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IBX injector specifications

* Line charge density ~ 0.2 uC/m (beam potential > 1 kV)
(~ 0.5 A of K*).

* lons with mass/charge ~ 40.

* Pulse length ~ 0.2 us. (This is a key difference from the 20 ps
expected for drivers.)

* Rise time ~ 10-20% of pulse length.
 Normalized edge emittance ~ 1 1 mm-mrad.

« Start IBX in FY04 (limited development). Maintain
2-MV injector for HCX experiments.
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Beam extraction scaling law
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Space-charge-limited flow in the
extraction diode is governed by

Child-Langmuir equation.

where y = (4¢,/9)(2q/M)"?

with g and M being the charge and mass of the
ions respectively, a is the aperture radius, d the
diode length, and V is the extraction voltage.

V is limited by breakdown

V~d ford<1cm

V~dd5 ford>1cm

so large ion diode needs high V but
produces low J.

Spherical aberration depends on
the aspect ratio a/d (typically < 0.5)
thus | ~ V32

Conclusion: high current needs
large V and d but results in low J,
so the brightness is limited.




The surface ionization source is the best known

solution for a large beam

* A surface-ionization source produces alkali metal ions
from a solid (possibly large) emitter.

* lon temperature is only a small fraction of an eV;

< 2
J - 20 mA/cm ) heat shields +05 MV |
o Ny ¢
0.5A 15 mA/cm’ 6.4 cm
* Issues: source T
filament §
 1050°C heat management tungsten
substrate
- Alkali metal vapor contamination “—14-3 —

cm

* Life time due to ion and neutral depletion and heater
filament

I The Heavy lon Fusion Virtual National Laboratory I

Snowmass-GW-4




Desired current pulse after the injector
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The RTA injector was built to investigate alternate

power sources for HEP linear colliders
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RTA as a 1-MeV 600-A electron gun
dispenser cathode
vacuum pumping port
buckmgcon\\ 200 e //F/solenoids
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1-MeV 600-A electron beam

89cm

72 cores @ 14 kV/core =1 MV, 2605SC Metglas®, core area =28 cm?,p=.75,AB=2.5T, | Vds =375 ns
M-type dispenser 4.4-cm-radius cathode @ 10 A/cm? = 600 A, norm. edge emittance = 300 x mm-mrad
Peak cathode shroud surface field = 165 kV/cm, peak non-electrode "cathode" surface field = 100 kV/cm

Ten 15-W drive lines/cell
I PPPL
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IBX Source (0.5-MeV, 500-mA, K* beam)

Short pulse

vacuum pumping port

Alumino-silicate
source

Induction
acceler ator
cellsto boost
energy

0.5-M eV 500mA ion beam

Focusing

— 14.3cm

72 cores @ 7 kV/core = 0.5 MV, 2605SC Metglas®, core area =28 cm?,p =.75,AB=2.5T, [ vds = 750 ns
Alumino-Silicate Source, 6.5-cm-diameter cathode @ 15 mA/cm? =500 mA

lon transist time = 275 ns, norm. edge emittance =1 1 mm-mrad
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We will need to modify the PFN boards for a longer pulse

Existing RTA pulsed power system

1
| — :
1
I 1
Power ' PEN —] : ——> Cell #1
1
Supply I ! ¢——> Cell #2
| — |
! : +——> Cell #3
1
E ! > Cell#4
- 1+ - - - - _ _ | )
| | ! —] :
I | I 1 60 KV/cell, 600 A beam
| ”—’%\9999' - : ik 1 15 KA
1 | | 11 1
— | 40 KV !
: Resonant: : !
=  Charger ' Line |
T _ T2 J ! |
! : Modulator , Boam ine Cell #
: 100 Joules : |
| = :
______ - )
500 A/cable
20 KV
Zcable™ 40Q
VO Vuut
[ 22KVDC 20KV - - |

time

I The Heavy lon Fusion Virtual National Laboratory I f\l i

Snowmass-GW-9 ‘




Voltage waveform

We will need to operate at lower voltage to widen the voltage waveform.

Current from existing RTA injector Voltage for modified RTA

BB-1 Sum lon transist time = 275 ns

Emitted ions after this
< To ;I/time will not reach full

1.0 1 M

08 ] : voltage
- T, / voltage
S 06 y Metglass
S saturatlon
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time

T, determined by capacitance

T, ~ 300 ns
Ty~ 200 ns

(needs additional study)
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Lampel-Tiefenback solution for a 1-D diode
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Child-Langmuir I
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Vx=d, t) =V, [4/3 (t/t)—1/3 (t/t)]

Where t =3 d [m/(2qV,)]"? is the particle transit
time with m and q being the mass and charge of the
10ns.

The electric potential behind the beam front is
according to Child-Langmuir whereas the potential

in front of the beam front is due to a linear vacuum
field.

This solution can provide a zero rise-time flat-top

current and energy pulse with a long tail. (ForJ=
3mA/cm2 and d = 30cm, t = 0.6us.)

The duration of a flat-top 1s determined by how
long the voltage 1s held constant after reaching the
peak value.




Beam voltage will not have a sharp risetime

* Real extraction optics is 3D
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* Particles will be lost in transport during the rise time
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EEEEEEEEEEE

I The Heavy lon Fusion Virtual National Laboratory I f\l .

Snowmass-GW-12




Issues for single aperture approach
Large current sources require Iarge darea sources

* Presently, examining 10-15 cm diameter sources to
produce 0.5-1.0 A beams.

« Large beams more prone to spherical aberrations.

Emittance constraint requires ion temperature below 1 eV

* Presently, this restricts source technology to surface

ionization type sources, e.g. contact ionizers and
aluminosilicates.

Size mismatch between injector and accelerator

« Beam to beam distance at emitter surface is 25-30 cm.
« Beam to beam distance at accelerator is 7-10 cm.

* Requires special matching section to funnel beams
together.

. . . A
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We are beginning to explore a novel compact

“merging beamlet” injector concept

ChiId-Lar]j muir:
2
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= small multi-aperture sources

(this Ar source
achieved
100 mA/cm?)

1.2 MV Preaccelerator
using Einzel lens
focusing for beamlets

0.4 MV beamlet-
merging section
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Small gap sources

« Multiple beamlets (~ 5 mA/beamlet)
= Reduces transit time
= Work at lower voltages

« Current experiments on rf plasma source will address if
this technology can be used at ion source for HIF
applications.

* time for meniscus to stabilize
* lon temperature

 |lonization state
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The mini-beamlet approach can drastically reduce

the size of a multiple beam injector
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multi-beamlet

« The merging beamlet approach requires a high current density
ion source, but it can tolerate a higher intrinsic ion
temperature. So there are more acceptable ion source options.
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Simulations of two injector approaches: similar

emittances, qualitatively different phase spaces

ESQ injector (555 mA)
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Merging-beamlets injector (572 mA)
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Mechanical design for the Einzel lens

Stack using HGI insulators
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« We can provide a 0.5-A, 0.5-MeV, low-emittance,
short-pulse, K" beam by converting RTA.

* If current experiments with the rf plasma source
provide high quality beamlets we would like to
use this approach in IBX.
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