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The present analysis considers an intense non-neutral ion beam with characteristic axial velocity
Vb � bbc and directed kinetic energy �gb 2 1�mbc2 propagating in the z direction through an
applied focusing field which produces a transverse focusing force Ffoc � 2gbmbv

2
bb�xêx 1 yêy�

on a beam ion (smooth focusing approximation). For a thermal equilibrium distribution function
Fb�H 0

�� � const 3 exp�2H 0
��Tb�, it is shown that the normalized radial density profile

pr2
bn0

b�r��Nb , plotted as a function of r�rb , depends on a single dimensionless parameter, db �
NbZ2

be2�2g
2
bTb , which is a measure of the normalized beam intensity. Here, Nb �

R
dx dy n0

b�r� is
the number of beam ions per unit axial length and r2

b � N21
b

R
dx dy r2n0

b�r� is the mean-square beam
radius. “Universal” profiles for the beam density are presented for a wide range of system parameters.
The present results are readily extended to the case of a cylindrical non-neutral plasma column confined
by a uniform axial magnetic field B0êz .

PACS numbers: 29.27.Bd, 41.75.–i
A detailed understanding of the influence of space-
charge effects on the equilibrium and stability properties
of intense charged particle beams is increasingly impor-
tant for applications of high-intensity accelerators and
transport systems to basic scientific research, heavy ion
fusion, spallation neutron sources, waste transmutation,
and tritium production [1–6]. In the beam frame, such
intense non-neutral beams [1–13] share many properties
in common with laboratory-confined non-neutral plasmas
[1,14–19], including thermal equilibrium properties, with
density profile shape that exhibits a sensitive nonlinear
dependence on space-charge intensity [1,2,11–19]. For
the case of a thermal equilibrium distribution function
Fb�H 0

��, standard analyses [1,2,11–13] of the nonlinear
Vlasov-Maxwell equation for an intense cylindrical beam
typically characterize the equilibrium density profile
n0

b�r� �
R

dx0 dy0 Fb�H 0
�� in terms of two parameters

corresponding to the (transverse) temperature Tb and on-
axis density n̂b , or scaled versions thereof. Here, r is the
radial distance from the beam axis. Indeed, in the earliest
[14] and more recent [1,11,15] theoretical analyses of the
thermal equilibrium properties of space-charge-dominated
beams by Davidson et al., and in thermal equilibrium
analyses [2,13] by Reiser et al., the studies have typically
investigated equilibrium properties of appropriately nor-
malized quantities as a function of the (dimensionless) on-
axis beam intensity v

2
pb�v

2
bb � 4pn̂bZ2

be2�gbmbv
2
bb

(proportional to n̂b) and the characteristic on-axis
Debye length lDb � �Tbg

2
b�4pn̂bZ2

be2�1�2 (proportional
to T

1�2
b �n̂

1�2
b �, treating n̂b and Tb as independent parame-

ters. The purpose of the present article is to show that the
normalized radial profile for pr2

bn0
b�r��Nb , plotted versus

r�rb , can be characterized in terms of a single dimen-
sionless parameter db defined by db � NbZ2

be2�2g
2
bTb .

Here, Nb �
R

dx dy n0
b�r� is the number of beam ions
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per unit axial length, gb is the relativistic mass factor,
and r2

b � N21
b

R
dx dy r2n0

b�r� is the mean-square beam
radius. The fact that the profiles for pr2

bn0
b�r��Nb versus

r�rb are “universal” for specified values of db is a very
powerful result. For example, a detailed measurement
of the radial density profile n0

b�r� in thermal equilibrium
permits a direct determination of Nb and r2

b , and an
inference (through a “best-fit” determination of db) of the
temperature Tb . The use of detailed measurements of the
thermal equilibrium density profile n0

b�r� to infer the trans-
verse temperature Tb through a best-fit analysis has been
employed in recent experimental studies of laboratory-
confined non-neutral plasmas by Chao et al. [19].

In the present paper, following a discussion of the
assumptions and theoretical model, the nonlinear Vlasov-
Maxwell equations are investigated analytically and
numerically for the case of a thermal equilibrium beam,
and universal profiles for pr2

bn0
b�r��Nb are plotted versus

r�rb . The results are then extended, by analogy, to the
case of a rotating, non-neutral plasma column confined by
a uniform axial magnetic field B0êz [1,14–19].

