <1, becauseb b

< < w Ž .xdv <v , we see Figs. 1 and 2, and Eq. 20 , itb
Ž .follows that the dispersion relation 21 can be ap-

proximated by the quadratic form.

< < < <dvq i k Õ yd k V dvq i k ÕŽ . Ž .z Tb z z b z Te z

v 4
f

sy 24Ž .
4v ve b

Ž . Ž .for v,k in the vicinity of v ,k . The solutionz 0 z 0
Ž . Ž .to Eq. 24 with gs Im dv )0 corresponds to
Ž .instability temporal growth , with maximum growth

Ž .rate occurring for d k s0 see Fig. 2 . For coldz

beam ions and background electrons with Õ s0sTe z
Ž .Õ , setting d k s0 in Eq. 24 gives the maximumTb z z

Ž . Ž 4 .1r2growth rate Imdv s v r4v v . On themax f e b

other hand, as Õ and Õ are increased, theTb z Te z

maximum growth rate decreases, and it can be shown
Ž .from Eq. 24 that the spectrum of unstable modes is

Ž .completely stabilized Im dv - 0 whenever
k 2 Õ Õ )v 4r4v v , or equivalently,z 0 Tb z Te z f e b

Õ Õ v 4
Tb z Te z f

) , 25Ž .2 2V 4v v v qvŽ .b e b e b

Ž .where v , v , and v are defined in Eqs. 20 andb e f
Ž .22 .

In the regimes of practical interest, the right-hand
Ž .side of Eq. 25 is very small, and only modest

momentum spreads are required to provide complete
stabilization of the two-stream instability. For exam-
ple, assuming r rr <1 and s <1, and takingb w b
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Ž .Õ sÕ for purpose of illustration, Eq. 25 canTe z Tb z

be expressed as
1r4

Dp 1 mz b e1r2 1r2 1r4) g f s , 26Ž .b b ž /g m V 2 g mb b b b b

where Dp rg m V sÕ rV , Dp sD is thez b b b b Tb z b z b b
w Ž .xaxial momentum spread see Eq. 18 , and s sb

v 2 r2g v 2 is the normalized beam intensity. Asˆ pb b b b

illustrative parameters, for fs0.1, s s0.07, g sb b
Ž .1.85 and m rm s1836, Eq. 26 predicts completeb e

stabilization for Dp rg m V )1.4%.z b b b b

In conclusion, we have outlined here the deriva-
Ž .tion of the fully kinetic dispersion relation 21

describing the electron–ion two-stream instability for
an intense ion beam propagating through a stationary
population of background electrons. For k 2 r 2

<1,z b
Ž .the dispersion relation 21 incorporates the leading-

order effects of an axial momentum spread in the ion
and electron components, and can be used to investi-
gate detailed stability properties over a wide range of

Ž 2 2 2 .normalized beam intensity v r2g v , fractionalˆ pb b b b
Ž .charge neutralization fsn rZ n , azimuthal modeˆ ˆe b b

Ž . Ž .number ll , and axial wavenumber k . For dipolez
Ž .perturbations lls1 , it has been shown that Landau

damping by parallel kinetic effects can have a strong
stabilizing influence on the electron–ion two-stream
instability. The condition for complete stabilization
of the two-stream instability by parallel kinetic ef-

Ž . Žfects is given by Eq. 25 valid for moderate values
.of beam intensity , which corresponds to a relatively

w Ž .xsmall axial momentum spread see Eq. 26 . If the
beam ions and background electrons are initially
cold axially, it is expected that a nonlinear conse-
quence of the two-stream instability would be to
cause an increase in axial momentum spread, thereby

Ž .leading to a quasilinear stabilization of the instabil-
ity.
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