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Abstract

An intense nonneutral ion beam propagates in the z-direction through a periodic focusing quadrupole field with
Ž .Ž .transverse focusing force, F syk s xe yye , on the beam ions. Here, the oscillatory lattice coefficient satisfiesˆ ˆfoc q x y

Ž . Ž .k sqS sk s , where Ssconst. is the axial periodicity length. The model employs the Vlasov–Maxwell equations toq q
Ž X X . Ž .describe the nonlinear evolution of the distribution function f x, y, x , y ,s and the normalized self-field potential c x, y,sb

Ž X X.in the transverse laboratory-frame phase space x, y, x , y . Using a third-order Hamiltonian averaging technique, a canonical
transformation is employed with an expanded generating function which transforms away the rapidly oscillating terms, and

˜ ˜ ˜X ˜XŽ .leads to a Hamiltonian in the ‘slow’ transformed variables X,Y, X ,Y , with constant focusing coefficient k sconst.fq

q 1999 Elsevier Science B.V. All rights reserved.

PACS: 29.27.Bd; 41.75.y i; 41.85.yp

Periodic focusing accelerators and transport sys-
w xtems 1,2 have a wide range of applications ranging

from basic scientific research, to applications such as
heavy ion fusion, spallation neutron sources, tritium
production, and nuclear waste treatment. Of particu-
lar importance, at high beam currents and charge
densities, are the combined effects of the applied
focusing field and the intense self fields produced by
the beam space charge and current on determining
detailed equilibrium, stability and transport proper-

w xties 1 . Through analytical studies based on the
nonlinear Vlasov–Maxwell equations, and numerical
simulations using particle-in-cell models and nonlin-
ear perturbative simulation techniques, considerable

w xprogress 3–11 has been made in developing an

improved understanding of the collective processes
and nonlinear beam dynamics characteristic of high-
intensity beam propagation in periodic focusing and
uniform focusing transport systems. However, de-
spite the extensive literature on equilibrium and sta-
bility properties, until the present paper, the

Ž .Kapchinskij–Vladimirskij KV beam equilibrium
w x3–6 , including its recent generalization to a rotating

w xbeam in a periodic focusing solenoidal field 9 , has
been the only known periodically-focused solution
to the nonlinear Vlasov–Maxwell equations for an
intense beam propagating through an alternating-
gradient quadrupole or solenoidal field configuration.
While allowing for high space-charge intensity, the
KV distribution is nonetheless of very limited practi-
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cal interest, particularly because the distribution
Ž .function has a highly-inÕerted and unphysical dis-

tribution in phase space, and the corresponding den-
sity profile is exactly uniform in the beam interior.

It is therefore important to develop a framework
based on the nonlinear Vlasov–Maxwell equations
w x5,9 that is able to investigate the equilibrium and
stability properties of a far more general class of
periodically-focused beam distribution functions. In

w xa recent calculation 12 , Channell has developed a
third-order Hamiltonian averaging technique for in-
vestigating solutions to the nonlinear Vlasov–
Maxwell equations for systems subject to a periodic

w xexternal force. The formalism 12 uses a canonical
transformation given by an expanded generating
function to transform away the rapidly oscillating

w xterms 12–14 and end up with a Hamiltonian HH

that depends only on ‘slow’ variables. The purpose
of the present analysis is to apply this averaging
technique to intense beam propagation through a

w xperiodic focusing lattice 14 . The expansion proce-
w xdure is expected to be valid 14 for sufficiently

Ž .small phase advance sQ608, say .
Ž .We consider a thin r <S , intense ion beamb

with characteristic radius r and axial momentumb

g m b c propagating in the z-direction through ab b b

periodic focusing quadrupole field with axial period-
Ž . 2icity length S. Here, g y1 m c is the directedb b

Žaxial kinetic energy of the beam ions, g s 1yb
2 .y1r2b is the relativistic mass factor, V sb c isb b b

the average axial velocity, qZ e and m are the ionb b

charge and rest mass, respectively, and c is the
speed of light in Õacuo. The axial momentum spread
is assumed to be negligibly small, and the ion motion
in the beam frame is assumed to be nonrelativistic.
We introduce the scaled time variable ssb ct, andb