The present analysis considers an intense non-neutral
ion beam with characteristic radius rb and axial momentum
gbmbbbc propagating in the z direction. Here, Vb � bbc
is the axial beam velocity, gb � �1 2 b

2
b�21�2 is the rela-

tivistic mass factor, Zbe and mb are the ion charge and
rest mass, respectively, and the applied transverse focus-
ing force on a beam ion is modeled (in the smooth focus-
ing approximation) by Ffoc � 2gbmbv

2
bb�xêx 1 yêy�,

where �x, y� is the transverse displacement from the beam
axis and vbb � const is the focusing frequency. In addi-
tion, for present purposes, the particle motion in the beam
frame is assumed to be nonrelativistic, and we consider
the class of intense non-neutral beam equilibrium solutions
�≠�≠t � 0� to the nonlinear Vlasov-Maxwell equations
© 1999 The American Physical Society 114401-1
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which are axisymmetric �≠�≠u � 0� about the beam axis
and are continuous in the axial direction with ≠�≠z � 0.
Denoting the four-dimensional transverse phase space by
�x, y, x0, y0�, where x0 � dx�ds and y0 � dy�ds are (di-
mensionless) transverse velocities, and s � bbct is the
normalized time variable, it is readily shown that distribu-
tion functions f0

b�x, y, x0, y0� of the general form [1,11–13]

f0
b � Fb�H 0

�� (1)

are exact equilibrium solutions to the nonlinear Vlasov-
Maxwell equations. Here, H

0
� is the single-particle

Hamiltonian defined by

H 0
� �

1
2

gbmbb2
bc2�x02 1 y02�

1
1
2

gbmbv2
bb�x2 1 y2� 1

Zbe

g
2
b

f0�r� , (2)

where r � �x2 1 y2�1�2 is the radial distance from the
beam axis, and the electrostatic potential f0�r� is deter-
mined self-consistently in terms of Fb�H 0

�� from Pois-
son’s equation

1
r

≠

≠r
r

≠

≠r
f0�r� � 24pZben0

b�r� . (3)

In Eq. (3),

n0
b�r� �

Z
dx0 dy0 Fb�H 0

�� (4)
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is the radial number density profile of the beam ions andR
dx0 dy0 . . . denotes

R`

2` dx0
R`

2` dy0 . . . .
Equations (1)–(4) can be used to investigate detailed

equilibrium properties in the smooth-focusing approxima-
tion for a wide range of choices of equilibrium distribu-
tion function Fb�H 0

�� [1,11]. For present purposes, we
focus on the particular choice of distribution function [1,2,
11–13]

Fb�H 0
�� � n̂b

√
gbmbb

2
bc2

2pTb

!
exp

√
2
H

0
�

Tb

!
, (5)

which corresponds to thermal equilibrium. In Eq. (5), n̂b

and Tb are positive constants with dimensions of number
density and temperature (energy units), respectively. We
also assume that the cylindrical conducting wall is far
removed from the beam �rw ¿ rb�, and without loss of
generality we take f0�r � 0� � 0. Substituting Eq. (5)
into Eq. (4) and carrying out the integrations over x0 and
y0 readily gives the density profile

n0
b�r� � n̂b exp

(
2

1
2Tb

"
gbmbv2

bbr2 1
2Zbe

g
2
b

f0�r�

#)
,

(6)

where the electrostatic potential f0�r� is determined self-
consistently from
1
r

≠

≠r
r

≠

≠r
f0�r� � 24pZben̂b exp

(
2

1
2Tb

"
gbmbv2

bbr2 1
2Zbe

g
2
b

f0�r�

#)
. (7)
In Eqs. (6) and (7), r2 � x2 1 y2, and the constant n̂b �
n0

b�r � 0� can be identified with the on-axis beam number
density because f0�r � 0� � 0 is assumed.

Poisson’s equation (7) is a highly nonlinear differential
equation for f0�r� which must generally be solved numeri-
cally, and the corresponding (bell-shaped) density profile
determined self-consistently from Eq. (6). Extensive nu-
merical investigations of Eqs. (6) and (7) have been pre-
sented in the literature [1,2,11–17] which characterize the
equilibrium solutions typically in terms of two parameters
corresponding to the temperature Tb and the on-axis num-
ber density n̂b , or scaled versions thereof. The purpose of
the present work is to show that appropriately normalized
radial profiles for n0

b�r� and f0�r� can be characterized in
terms of a single dimensionless parameter db defined by

db �
NbZ2

be2

2g
2
bTb

, (8)

where

Nb �
Z

dx dy dx0 dy0 Fb�H 0
�� � 2p

Z `

0
dr rn0

b�r�

is the number of beam ions per unit axial length. As shown
later, the dimensionless parameter db can also be related to
the tune depression nb�n0 [see Eq. (16)]. The main point
is that a characterization of the solution to Eqs. (6) and (7)
by a single dimensionless parameter, db or nb�n0, permits
a numerical determination of universal radial profiles, valid
over a wide range of values of Nb and Tb .

