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Abstract 

The Vl~ov-Maxweli equations are used to investigate properties of the electron-ion two-steam instability for a contin- 
uous, high-intensity ion beam propagating in the z-direction with directed axial velocity % = &c through a backg~~ 
~p~ation of (stationa~) electrons. The analysis is carried out for arbitrary beam intensity, consistent with transverse 
confinement of the beam particles, and arbitrary fractional charge neutmli~~on by the background electrons. Detailed 
stability properties am calculated over a wide range of system parameters for dipole perturbations with azimuthal mode 

number e = 1. The instability growth rate Im w is found to increase with increasing normalized beam intensity (&&/w$), 
increasing fractional charge neutralization (f = &/&fib), and decreasing proximity of the conducting wall (rb/rw). @ 
1999 Elsevier Science B.V. 

PACS: 29.27.Bd; 41.7X-i; 41.85.-p 

Periodic focusing accelerators and transport sys- 
tems [ l-31 have a wide range of applications rang- 
ing from basic scientific research, to applications such 
as tritium production, spallation neutron sources, and 
heavy ion fusion [ 4,5], At the high beam currents and 
charge densities of practical interest, it is increasingly 
important to develop an improved theoretical under- 
standing of the influence of the intense self-fields pro- 
duced by the beam space charge and current on de- 
tailed equilibrium, stability and transport properties. 
For a one-component high-intensity beam, consider- 
able progress has been made in describing the self- 
consistent evolution of the beam dis~bution function 
fb(x, p, t) and the self-generated electric and mag- 
netic fields E(r, t) and B*( r, t) in kinetic analy- 
ses [ I $-IO] based on the Vlasov-Maxwell equations. 

In many practical accelerator applications, however, 
an (unwanted) second charge component is present. 
For example, a background population of electrons can 
result locally when an IT” beam is injected through 
a stripper foil into a proton storage ring, or when 
energetic ions strike the chamber wall. When a sec- 
ond charge component is present, it has been recog- 
nized for many years, both in theoretical studies and 
in experimental observations [ 1 l-211, that the rela- 
tive streaming motion of the high-intensity beam par- 
ticles through the background charge species provides 
the free energy to drive the classical do-~treum in- 
stability 122,231, appropriately modified to include 
the effects of dc space charge, relativistic kinematics, 
presence of a conducting wall, etc. For electrons in- 
teracting with a proton beam, as in the Proton Stor- 
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age Ring, the Accelerator for Production of Tritium 
(APT), or the Spallation Neutron Source (SNS), this 
instability is usually referred to as the eIe~tron-proton 
(e-p} instability [B-17], a?though a similar insta- 
bility also exists for other ion species, including (for 
example) electron-ion interactions in electron stor- 
age rings [ 18-Z I], or in high-intensity ion beams for 
heavy ion fusion 151. 

Theoretical reagents of the electron-ion two- 
stream instability are traditionally based on mod- 
els (see, for example, Refs, [I l-13,15-17]) that 
analyze the center-of”mass motion of the ion and 
electron charge components. Such models, while 
treating accurately several bulk features of the insta- 
bility, are limited in scope and difficult to generalize 
to include the dependence of stability behavior on 
the detailed phase-space properties of the distribu- 
tion functions. Therefore, in the present analysis, 
we develop and apply a theoretical formalism based 
on the Vlasov-Maxwell equations f 1,241 that de- 
scribe the self-consistent interaction of the ion and 
electron dis~ibution functions with the applied field 
and the self-generated electric and magnetic fields. 
Furthermore, in integrating the linearized Vlasov- 
Maxwell equations, we make use of the method of 
characteristics 123,241 to integrate along the parti- 
cle trajectories in the equilibrium field configuration. 
Finally, apart from requiring transverse confinement 
of the beam particles by the focusing field, no a pri- 
ori restriction is made on ion beam intensity. The 
analysis can be applied to ion beams ranging from 
the emittance-donlinated, moderato-jntensity proton 
beams in present and next-generation proton linacs 
and storage rings, to the fow~cmittance, space-charge- 
dominated ion beams in heavy ian fusion. 