Ž . Xthe dimensionless transverse velocities x sdxrds
and yX sdyrds. For a thin beam, the applied focus-
ing force on a beam particle is taken to be F sfoc

Ž .w x Ž .yk s xe yye , where x, y is the transverseˆ ˆq x y

displacement from the beam axis. The oscillating
Ž . Ž .lattice coefficient k sqS sk s is defined byq q

Ž . X Ž . 2k s sZ eB s rg m b c , where Ssconst. isq b q b b b
S Ž .the axial periodicity length, and H dsk s s0.0 q

Within the context of these assumptions, the beam
dynamics in the transverse, laboratory-frame phase

Ž X X.space x, y, x , y is described self-consistently by
the nonlinear Vlasov–Maxwell equations for the dis-

Ž X X . Žtribution function f x, y, x , y ,s and the dimen-b
. Ž . Žsionless self-field potential c x, y,s sZ ef x,b

. 3 2 2 w xy,s rg m b c , which can be expressed as 5,9b b b

E E E Ec E
X Xqx qy y k s xqŽ . Xq½ ž /E s E x E y E x E x

Ec E
y yk s yq f s0 , 1Ž . Ž .Xq b5ž /E y E y

and

E 2 E 2 2p K b X Xq csy dx dy f . 2Ž .H b2 2ž / NE x E y b

Ž . ŽHere, f x, y,s is the electrostatic potential, n x,b
. X X Ž X X .y,s sHdx dy f x, y, x , y ,s is the number den-b

sity of the beam ions, and the constants, K sb

2 N Z 2e2rg 3m b 2c2 and N sHdxdydxXdyX f , areb b b b b b b

the self-field perveance and the number of beam ions
per unit axial length, respectively.

A direct calculation of kinetic equilibrium and
w x Ž . Ž .stability properties 5–11 from Eqs. 1 and 2 is

considerably complicated by the fact that the lattice
Ž .coefficient k s is an oscillatory function of s. Inq

the present analysis, we make use of Channell’s
w xthird-order Hamiltonian averaging technique 12 to
Žtransform from laboratory-frame variables x, y,

X X. Ž X X.x , y to ‘slow’ variables X,Y, X ,Y , with a new
Ž X X .Hamiltonian HH X,Y, X ,Y ,s . The formalism em-

ploys a canonical transformation given by an ex-
panded generating function to transform away the

w xrapidly oscillating terms 12–14 . The laboratory-
frame Hamiltonian is formally expressed as

X X ˆ X XH x , y , x , y ,s seH x , y , x , y ,sŽ . Ž .

X 2 X 21 1 2 2se x qy q k s x yyŽ . Ž .Ž . q2 2

qc x , y ,s , 3Ž . Ž .

ˆ Ž .where H is defined by Eq. 3 , and e is a small
dimensionless parameter proportional to the strength
of the focusing field. We introduce a near-identity
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w xcanonical transformation 12 where the expanded
generation function is defined by

S x , y , X X ,Y X ,sŽ .
`

X X X XnsxX qyY q e S x , y , X ,Y ,s . 4Ž . Ž .Ý n
ns1

The transformed Hamiltonian in the new variables is
given by

HH X ,Y , X X ,Y X ,sŽ .
E

X X X XsH x , y , x , y ,s q S x , y , X ,Y ,s , 5Ž . Ž . Ž .
E s

or equivalently, expressing HH s Ý` e n
ns 1

Ž X X .HH X,Y, X ,Y ,s ,n

`
X Xne HH X ,Y , X ,Y ,sŽ .Ý n

ns1

X 2 X 21 1 2 2se x qy q k s x yyŽ . Ž .Ž . q2 2

` E
X Xnqc x , y ,s q e S x , y , X ,Y ,s .Ž . Ž .Ý nE sns1

6Ž .