Even though an exact analytical solution to Eqs. (6)
and (7) is not accessible, the key point to recognize is
that the entire class of equilibrium solutions to the nonlin-
ear Vlasov-Maxwell equations described by Eq. (1) pos-
sess a simple radial force balance constraint [10] that
relates the mean-square beam radius, r2

b � �x2 1 y2�0,
and the unnormalized transverse emittance squared, e

2
b �

4�x02 1 y02�0�x2 1 y2�0, to the focusing field strength
�v2

bb� and the number of beam ions per unit length
�Nb�. Here, the statistical average of a phase function
x�x, y, x0, y0� is defined in the usual manner by �x�0 �
N21

b

R
dx dy dx0 dy0 xFb�H 0

��. Without presenting alge-
braic details, the equilibrium radial force balance equation
is given by [10] √

kf 2
Kb

2r2
b

!
rb �

e
2
b

4r3
b

, (9)

where the focusing coefficient kf and self-field perveance
Kb are defined by

kf �
v

2
bb

b
2
bc2

, Kb �
2NbZ2

be2

g
3
bmbb

2
bc2

. (10)
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Equation (9) is a quadratic equation for r2
b , and the physi-

cally acceptable solution is given by

r2
b � r2

b

(
Kb

2
p

kf eb
1

"√
Kb

2
p

kf eb

!2

1 1

#1�2)
, (11)

where r2
b � eb�2

p
kf is the zero-beam-intensity solution

�Kb ! 0� to Eq. (9). For the case considered here, corre-
sponding to the thermal equilibrium distribution in Eq. (5),
it is readily shown for arbitrary beam intensity Kb that

e2
b �

8Tb

gbmbb
2
bc2

r2
b . (12)

Substituting Eqs. (10) and (12) into Eq. (9) readily gives

r2
b � r2

b�1 1 db� , (13)

where

r2
b �

2Tb

gbmbv
2
bb

�
eb

2pkf
. (14)

Equations (11) and (13) are, of course, fully equivalent,
leading to the simple identity

Kb
p

kf eb
�

db

�1 1 db�1�2
, (15)

where db � NbZ2
be2�2g

2
bTb is defined in Eq. (8). Finally,

following Reiser’s definition [20], we introduce the ef-
fective tune depression nb�n0 defined by [21] nb�n0 �
�1 2 Kb�2kfr2

b�1�2. Making use of the definition of r2
b in

Eq. (11) and the relation between Kb�2
p

kf eb and db in
114401-3
Eq. (8), it is readily shown that the effective tune depres-
sion nb�n0 can be expressed in terms of the dimensionless
parameter db � NbZ2

be2�2g
2
bTb by the simple identity

nb

n0
�

1
�1 1 db�1�2 . (16)

Note from Eq. (16) that nb�n0 ! 1 at low beam inten-
sity �db ø 1�, whereas nb�n0 � 1�d

1�2
b at high beam

intensity �db ¿ 1�. Comparing Eqs. (15) and (16), we
also note that the dimensionless parameter Kb�pkf eb

is related to the tune depression nb�n0 by the simple
expression

Kb
p

kf eb
�

nb

n0

√
n

2
0

n
2
b

2 1

!
, (17)

where nb�n0 # 1. In any case, the dimensionless pa-
rameters db, nb�n0, and Kb�pkf eb are all related by the
simple expressions in Eqs. (15) –(17), and are equivalent
measures of normalized beam intensity.