The present analysis considers a high-intensity ion 
beam with distribution function fb(r, p, t), and char- 
acteristic radius l”b and axial momentum ~@ib,&,c 
propagating in the z-direction through a background 
population of electrons with distribution function 
fe(+r, p, f). The ions have high directed axial veloc- 
ity vb = @bc in the z-direction, and the background 
electrons are assumed to be nonrelativistic and sta- 
tionary with l d”p pZ fe N 0 in the laboratory frame. 
In the smooth-beam approximation, the ion beam is 
assumed to be continuous in the z-direction, and the 
qqAied transverse focusing force on a beam ion is 
modeled by 

Fjo, = --~uYw$~xL, (11 

where XL = x0, -i- ~0, is the transverse displacement, 
(‘yb - 1) q,c2 is the ~hara~t~risti~ ion kinetic energy, 
l& is the ion rest mass, c is the speed of light in vacua, 
and tisb = const is the effective betatron frequency 
for transverse ion motion in the applied focusing field. 
For the background electrons, assuming that the ion 
density exceeds the background electron density, the 
space-charge force on an electron, Fz = eV& pro- 
vides transverse confinement of the background elec- 
trons by the elec~ostatic potential 4(x, b). It is fur- 
ther assumed that the ion motion in the beam frame 
is nonrelativistic, and that the transverse momentum 
components of the beam ions and the characteristic 
spread in axial momentum are small compared with 
the directed axial momentum, i.e., jp,.l, IpY/, l&p, 1 < 
~b~Z~~bc. The space-charge intensity in the present 
analysis is allowed to be arbitrarily large, subject only 
to transverse confinement of the beam ions by the fo- 
cusing force in Eq. ( 1). 

In addition, the present analysis is carried out in the 
electrostatic approximation* where the self-generated 
electric lieId produced by space-charge effects is 
ES(x,t) = -V&X, t), and the electrostatic po- 
tential #(x, t) is determined self-consistently from 
Poisson’s equation 

V”$ = -4?W(&#b - n,). (2) 

Here, Irb( r, f) = ~d3~~~(~,~,~) and n,tx,t) = 
J d3p fe( x,p, t) are the ion and electron number den- 
sities, respectively. To determine the self-generated 
magnetic field B’(x, t) = VA,(x, t) x a, pro- 
duced by the axial ion current, it is assumed that 
the axial velocity profile y?b(X, t) 3i &$ is ap- 
proximately uniform over the beam cross section. In 
this case, in the magnetostatic approximation, the z- 
component of vector potential A, (x, t) is determined 
self-consistently from 

VQ, ZZ - 4?rZbe&%, (3) 

where use is made of the assumption that the electrons 
carry zero axial current in the laboratory frame. 

Finally, under eqff~~~br~u~ conditions (a/at = O), 
the present analysis assumes that ion and electron 
properties are spatially uniform in the z -direction with 
a/& = 0. FIowever, the s~u~i~~~ analysis assumes 



R.C. Davidson et al. /Physics Letters A 252 (1999) 213-221 

small-amplitude perturbations with z- and t-variations 
proportional to exp( ik, z - iwt), where k, = 2m/L 
is the axial wavenumber, and o is the (complex) os- 
cillation frequency, with Imctt > 0 co~sponding to 
instability. Here, n is an integer, L is the fundamen- 
tal axial periodicity length of perturbed quantities in 
straight (e.g., linac) geometry, and L = 2pR for the 
case of a storage ring with (large) radius R >> rb. For 
present purposes, the stability analysis assumes per- 
turbations with sufficiently long axial wavelength and 
high frequency that kfri < 1, lo/kz - &cl > unz, 
and [w/k, 1 >> tqezf Here, umZ = (2& /ybmb) ijz and 