To determine the transformed Hamiltonian, note that
Ž X X.the variables x, y, x , y occurring on the right-hand
Ž . Ž .sides of Eqs. 5 and 6 are to be expressed in terms

Ž X X . Ž X X .of X,Y, X ,Y ,s , i.e., xsx X,Y, X ,Y ,s , etc. The
Ž .coordinate transformation generated by Eq. 4 is

given by
`ES E

X XnXs sxq e S x , y , X ,Y ,s , 7Ž . Ž .ÝX X nE X E Xns1

`ES E
X X X Xnx s sX q e S x , y , X ,Y ,s , 8Ž . Ž .Ý nE x E xns1

with similar expressions for YsESrE Y X and yX s
Ž . Ž .ESrE y. Eqs. 7 and 8 are to be solved iteratively

Ž X X . XŽ X X .for x X,Y, X ,Y ,s , x X,Y, X ,Y ,s , etc.
Ž . Ž .Analysis of Eqs. 6 – 8 to determine the slowly-

Ž X X .varying Hamiltonian HH X,Y, X ,Y ,s correct to or-
3 Ž .der e proceeds as follows. We solve Eq. 6 order

by order for HH . Because the generating functionn
Ž X X .S x, y, X ,Y ,s is arbitrary and unspecified, we usen

this freedom to choose S to cancel any rapidlyn

oscillating contributions to HH , so that the resultingn

expression for HH is slowly Õarying, order by order.n

Ž . 2 3In Eq. 6 , we expand xsXqe x qe x qe x1 2 3

q PPP , xX sX X qe xX qe 2 xX qe 3 xX q PPP , etc.,1 2 3
Ž . Ž . Žand c x , y , s s c X ,Y , s q e x ErE X q1
. Ž .y ErE Y c X,Y,s q PPP . The coordinate transfor-1

mation is also determined iteratiÕely by solving Eqs.
Ž . Ž . Ž X X .7 and 8 for x , y , x , y .n n n n

Ž . Ž .The detailed solution to Eqs. 6 – 8 will be
w x 3presented elsewhere 14 correct to order e . We

summarize here the definitions of the averages over
Ž .the lattice function k s that occur in the analysis.q

S Ž . Ž .Assuming that H dsk s s0, and that k s has0 q q
Ž .odd half-period symmetry with k s y Sr2 sq

w Ž .x w xyk y sySr2 , the key definitions 14 areq

s 1 S² :a s s dsk s , a s dsa s ,Ž . Ž . Ž .H Hq q q qS0 0

s1
² :b s s ds a s y a ,Ž . Ž .Hq q qS 0

1 S² :b s dsb s s0 ,Ž .Hq qS 0

d s sa 2 s y2k s b s ,Ž . Ž . Ž . Ž .q q q q

1 S 22² : ² :d s ds 3a s y2 a ,Ž .Hq q qS 0

3 S2 22² : ² : ² :k s d y a s ds a s y a .Ž .Hfq q q q qS 0

9Ž .

Following the procedure outlined above, we solve
Ž . Ž . 3Eqs. 6 – 8 order by order, correct to order e .

w xWithout presenting algebraic details 14 , the slowly
varying Hamiltonian HHseHH qe 2HH qe 3HH is1 2 3

found to be

X X 1 X 2 X 2˜ ˜ ˜ ˜ ˜ ˜HH X ,Y , X ,Y ,s s X qYŽ .Ž . 2

1 2 2˜ ˜q k X qYŽ .fq2

˜ ˜qc X ,Y ,s , 10Ž .Ž .
where we have set es1. Here, we have introduced

Ž . w xthe additional canonical fiber transformation 15 to
shifted velocity coordinates defined by

˜ ˜XsX , YsY ,

˜X X ˜X X² : ² :X sX y a X , Y sY q a Y . 11Ž .q q
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Similarly, we calculate xsXqe x qe 2 x qe 3 x ,1 2 3