We now return to the equilibrium Poisson equation (7),
and introduce the dimensionless electrostatic potential F

and normalized radial coordinate R defined by

F�r� �
Zbef0�r�

2g
2
bTb

, R �
r
rb

, (18)

where the rms beam radius rb is defined in Eq. (11), or
equivalently in Eq. (13). Making use of r2

b � r2
b�1 1

db�, where r2
b � 2Tb�gbmbv

2
bb , it is readily shown that

Eq. (7) can be expressed in the equivalent form
1
R

≠

≠R
R

≠

≠R
F�R� � 28db

exp�2�1 1 db�R2 2 F	R`

0 dR2 exp�2�1 1 db�R2 2 F	
, (19)
where R � r�rb and db is defined in Eq. (8). Here, use
has been made of Nb � 2p

R`

0 dr rn0
b�r� to express the

on-axis beam density n̂b as

n̂b �
Nb

pr2
b

R`

0 dR2 exp�2�1 1 db�R2 2 F	
. (20)

Substituting Eq. (20) into Eq. (6) readily gives for the
equilibrium density profile

n0
b�r� �

Nb

pr2
b

exp�2�1 1 db�r2�r2
b 2 F	R`

0 dR2 exp�2�1 1 db�R2 2 F	
. (21)

The nonlinear Poisson equation (19) is to be solved
subject to the boundary conditions F�R � 0� � 0 �

≠F�≠R�R�0. What is clear from Eq. (19) is that the so-
lution to Eq. (19) for F�r� is characterized by the single
dimensionless parameter db � NbZ2

be2�2g
2
bTb . For a

specified value of db, Eq. (19) can be solved numeri-
cally for F�R� and the result substituted into Eq. (21) to
determine the equilibrium density profile n0

b�r�. Equa-
tion (19) can, of course, be solved analytically in the two
limiting cases corresponding to (i) high intensity and low
emittance �db ¿ 1� and (ii) low intensity and high emit-
tance �db ø 1�. For example, for db ¿ 1, it is readily
shown that the solution to Eq. (19) in the beam interior is
F � 2dbR2, and the corresponding density profile deter-
mined from Eq. (21) has the familiar step-function form

n0
b�r� �

(
Nb

2pr2
b

, 0 # r ,
p

2 rb ,

0 , r .
p

2 rb ,
(22)

where r2
b � r2

b�1 1 db�. On the other hand, for db ø 1,
the solution to Eq. (19) satisfies jFj ø R2 in the beam
interior, and the equilibrium density profile determined
from Eq. (21) has the Gaussian form

n0
b�r� �

Nb

pr2
b

exp�2r2�r2
b� , (23)

where r2
b � r2

b�1 1 db� � r2
b for db ø 1.

It is clear from Eqs. (21)–(23) that it is convenient to
measure the density n0

b�r� in units of Nb�pr2
b , where Nb

is the number of ions per unit axial length of the beam
and r2

b � r2
b�1 1 db� is the mean-square beam radius.

Equation (19) has been solved numerically for F�r� for
a wide range of values of the dimensionless parameter
db, and the results substituted into Eq. (21) to determine
114401-3
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the corresponding self-consistent density profile. The
results are summarized in Fig. 1, which presents universal
plots of the normalized density pr2

bn0
b�r��Nb versus

r�rb for several values of db and the corresponding
effective tune depression nb�n0 � �1 1 db�21�2. The
two limiting cases in Fig. 1 with db � 0 and db !
` correspond, respectively, to the Gaussian profile in
Eq. (23) and the step-function profile in Eq. (22). For
increasing values of normalized beam intensity db, Fig. 1
clearly shows a continuous transition from the Gaussian
to step-function profiles. It should also be noted from
Eq. (21) that the normalization of all of the curves
in Fig. 1 corresponds to

R`
0 d�r2�r2

b�pr2
bn0

b�r��Nb � 1.
For completeness, Fig. 2 shows universal plots versus
db of rb�rb [Eq. (13) and Fig. 2(a)], nb�n0 [Eq. (16)
and Fig. 2(b)], and n̂br2

b�n̂br2
b [Eq. (20) and Fig. 2(c)].

Here, r2
b � 2Tb�gbmbv

2
bb and n̂b � Nb�pr2

b are the
limiting values of mean-square radius and on-axis density
for db ! 0.