u~ez = (2T,,fm,)i12 are the ch~acteristic axial ther- 
mal speeds of the beam ions and the background elec- 
trons, respectively. These inequalities lead to several 
simplifications. For example, because kit-i < 1, the 
three-dimensional Laplacian V2 occurring in Eqs. (2) 
and f3) can be approximated by 0: = d2,fdx2 + 
J2/ay2. Furthermore, the perturbed axial forces, e.g., 
SFe = e(a/az)&#i!?, and 6Fb = -.?$?(~fdz)&,6&, 
are treated as negligibly small, The subsequent anal- 
ysis therefore neglects the effects of Landau damping 
(by resonant particles) due to the axial momentum 
spread [ 231. 

We make use of the assumptions summarized 
above to simplify the theoretical model based on 
the Vlasov-M~weil equations [ 2.51. First, we intro- 
duce the reduced distribution functions defined by 
Fb(x,pA*f) = j’dpz fb(X,&t), and Fe(x,P~_$t) = 

j’dp, f&x,R, r). Because Jdp, pZfe z 0 for the 
electrons, and axial forces are treated as negligibly 
small, the nonlinear Vlasov equation for Fe (x, pI, t> 
is given (nonrelativistically ) by 

where -e is the electron charge, and V_L = S$/&x + 
~~~/~y is the perpendicular gradient. The ions, how- 
ever, have huge directed axiai velocity vb [t: &C. 
Therefore, we approximate fl - 8/6+x E (pL/yl,mb) - 
dfdxl + &,ga/az, and the pe~endicul~ self-field force 
on an ion is approximated by Fbi PY &e [ -V, d, + 
,&8Z x (Vl A, x G2 ) 1, where 4 and A, are deter- 
mined self-consistently from Eqs. (2) and (3), The 
Vlasov equation for Fb( x, pI, r) then becomes 
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&+&+Ld 
3/bmb ax_L 

- t yb~b~~b2x~ + ZbeV.Lql, > * & 
> 

f?b(x,pj_* f> 

= 0. (5) 

Here, +&e is the ion charge, and $(x,t) is the 
combined potential defined by 9(x, r) z c&x, r) - 
&AZ (x, r). The self-field potentials #(Y, t), and 
9(x, r) solve 

(~+~)c=-4Re(zb~‘pFb-ld2pFe), 
(6) 

(2 + $)fi = -4ne($/d2p Fb -/d2pF,). 

(7) 

where we have approximated V2 = Vi = d*/& + 
d2/@. 

Eqs. (4)~(7) constitute a complete description of 
the collective interaction of the beam ions with the 
background electrons based on the Vlasov-Maxwell 
equations. In the subsequent analysis, we further as- 
sume that the beam propagates axially through a per- 
fectly conducting cylindrical pipe with radius r = 
r,.,. Enforcing [ I?~],+ = [q lGTu, = [ BFlrZr, = 
0 readily gives @(r = r,,@,z,r) = 0, and Jl(r = 
rw, 0, z, r) = 0. Here, the constant values of the po- 
tentials at r = rw have been taken equal to zero. 

Under quasisteady equilibrium conditions with 
a,/& = 0, we assume axisymme~i~ beam propaga- 
tion (a/&9 = 0) and negligible variation with axial 
coordinate (c?/~z = 0). It is readily shown from 
Eqs. (4)-(7) that the equilibrium distribution func- 
tions (a/i& = 0) for the beam ions and background 
&CtrOnS are Of the general form Ff = e( fflb) 
and F,” = F$( HI,), where Hlb and til, are the 
single-particle Hamiltonians defined by 

ffib = 
1 

---pi + ~~b~b~~b~2+ &e[#‘fr) -$“I, 
%‘bmb 

ffl.e = &pi - e[#‘(r) - 4’1. (81 

Here, for d/a@ = 0 = d/&, Nib and HI, are exact 
single-particle constants of the motion, and the con- 
stants 6” 5 r1/O( r = 0) and 4” E c$‘( Y = 0) are the 
on-axis (r = 0) values of t@‘(r) and 4’(r). 
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There is wide latitude in specifying the functional 
forms of the equilibrium distribution functions [ lo]. 