xX sX X qe xX qe 2 xX qe 3 xX , etc. Setting es1, this1 2 3
w xgives 14

˜ ˜ ˜X ˜Xx X ,Y , X ,Y ,sŽ .
s

X˜ ˜s 1yb s Xq2 dsb s X ,Ž . Ž .Hq qž /0

˜ ˜ ˜X ˜Xy X ,Y , X ,Y ,sŽ .
s

X˜ ˜s 1qb s Yy2 dsb s Y , 12Ž . Ž . Ž .Hq qž /0

and

X ˜ ˜ ˜X ˜Xx X ,Y , X ,Y ,sŽ .
X˜ ² :s 1qb s X q ya s q aŽ . Ž .q q q½

² :q a b s ya s b sŽ . Ž . Ž .q q q q

s
˜² :y ds d s y d XŽ .H q q 5ž /0

s E Ec Ec
˜ ˜q dsb s X yY ,Ž .H qž / ž /˜ ˜ ˜E X E X E Y0

X ˜ ˜ ˜X ˜Xy X ,Y , X ,Y ,sŽ .
X˜ ² :s 1yb s Y q a s y aŽ . Ž .q q q½

² :q a b s ya s b sŽ . Ž . Ž .q q q q

s
˜² :y ds d s y d YŽ .H q q 5ž /0

s E Ec Ec
˜ ˜y dsb s Y yX , 13Ž . Ž .H qž / ž /˜ ˜ ˜E Y E Y E X0

correct to order e 3. Here, the relative size of the
Ž . Ž .various terms in Eqs. 12 and 13 stand in the ratio

² :a s , a :Terms of order e ,Ž .q q

b s :Terms of order e 2 ,Ž .q

s
² :a b s , a s b s , dsb s ,Ž . Ž . Ž . Ž .Hq q q q qž /0

s
3² :ds d s y d : Terms of order e . 14Ž . Ž .H q qž /0

ŽBecause the focusing coefficient is constant kfq
˜ ˜.sconst. and isotropic in the X–Y plane in the

Ž .transformed Hamiltonian defined in Eq. 10 , there is
enormous simplification in analyzing kinetic equilib-
rium and stability properties in the transformed vari-

˜ ˜ ˜X ˜XŽ .ables X,Y, X ,Y . The nonlinear Vlasov–Maxwell
˜ ˜Žequations for the distribution function F X,Y,b

˜X ˜X ˜ ˜. Ž .X ,Y ,s and self-field potential c X,Y,s in the
w x‘slow’ variables are given by 14

E E E E E
X X˜ ˜ ˜qX qY y k Xq cfq X½ ž /˜ ˜ ˜ ˜E s E X E Y E X E X

E E
˜y k Yq c F s0 , 15Ž .fq bX 5ž /˜ ˜E Y E Y

E 2 E 2 2p K b X X˜ ˜q csy dX dY F , 16Ž .H b2 2ž /˜ ˜ NE X E Y b

Ž .where k sconst. is defined in Eq. 9 . It should befq

emphasized that the nonlinear Vlasov–Maxwell Eqs.
˜ ˜ ˜X ˜XŽ . Ž . Ž .15 and 16 in the slow variables X,Y, X ,Y ,

when supplemented by the coordinate transformation
Ž . Ž .in Eqs. 12 and 13 , are fully equivalent to the

Ž . Ž .nonlinear Vlasov–Maxwell Eqs. 1 and 2 in the
Ž X X .laboratory-frame variables x, y, x , y , correct to

order e 3. Furthermore, because the coordinate trans-
formation is canonical, the laboratory-frame distribu-

Ž X X .tion function f x, y, x , y ,s is related to the trans-b
˜ ˜ ˜X ˜XŽ .formed distribution function F X,Y, X ,Y ,s byb

X X X X ˜ ˜ ˜X ˜ XŽ . Ž .f x , y, x , y , s dxdydx dy s F X ,Y , X ,Y , sb b
˜ ˜ ˜X ˜XdXdYdX dY , and the Jacobian of the transformation

X X ˜ ˜ ˜X ˜XŽ . Ž .is equal to unity, E x, y, x , y rE X,Y, X ,Y s1,
which can also be verified by direct calcula-

w x Ž . Ž . 3tion 14 from Eqs. 12 and 13 correct to order e .
˜ŽTherefore, once the distribution function F X,b

˜ ˜X ˜X .Y, X ,Y ,s in the transformed variables is calculated
Ž . Ž .from Eqs. 18 and 19 , the laboratory-frame distri-

bution function
Ž X X .f x, y, x , y ,s is given byb

X X ˜ ˜ ˜X ˜Xf x , y , x , y ,s sF X ,Y , X ,Y ,s . 17Ž . Ž .Ž .b b

˜ X X ˜ X XŽ . Ž .Here, X x, y, x , y ,s , Y x, y, x , y ,s , etc., denotes
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w xthe inÕerse coordinate transformation 14 to Eqs.
Ž . Ž .12 and 13 given by

˜ X XX x , y , x , y ,sŽ .
s

Xs 1qb s xy2 dsb s x ,Ž . Ž .Hq qž /0

˜ X XY x , y , x , y ,sŽ .
s

Xs 1yb s yq2 dsb s y , 18Ž . Ž . Ž .Hq qž /0

and

˜X X XX x , y , x , y ,sŽ .