①

②

③

④

⑤
⑥

⑦

①      0      1
②      0.4   0.85
③      0.9   0.73
④      4.0   0.45

⑤      8.0   0.33
⑥      35    0.17
⑦      ∞     0

key δb b 0/ν ν

FIG. 1. Plot of normalized density profile pr2
bn0

b�r��Nb ver-
sus r�rb for several values of normalized beam intensity
db � NbZ2

be2�2g
2
bTb and corresponding values of tune depres-

sion nb�n0.
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In summary, the fact that the profiles for pr2
bn0

b�r��Nb

versus r�rb are universal for specified values of db is a
very powerful result. For example, a detailed measure-
ment of the radial density profile n0

b�r� in thermal equi-
librium permits a direct determination of Nb and r2

b and
an inference (through a best-fit determination of db) of the

FIG. 2. Plot versus db � NbZ2
be2�2g

2
bTb of (a) rb�rb

[Eq. (13)], (b) nb�n0 [Eq. (16)], and (c) n̂br2
b�n̂br2

b [Eq. (20)].
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temperature Tb . Furthermore, the present results are
readily extended to the case of a nonrelativistic, non-
neutral plasma column confined by a uniform axial
magnetic field B0êz [14–19]. In this case, we assume the
average motion in the z direction is stationary (bb � 0
and gb � 1), and the thermal equilibrium distribution
function (in perpendicular phase space) for a plasma
column rotating with constant angular velocity 2vr is
given by

Fb�H 0
�� �

µ
n̂b

2pmbTb

∂
exp

(
2
H

0
� 1 vrPu

Tb

)
. (24)

Here, Tb � const is the transverse temperature,
n̂b � const is the on-axis �r � 0� density, Pu � r
pu 1

�Zbe�2c�rB0� is the canonical angular momentum,
H

0
� � �2mb�21�p2

r 1 p2
u� 1 Zbef0�r� is the (dimen-

sional) single-particle Hamiltonian, pr � mbyr and pu �
mbyu are the radial and azimuthal components of particle
momenta, and the density profile is expressed as n0

b�r� �R
dpr dpu Fb�H 0

��, where Nb � 2p
R`

0 dr rn0
b�r� is

the number of particles per unit axial length. Some
straightforward algebra shows that the resulting equations
for the normalized profiles for F�r� and pr2

bn0
b�r��Nb

are identical to Eqs. (19) and (21) provided we make the
replacements

F�r� !
Zbef0�r�

2Tb
, db !

NbZ2
be2

2Tb
,

v2
bb ! �vrvcb 2 v2

r �, r2
b !

�2Tb�mb�
�vrvcb 2 v2

r �
,

(25)

where vcb � ZbeB0�mbc is the cyclotron frequency
and r2

b � r2
b�1 1 db� is the mean-square radius of the

plasma column. The angular rotation velocity 2vr

is, of course, related to the average canonical angular
momentum �Pu� � N21

b

R
dx dy dpx dpy PuFb�H0�� by

the condition

�Pu� � mb�vcb�2 2 vr �r2
b , (26)

where vcb � ZbeB0�mbc is the cyclotron frequency and
r2

b is the mean-square radius.
Without presenting algebraic details, there are many

examples of other equilibrium distribution functions
Fb�H 0

�� for which the normalized equilibrium density
profile pr2

bn0
b�r��Nb, plotted versus r�rb , can be charac-

terized in terms of the single dimensionless normalized in-
tensity parameter db � NbZ2

be2�2g
2
bTb . Such examples

include the Kapchinskij-Vladimirskij distribution [1,2,11],

F0
b�H 0

�� � const 3 d�H 0
� 2 Tb� , (27)

and the waterbag distribution [8,11],

F0
b�H 0

�� � const 3 U�H 0
��Tb� . (28)

Here, Tb � const, U�X� is the Heaviside step function
defined by U�X� � 1 for 0 # X , 1, and U�X� � 0
114401-5
for X . 1. By the same token, there are numerous
examples of equilibrium distribution functions for which
the normalized equilibrium density profile cannot be
characterized in terms of a single dimensionless intensity
parameter. Two such examples include the truncated
thermal equilibrium distribution function,

Fb�H 0
�� � const 3 exp�2H 0

��Tb�U�H 0
��H�,max� ,

(29)

and the truncated inverted population equilibrium distri-
bution function,

F0
b�H 0

�� � const 3 
1 2 �H 0
��Ĥ��2�

3 exp�2H 0
��Tb�U�H 0

��H�,max� . (30)

In Eqs. (29) and (30), Tb , H�,max, and Ĥ� are positive
constants, with H�,max , Ĥ�. For both of the examples
in Eqs. (29) and (30), there are additional parameters
[H�,max in the case of Eq. (29), and H�,max and Ĥ� in
the case of Eq. (30)] which obviously preclude the single-
parameter characterization of the normalized equilibrium
density profile pr2

bn0
b�r��Nb , plotted versus r�rb .
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