Once e( H_Lb) and I$( H& are specified, however, 
the equilib~um self-field potentials and density pro- 
files can be calculated self-consistently from Eqs. (6) 
and (7) with a/G’@ = 0 = d/dz. For example, for 
the thermal equilibrium distributions q( HLj) = 
@j exp( -Hlj/TLj), where j = b, e, and pj and Tlj 
are positive constants, it can be shown that the den- 
sity profiles, n:(r) = s d*p q( Hy ), for the ions 
and electrons are hell-shaped and vary continuously 
with radial coordinate r [ 251. On the other hand, for 
monoenergetic ions and electrons, with distribution 
functions [ 24-261 

(9) 

it is found that the density profiles n:(r), j = b, e, cor- 
respond to overlapping step-function profiles. Here, Ab 
and ii, = f&itb are positive constants corresponding 
to the ion and electron densities, f = const is the frac- 
tional charge neutralization, and TU, and TJ_~ are con- 
stants corresponding to the on-axis (r = 0) values of 
the transverse ion and electron tempera~es, respec- 
tively. Without presenting details [ 251, some algebraic 
manipulation of Eqs. (6)-( 9) gives the step-function 
density profiles n:(r) = Aj = const, for 0 < r < rb, 

and ny (r) = 0 for rb < r Q rw, and j = b, e. Here, 
the beam radius rb is related to other equilibrium pa- 
rameters by fizri = 2&b/y@@ and fi;r; = 2T&‘+&, 
where for mon~nergetic ions and electrons, the (de- 
pressed) betatron frequencies &, and & are defined by 

where &ib = 4~~b~e2/yb~b is the ion plasma 

fluency-squ~ed. The inequalities, #z > 0 and 
fiz > 0, are required for existence of the equilib- 
rium. Therefore, we obtain the inequalities (ij$/ 

~0%) ( 1 - y:f) < 2Fb and f < 1, as restrictions on 
beam intensity and fractional charge neutralization 
for transverse confinement of the ions and electrons. 

For small-amplitude perturbations about general 
equilibrium distributions, @( HLb) and e ( H_L~), 
and corresponding self-field potentials, #O(r) and 
#O(r), a s~bility analysis proceeds by lineariz- 
ing Eqs. (4)-(7). Perturbed quantities are ex- 
pressed as S#(x,t) = &/(x.~)exp(ik,z - iwt), 
8Fb(x,pL,t) = @b(x_LrpL) exp($z - iwf), et& 

where XI = (x, y), and Imw > 0 is assumed, cor- 
responding to instability (temporal growth). The 
linearized Vlasov equations are formally integrated 
by using the method of characteristics [ 24,251 to in- 
tegrate along the unbred trajectories, XL ( t’) and 
p; ( t’), in the equilibrium field configuration. Some 
straightforward algebra that makes use of Eqs. (4) - 
(7) gives 

0 

+ io dr@(x;) exp(-iwr) 
f 

, (11) 

@b(%L,p~) = Zbe 

(12) 

where the potential amplitudes, r@( XL) and 
@(xl), are related to ~pk(xi,p,) and 8&(xJ_, 

pi) by 

- s I d=p SFe , (13) 

- 
J I 

d2p S& . (14) 

InEqs.(ll)and(12),r=t’-tisthedisplacedtime 
variable, and the ‘primed’ orbits, .Y; ( t’) and pl ( t’) , 
in the equilibrium field configuration are taken to pass 
through the phase-space point (XI, pI ) at time t’ = 
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t [ 24,251. For exampie, for the ion orbit XI; (t’) oc- 
curring in the eigenfunction S&(x:) in Eq. ( 12), the 
transverse displacement ~2 ( t’) solves 

d2 
--+(t’) + 
dP2 

w$+ 

(15) 

subject to the boundary conditions X; (t’ = t) = XI 
and [ dxl, (1’) /dt’] ,t=, = ~~/yt,ybmt,. Here, r’(P) = 
[#(t’) + ~‘~(t’)]‘/~. The electron orbit I’,_ oc- 