X ² :s 1yb s x y y a s y aŽ . Ž .q q q½
s

² := 1qb s y ds d s y d xŽ . Ž .Hq q q 5ž /0

s E Ec Ec
y dsb s x yy ,Ž .H qž / ž /E x E x E y0

˜X X XY x , y , x , y ,sŽ .

X ² :s 1qb s y y a s y aŽ . Ž .q q q½
s

² := 1yb s y ds d s y d yŽ . Ž .Hq q q 5ž /0

s E Ec Ec
q dsb s y yx , 19Ž . Ž .H qž / ž /E y E y E x0

3 Ž . Ž .correct to order e . In obtaining Eqs. 18 and 19 ,
we have made use of the fact that the self-field

Ž .contributions in Eq. 13 are proportional to
Ž s Ž .. 3 w Ž .xH dsb s , which is of order e see Eq. 14 .0 q

Therefore, to leading order, we approximate
˜ ˜ ˜ ˜ ˜ ˜ ˜Ž .Ž . Ž .Er E X X Er E X y YEr E Y c X ,Y , s b y

Ž .Ž . Ž .ErE x xErE xyyErE y c x, y,s , etc., in obtaining
Ž . Ž .Eqs. 18 and 19 .

Because of the simple form of the Vlasov–
Ž . Ž .Maxwell Eqs. 15 and 16 , with constant focusing

coefficient k sconst., a wide range of literaturefq

developed for the constant focusing case can be
applied virtually intact in the transformed variables.
Furthermore, the present analysis makes accessible

Žfor the first time numerous examples in addition to
.the KV beam equilibrium of nonlinear solutions to

the Vlasov–Maxwell equations which are periodi-

cally-focused in the laboratory frame. Detailed ex-
amples, including the back-transformation of beam
properties to the laboratory frame, will be presented

w xelsewhere 14 , and we summarize here several key
results. For present purposes, it is assumed for sim-
plicity that the conducting wall is infinitely far re-

Ž .moved from the beam r <r ™` .b w
Ž . Ž .Because k sconst., Eqs. 15 and 16 support afq

wide range of axisymmetric equilibrium solutions
w x5,9 . Here, we introduce cylindrical polar coordi-

˜ ˜ ˜ ˜ ˜Ž .nates R,Q with XsRcosu and YsRsinQ , where
˜ ˜ 2 ˜ 2 1r2Ž .Rs X qY . Setting ErE ss0sErEQ in Eqs.
Ž . Ž .15 and 16 , it is readily shown that any distribu-
tion function of the form

0 ˜ ˜ ˜X ˜X 0 0F X ,Y , X ,Y sF HH , 20Ž . Ž .Ž .b b

1 X 2 X 2 10 2 0˜ ˜ ˜ ˜Ž . Ž .where HH s X qY q k R qc R is thefq2 2

single-particle Hamiltonian, is an exact nonrotating
equilibrium solution to the nonlinear Vlasov Eq.

0 ˜Ž . Ž .15 . Here, c R is determined self-consistently
from

1 E E 2p K b X X0 0 0˜ ˜ ˜ ˜R c R sy dX dY F HH ,Ž .Ž . H b˜ ˜ ˜ NR E R E R b

21Ž .
0 ˜ ˜X ˜X 0 0Ž . Ž .where n R sHdX dY F HH is the equilibriumb b

density profile in the transformed variables. Note
Ž .that Eq. 21 is generally a nonlinear differential

0 ˜Ž .equation for the self-field potential c R .
w xThere is enormous latitude 5,9 in specifying the

0Ž 0.functional form of F HH in the transformed vari-b
0Ž 0.ables. Once the functional form of F HH is speci-b

0 ˜Ž .fied, however, and c R is calculated self-con-
Ž .sistently from Eq. 21 , other equilibrium properties

in the transformed variables can be readily deter-
mined, such as the density profile, the transverse
temperature profile, etc. One important example is

w xthe thermal equilibrium distribution function 5,8

g m b 2c2
b b b0 0F HH snŽ . ˆb b ž /ˆ2p TH b

=
g m b 2c2

b b b 0exp y HH , 22Ž .½ 5T̂H b

ˆwhere n and T are positive constants with di-ˆb H b
Ž .mensions of density and temperature energy units ,
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respectively. Taking the zero of potential to be
0 ˜Ž . Ž .c Rs0 s0, Eq. 22 readily gives the density

0 ˜ 2 2 ˆ ˜2Ž . � Ž .wprofile n R sn exp y g m b c r2T k Rˆb b b b b H b fq
0 ˜ 0 ˜Ž .x4 Ž . Ž .q2c R . Solving Eq. 21 numerically for c R

0 ˜Ž .then gives a bell-shaped density profile for n R ,b
˜Ž .which assumes a maximum value n at Rs0 andˆb

˜decreases monotonically to zero as R™` provided
the applied focusing field is sufficiently strong that

2 2 Ž 2 . 2 w x 2k b c ) 1r2g v 14 . Here, v sˆ ˆfq b b pb pb

4p n Z 2e2rg m is the on-axis plasma frequency-ˆb b b b

squared.
Ž .Eq. 22 is an important example of an equilib-

rium distribution function that is known to be stable.
Making use of global conservation constraints satis-

Ž .fied by the nonlinear Vlasov–Maxwell Eqs. 15 and
Ž .16 in the transformed variables, it can be shown
that

E
0 0F HH F0 23Ž . Ž .b0EHH

w xis a sufficient condition for stability 11 . Whenever
Ž .Eq. 23 is satisfied, the system is stable, and pertur-

˜ ˜ ˜X ˜X ˜ ˜Ž . Ž .bations, dF X,Y, X ,Y ,s and dc X,Y,s , aboutb

equilibrium do not amplify. The stability theorem in
Ž .Eq. 23 is a very powerful result, and is valid

Ž .nonlinearly finite-amplitude perturbations as well
as for small-amplitude perturbations.

Statistical averages are also readily calculated for
the general class of equilibrium distribution func-

Ž .tions in Eq. 20 . Here, the statistical average of a
˜ ˜ ˜X ˜XŽ .phase function x X,Y, X ,Y ,s in the transformed

² :variables is defined in the usual manner by x s0
y 1 ˜ ˜ ˜ X ˜ X 0 0Ž .N HdXdYdX dY x F HH , w here N sb b b
˜ ˜ ˜X ˜X 0 0Ž .HdXdYdX dY F HH is the number of particles perb

unit axial length. For example, because HH 0 is an
˜ ˜ ˜X ˜XeÕen function of X,Y, X and Y , it follows trivially

˜ ˜ ˜X ˜X² : ² : ² : ² :that X s0s Y , X s0s Y , and0 0 0 0
˜ ˜X ˜ ˜X² : ² :XX s 0 s YY . Furthermore, the mean-0 0

2 ˜ 2 ˜ 2 ˜ 2² : ² :square beam radius is R s X qY sE X0 0b0
˜ 2² :sE Y . Finally, for the general class of beam0

0Ž 0.equilibria F HH , the global radial force balanceb
w xequation can be expressed as 10,14 .

K e 2
b 0

k y R s , 24Ž .fq b02 3ž /2 R 4Rb0 b0

2 ˜ 2 ˜ 2 ˜X 2 ˜X 2² : ² :where e s4 X qY X qY is the total0 00

unnormalized transverse emittance-squared.

Properties of the periodically-focused beam dis-
Ž X X .tribution function f x, y, x , y ,s in the laboratoryb

frame are readily calculated for the entire class of
0Ž 0. Ž .beam equilibria F HH by making use of Eq. 17b

Ž .and the coordinate transformations in Eqs. 18 and
Ž . Ž . Ž X X .19 . From Eq. 17 it follows that f x, y, x , y ,s sb

0Ž 0. 0F HH , where HH is defined byb

0 ˜ ˜ ˜X ˜X
HH X ,Y , X ,YŽ .