curring in the eigenfunction @(xi) in Eq. ( 11). 
solves an equation identical in form to EZq. (15) 
provided we make the replacements &e --+ -e, 

tiO(r’) 02 --+ d”( r’), ybmb -+ m,, and wpb -+ 0 in 
Eq. (15). 

The kinetic eigenvalue equations ( 1 1 )-( 14) have a 
wide range of applicability, and can be used to deter- 
mine the complex oscillation frequency o and detailed 
stability properties for a wide range of system param- 
eters and choices of equilibrium distribution functions 
l$( HLb) and e( HI,) [ 251. The principal challenge 
in analyzing Eqs. (1 I)-( 14) is two-fold. First, de- 
pending on the equilibria profiles, the transverse or- 
bits ~2 (8) are often difficult to calculate in closed 
analytical form. Second, once the orbits in the equilib- 
rium fields are determined, the integrations over t’ in 
Eqs. ( 11) and ( 12) are challenging because the orbits 
occur explicitly in the arguments of the (yet unknown) 
eigenfunction amplitudes J&$(X> ) and @(.x1 > . 

For present purposes, we specialize to the choice 
of monoenergefic ion and electron distributions in 
Eq. (9), and the corresponding step-function equi- 
librium density profiles with n:(r) = iij = const, for 

0 6 r < rb, and nT( r) = 0, for rb < r < r,. In this 

case, c1/O( r) - $;” and (6O( r) - 4’ are proportional 
to r2 in the beam interior (0 < r < rb), and the ion 
orbit equation ( 15) can be integrated exactly to give 

forO<?-‘(t’) <r-b.Here,r=t’--fand&,isthe(de- 
pressed) betatron frequency defined in Eq. ( 10). The 
electron orbit xl (t’) is identical in form to Eq. ( 16)) 
provided we make the replacements Ybmb -+ m, and 
& + & in Eq. ( 16). A careful examination of the 
eigenvalue equations ( 1 1 )-( 14) for the choice of 
equilibrium distributions in Eq. (9) [ 251 shows that 

Eqs. (ll)-( 14) support a class of exact solutions 
in which the perturbed potentials have the forms 
@(XL) = &$(r)exp(ie@) = &@exp(i@) and 
@(XL) = S&(r) exp(i@) = &r$ exp(i&?) in the 
beam interior (0 < r < rb). Here, t,& and & are 
constant amplitudes, JZ is the azimuthal mode number, 
and we have introduced cylindrical polar coordinates 
(r, 8) defined by x = r cos 8 and y = r sin 8. In car- 
rying out the integration over transverse momentum 
inEqs.(13)and(14),weexpress~dp,~dpY...= 

f: dpl pi s,‘” dqo . . ., where px = pi cos 9, py = 

pi sin v7 p1 = (p2 + p2) If2 and 9 is the phase of 
pL in the transver; plaie. To evaluate the perturbed 
ion and electron charge densities on the right-hand 
side of Eqs. ( 13) and ( 14), what is required are the 
orbit integrals occurring in Eqs. ( 11) and ( 12) av- 
eraged over the perpendicular momentum phase 9. 
For example, for pe~urbations with azimu~al mode 
number!, weexpress@ =61,&r’) exp(iW) = 
$#exp(i#‘) for 0 < r’ -C rb in the ion orbit inte- 
gral occurring in Eq. (12). Making use of Eq. (16) 
and r’! exp(il8’) = lx’ t iy’]‘, the required phase- 
averaged ion orbit integral can be evaluated in closed 
anafytical form to give [ 14,253 

Il(x~,p~) = i(w - kzVb)$t 

0 

X 
J 

drexp{-i(w - kz&,)r} 

--w 
277 

X 
s 

z[X'(t') + iy’(t’)][ 
0 

1 E c e! =-- 
2e mu m!(C - m)! 

X 
0 - k,Vb 

# - kzVb - (a - 2m)& &h1h (17) 

forO<r<rt,.FromEqs.(ll)and(13),thecorre- 
sponding electron orbit integral Zz ( XI, pi. ) is iden- 
tical in form to Eq. ( 17), provided we make the re- 