X 2 X X X 2 X X1 ˜ ˜s X x , y , x , y ,s qY x , y , x , y ,sŽ . Ž .2

1 X X2˜q k R x , y , x , y ,sŽ .fq2

0 ˜ X Xqc R x , y , x , y ,s . 25Ž . Ž .Ž .
˜2 X X ˜ 2 X X ˜ 2Ž . Ž .Here, R x, y, x , y ,s s X x, y, x , y ,s q Y =

Ž X X .x, y, x , y , s . Because the s-dependent coeffi-
Ž . Ž .cients of a s , b s , etc., have axial periodicityq q

length Ssconst., the laboratory-frame distribution
Ž X X .function also satisfies f x, y, x , y , s q S sb

Ž X X .f x, y, x , y ,s .b

A wide range of beam properties in the laboratory
Ž .frame can be calculated from Eq. 25 and

Ž X X . 0Ž 0. 0f x, y, x , y ,s sF HH . Because HH is an evenb b
˜ X X ˜X X XŽ . Ž .function of X x, y, x , y ,s , X x, y, x , y ,s , etc.,

there is enormous simplification in calculating statis-
tical averages and macroscopic moments. For exam-
ple, defining the statistical average of a phase func-

Ž X X . ² :tion x x, y, x , y ,s in the laboratory frame by x
y1 X X Ž X X .s N Hdxdydx dyx f x, y, x , y , s , it is readilyb b

² : ² : ² X: ² X:shown that x s0s y and x s0s y
correct to order e 3, which corresponds to a beam
equilibrium that remains centered in the laboratory
frame. Proceeding to higher-order moments, and

Ž .making use of Eq. 14 , it can be shown that

2 12 2 2˜² : ² :x s s 1yb s X ' a s ,Ž . Ž . Ž .0q 2

2 12 2 2˜² : ² :y s s 1qb s Y ' b s , 26Ž . Ž . Ž . Ž .0q 2

X 2 2 ˜X 2² :Ž . w Ž .x ² : w Ž .and that x s s 1yb s X q a s y0q q

2 ˜ 2 X 2 2 ˜ X 2² :x ² : ² :Ž . w Ž .x ² :a X , y s s 1 q b s Y q0 0q q

2 ˜ 2 X 2w Ž . ² :x ² : ² : w Ž .a s y a Y , xx s a s y0q q q
2 ˜ 2 2 X 2 2 ˜ 2 2² :x ² : ² : w Ž . ² :x ² :a X , yy s a s y a Y ,0 q 0q q

3 ˜ 2 ˜ 2 2² : ² :correct to order e . Here, X s Y sR r2,0 0 b0

and as expected, the circular cross-section beam
0Ž 0.equilibrium F HH , which has constant mean-b
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2 ˜ 2 ˜ 2² :square radius R s X qY in the transformed0b0

variables, when mapped back to the laboratory frame
has a pulsating elliptical cross-section with
² 2: 2Ž . ² 2: 2Ž .x ra s q y rb s s1. A further striking
result is evident from the present analysis. Even

1 X 2² :Ž .though the kinetic energy components, x s2
1 X 2² :Ž .and y s , are oscillatory functions of s, the2

Žtransverse emittances are conserved quantities inde-
.pendent of s . This follows because

2X 2 X2 2² : ² : ² :e s s4 x s x s y xx sŽ . Ž . Ž . Ž .x

˜ 2 ˜X 2 2² : ² :s4 X X se sconst. ,0 0 x 0

2X 2 X2 2² : ² : ² :e s s4 y s y s y yy sŽ . Ž . Ž . Ž .y

˜ 2 ˜X 2 2² : ² :s4 Y Y se sconst. , 27Ž .0 0 y0

correct to order e 3.
Finally, for specified equilibrium distribution in

the transformed variables, various macroscopic prop-
erties in the laboratory frame can also be calculated

Ž . Ž X X . 0Ž 0.from Eq. 25 and f x, y, x , y ,s sF HH . Forb b

example, if the equilibrium density profile in the
0 ˜Ž .transformed variables is determined to be n RrRb b0

˜Ž .here we scale R by R without loss of generality ,b0

then the density profile in the laboratory frame,
Ž . X X Ž X X .n x, y,s sHdx dy f x, y, x , y ,s , is found to beb b

w x14

1
0 ˜n x , y ,s s n R x , y ,s rR ,Ž . Ž .b b b021yb sŽ .q

28Ž .
3 ˜2 2Ž .correct to order e , where R x , y, s rR b 0

2 2Ž . 2 2Ž .'x ra s qy rb s .
Ž . Ž .Eq. 26 – 28 are important results for the general