placements o - k, vb + w, b + tie, and 84 (XI ) --+ 
@(x~) = S&(r)exp(iB) = &fexp(iCe) in 
Eq. ( 17). Finally, for the choice of dis~ibution func- 
tions in Eq. (9), it can be shown that 
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with an analogousexpression for the electrons, making 
the replacements HLb + H_L~, fib -+ ire, ybmb -+ m,, 
and O2 -+ O2 

Making u& of Eqs. ( 17) and ( 18)) and the electron 
analogues, we evaluate the perturbed ion and elec- 
tron densities, occurring in the linearized Maxwell 
equations ( 13) and (14). For perturbations with 
azimuthal mode number e, we express S$( XI) = 
S&(r) exp(i@) and @(xl) = 6&(r) exp(i@), 
and Eqs. ( 13) and ( 14) reduce to 

and 

( 19) 

(20) 

Here, ZJ& = 4rrfi,e*/m,, and the ion and electron sus- 
ceptibilities are defined by 

e 

r&d - k,vt)) = -; c e! 

m=. d(e-my 

(a - 2m)i& 

X(@-kz&)-(d-2m)&,’ 

rgw) = -$ e! (t? - 2m)& 

m=om!(C-m)! w-(e-2m)&’ 

(21) 

for general azimuthal harmonic number .L Note that 
the perturbed charge and current densities on the right- 
hand sides of Eqs. ( 19) and (20) correspond to per- 

turbations localized to the beam surface at r = rb. 
Therefore, the exacf solutions for &,&t(r) and &(r) 
are proportional to ti for 0 d r < rb, and proportional 
to G and rve for rb < r < rw. We enforce continu- 
ity of the per?rbed potentials at r = rb, and @t(r = 
r,) = 0 = ~~~(r = r,) at the perfectly conducting 
wall. We further relate the discontinuities in aS+,/ar 
and G’&,b~/ar at r = rb by integrating Eqs. (19) and 
( 20) across the beam surface at r = rb . SOme algebraic 
manipulation, which is summarized elsewhere [ 251, 
gives the kinetic dispersion relation 

(22) 

Eq. (22) is the final form of the kinetic dispersion 
relation, derived from the linearized Vlasov-Maxwell 
equations for small-~pl~tude perturbations about the 
mon~nergetic equilib~um dis~ibutions in E?q. (9) 
and the corresponding step-function density profiles. 
As such, Eq. (22) can be used to determine the 
complex oscillation frequency w over a wide range 
of system parameters, including normalized beam 
intensity (~~b/~~), fractional charge neu~alization 
(f = &&&,), azimuthal mode number (Q, axial 
wavenumber (k, ), etc., subject only to the simpli- 
fying assumptions summarized earlier in this paper. 
In the absence of electrons (it, = 0), the dispersion 
relation (22) supports purely stable (Im o = 0) col- 
lective oscillations of the ion beam, and reveals a rich 
harmonic content at frequencies w - k, vb = ff& 
*2&,, . . . , &Se&,. When background electrons are 
present (ri, + 0), however, Eq. (22) supports un- 
stable solutions (Im w > 0) with instability resulting 
from the axial streaming (vb # 0) of the beam ions 
through the background electrons. 

A careful examination of Eq. (22) for it, # 0 
shows that the strongest instability (largest growth 
rate) occurs for azimuthal mode number e = 1, cor- 
responding to a simple (dipole) displacement of the 
beam ions and the background electrons. For Q = 1, we 
find T:(o) = -@/[o’ - @,“I and ri(w - k,Vb) = 
-$/[(w-k,~)2-$J fromEq.(2l),andintroduce 
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the electron and ion collective oscillation frequencies, 
w, and Ob, defined by 

0, = ve + ppe 
4 2--2 1-2 I__ = 

( ) 4 

, 

(23) 

where &$ has been expressed as i)& = (~b~b/ 