0Ž 0.class of equilibrium distribution functions F HH .b

Not only are the transverse emittances conserved, the
constant-density contours in the laboratory frame

2 2Ž .correspond to elliptical surfaces with x ra s q
2 2Ž . Ž .y rb s sconst. In Eq. 28 , note that the factor

w 2Ž .xy1 3 w Ž .x1yb s ,1 correct to order e Eq. 14 .q

Important in the present analysis is the definition
and size of the dimensionless small parameter e .
This is best determined by examination of the rela-

Ž .tive size of the correction terms in Eqs. 12 and
Ž . Ž X X.13 to the identity transformation x, y, x , y s
Ž X X. Ž .X,Y, X ,Y . As an example, we take k s sq

Ž .k sin 2p srS , where k sconst. In this case, k sˆ ˆq q fq
Ž . 2 2 Ž .3r2 l rS follows from Eq. 9 , where l 'q q

k S2r2p . Careful examination of the correctionˆq

terms shows that the key dimensionless parameter is
w xesl r2p-1 14 . In addition, the vacuum phaseq

advance s over one lattice period S, estimatedov
Ž . w S 2 xfrom Eq. 24 and s s lim e H dsr2 R , isov K ™ 0 0 0 b0b

1r2Ž .given by s s k Ss 3r2 l . Therefore, s(ov fq q ov

Ž .1r2-pr3s608 corresponds to l - 2r3 and esq

l r2p-0.13. This is the reason for the conjectureq

that s -pr3 should be adequate to assure validityov

of the Hamiltonian averaging technique developed
here. A more detailed discussion of the range of
validity of the asymptotic expansion procedure used

w xhere is presented in Ref. 14 . In this regard, it is
important to recognize that the expansion parameter

Ž .e is proportional to k s , the strength of the appliedq

focusing field. Hence, the analysis is restricted to
moderate values of phase advance, which we esti-
mate to be s -pr3. In future research, it is plannedov

to carry out a detailed assessment of the range of
validity of the Hamiltonian averaging technique de-
veloped here by systematic comparison with numeri-
cal simulations for various choices of beam distribu-

0Ž 0.tion function F HH .b
Ž .Referring to Eq. 9 , it is evident that all of the

Ž . Ž . Ž .oscillatory coefficients a s , b s and d s areq q q

directly related to the integral over the lattice func-
Ž . Ž . s Ž .tion k s defined by a s sH dsk s . In turn,q q 0 q

Ž .the quantity a s can be related to the familiarq
ˆŽ . w xCourant–Snyder amplitude function b s 1,2 de-

ˆ 2 XXŽ . Ž . Ž .fined by b s sw s , where w s solves w q
3 ˆŽ . Ž . w Ž .xk s w s 1rw . Expressing b s s b 1 q f s ,q q

< <where bsconst. and f <1 is assumed for smallq
Ž . w xk s , some straightforward algebra 1 shows thatq

ˆŽ .the Courant–Snyder amplitude function b s and
Ž . s Ž . Ž .the integral a s sH dsk s defined in Eq. 9 areq 0 q

related to leading order by the simple expression
ˆŽ . Ž . Ž .drds b s sy2ba s .q

To summarize, the present formalism represents a
powerful framework for investigating the equilib-
rium and stability properties of an intense beam
propagating through an alternating-gradient
quadrupole field. First, the analysis applies to a

0Ž 0.broad class of distributions F HH in the trans-b
Žformed variables. Second, the determination of peri-

.odically-focused beam properties in the laboratory
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frame is straightforward. Third, the analysis applies
to beams with arbitrary space-charge intensity, con-
sistent only with requirement for radial confinement
of the beam particles by the applied focusing field
Ž 2 2 2 2 .k b c )v r2g . Finally, the formalism canˆfq b pb b

be extended in a straightforward manner to the case
Ž .of a periodic-focusing solenoidal field B x ssol

1 XŽ . Ž .Ž . w xB s e y B s xe qye 14 , and to the caseˆ ˆ ˆz z z x y2

where weak nonlinear corrections to the transverse
focusing force are retained in the analysis.
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