zbm,).f~;b. Substituting into Eq. (22) and rear- 
ranging terms, the & = 1 dispersion relation can be 
expressed in the compact form 

[(O-kZVb)2--~][O*-0~]=-04f, 

where Wf is defined by 

(24) 

In the absence of background electrons ( f = 0 and 
Wf = 0), Eq. (24) gives stable collective oscillations 
Of the ion beam with frequency w - k,Vb = &Wb, 
where Ob is defined in Eq. (23). For f # 0, however, 
the ion and electron terms on the left-hand side of 
Eq. (24) are coupled by the 07 term on the right-hand 
side, leading to one unstable solution with Imo > 0 
for a certain range of axial wavenumber k,. The in- 
stability is two-stream in nature, and results from the 
directed ion motion with axial velocity Vi, through 
the (stationary) back~ound electrons. IZq. (24) is a 
fourth-order algebraic equation for the complex os- 
cillation frequency w. Some s~aightforw~d analysis 
shows that there are two stable solutions to F$. (24) 
with purely real w, and two complex solutions for a 
certain range of k, that are complex conjugates (one is 
growing with Im o > 0, and the other is damped with 
Im w < 0). Eq. (24) can of course be solved numeri- 
cally for w over a wide range of system parameters. In 
this regard, it is important to recognize that the disper- 
sion relation (24) is applicable over a wide range of 
normalized beam intensity ( ~~b/*~b) and fractional 
charge neutralization (f) consistent with $2 > 0 and 

Ei,” > 0, i.e., consistent with ( ~~b/~~b) ( 1 - yi f > < 
2~; and 0 < f < 1. That is, Eq. (24) can be ap- 
plied to the emittance-dominated, moderate-intensity 

ion beams ~~~b/~~b 5 0.2, say) in the proton linacs 

and storage rings envisioned for the Spallation Neu- 
tron Source (SNS) and the Accelerator for Produc- 
tion of Tritium (APT). On the other hand, Eq. (24) 
can also be applied to the low-emittance, very high- 
intensity ion beams (~~b/~~b approaching 2~2, for 
f = 0) envisioned for heavy ion fusion [ 51. 

A careful examination of Eq. (24) shows that the 
unstable, positive-frequency branch has frequency 
and wavenumber (M, k, ) closely tuned to the values 
(00, &a) defined by WC = +o, and we - k,oQ, = 
-0b. In this regime, expressing w = 00 -i- 60 and 
k, = k,o -i- 6k,, and assuming ]Swl < 20,, the disper- 
sion relation (24) is given to good approximation by 

6o(6w - i?k,&)[l - (6w - 6k,Vb)/&,] = -!j 

- 4 
= -4o,wb* 

(26) 

At moderate beam intensities with To < I, the un- 
stable solution to Eq. (26) satisfies ]So - 6k, Vii << 
2Wb. In this regime, Eq. (26) can be approximated 
by the quadratic form 60(6w - 6k,Vb) = ---I$ E 
-#4ffh#&b. This quadratic dispersion relation sup- 
ports an unstable solution with growth rate Im6w = 
re[ 1 - (6k, V$%‘o)*] ‘/’ for &k, in the (symmet- 
ric) interval, -2rc < 6k,Vb < 2ra. The maximum 
growth rate is (Imaw),, = TO = 0J~/2(WeUb)1’2, 
which occurs for Sk, = 0. The (stabilizing) influence 
of the conducting wall is minimized when ri/rc -+ 
co, in which case (Im So),, = TO reduces to 

For example, for a proton beam (Z, = 1, YQ,/Q = 
1836) with relativistic mass factor ‘yb = 1.85, a mod- 
erate value of normalized beam intensity G~i~/w$~ = 
0.1, and fractional charge neu~alization f = 0.1, 
Eq. (27) gives (Imaw),, = 0.1270& correspond- 
ing to a particularly virulent growth rate for the 
elec~on-proton (e-p) instability. For this choice of 
system parameters, the central oscillation frequency 
and wavenum~r are WC = 13.030~ and k,oQ, = 

14.03oog,. 
At the very high beam intensities of interest for 

heavy ion fusion, the transverse beam emittance 
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Fig. 1. Plots of (a) normalized growth rate Im Sw/w$,, and 

(b) normalized real frequency Reati’w/w& versus shifted axial 

wavenumber (& - &,0)5&/w& obtained from the dispersion w- 
lation (26) for the unstable branch with positive real frequency. 
System parameters correspond to Z$ = I, A = 200 (cesium ions), 
(yh - l)q+? = 2.5 GeV, rb/rw = 0.5, and f = 0.1. Curves are 

shown for several values of normalized beam intensity 6$,/o % 
ranging from 0.1 to 2.0. 

(which is proportional to fit,) is very low, and 
the normalized beam intensity c$,/,‘$, can ap- 

proach 2~: in the absence of background electrons 

( f = 0). This follows from the inequality C~/W$ = 

2~&yt,rrr&$,r~ < 1 and the definition of iji in 
Eq. ( 10). At such high beam intensities, it is neces- 
sary to solve the cubic dispersion relation (26) or the 
full quartic dispersion relation (24) for the complex 
oscillation frequency w. Typical results obtained from 
Eq. (26) are illustrated in Fig. 1. Here, (Im w) /ok 

is plotted versus (k, - k,o) Vb/ooa for several values 

of &$,/CC& ranging from 0.1 to 2.0. Other system 
parameters in Fig. 1 correspond to & = 1, A = 200 

(cesium ions), (3/b - 1) mbc2 = 2.5 GeV, ?-b/r!+ = 0.5, 

and f = 0.1. For sufficiently small values of ~~b/~~, 
the results obtained in Fig. 1 from the cubic dispersion 
relation (26) are in excellent agreement with the ap- 
proximate quadratic dispersion relation. On the other 
hand, at very high beam intensity with ~~b/~~ = 2, 
say, it is evident from Fig. 1 that the growth rate 
Imo/o$,, has very large bandwidth, and becomes 
significantly skewed about k, = k,o. It is also striking 
from Fig. 1, that the instability growth rate can be 
very large for the very high beam intensities of inter- 
est for heavy ion fusion, e.g., (Imo),, = 2.17w& 

for &ib/i$$ = 2. 
As a final point, it should be emphasized that the 

general kinetic eigenvalue equations ( 1 1 )-( 14) can 
be applied to electrostatic ~r~urbations about a wide 
range of non-monoenergetic equilibrium distribution 
functions, $ (H-Lb) and e ( HI,), and corresponding 
self-consistent equilibrium density profiles, n:(r) and 
r&r), that vary continuously with radial coordinate 
r. A detailed, self-consistent stability analysis based 
on Eqs. ( 1 1 )-( 14) for continuously varying equilib- 
rium profiles is beyond the scope of the present arti- 
cle and will be the subject of a future investigation. 
For present purposes, it is sufficient to note that the 
spread in (depressed) betatron frequencies [ 111 asso- 
ciated with continuously varying equilibrium profiles 
is expected to lead to a threshold in beam intensity 
and/or fractional charge neu~lization for the onset 
of the two-stream instability. By contrast, for the step- 
function density profiles considered here, the ion and 
electron betatron frequencies, & and i& are constant, 
leading to sharply-defined particle resonances over the 
beam cross section, and a (CoKes~ndingly) strong 
version of the electron-ion two-stream instability. 
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