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IBX injector specifications

• Line charge density ≈ 0.2 µC/m (beam potential > 1 kV)       

(~ 0.5 A of K+). 

• Ions with mass/charge ≈ 40.

• Pulse length ~ 0.2 µs. (This is a key difference from the 20 µs 
expected for drivers.)

• Rise time ~ 10-20% of pulse length.

• Normalized edge emittance ≈ 1 π mm-mrad. 

• Start IBX in FY04 (limited development). Maintain   
2-MV injector for HCX experiments.
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Beam extraction scaling law
• Space-charge-limited flow in the 

extraction diode is governed by 
Child-Langmuir equation. 
where χ = (4εo/9)(2q/M)1/2

with q and M being the charge and mass of the 
ions respectively, a is the aperture radius, d the 
diode length, and V is the extraction voltage.

• V is limited by breakdown
V ~ d for d < 1 cm 
V ~ d0.5 for d > 1 cm
so large ion diode needs high V but 
produces low J.

• Spherical aberration depends on 
the aspect ratio a/d (typically < 0.5) 
thus Imax ~ V3/2

• Conclusion: high current needs 
large V and d but results in low J, 
so the brightness is limited.
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The surface ionization source is the best known 
solution for a large beam
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• A surface-ionization source produces alkali metal ions 
from a solid (possibly large) emitter.

• Ion temperature is only a small fraction of an eV; 
J ≤ 20 mA/cm2.

• Issues:

• 1050°C heat management

• Alkali metal vapor contamination 

• Life time due to ion and neutral depletion and heater 
filament
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The RTA injector was built to investigate alternate 
power sources for HEP linear colliders
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RTA as a 1-MeV 600-A electron gun

72 cores @ 14 kV/core = 1 MV, 2605SC Metglas®, core area = 28 cm2 , ρ = .75, ∆B = 2.5 T, ∫ Vds = 375 ns
M-type dispenser 4.4-cm-radius cathode @ 10 A/cm2 = 600 A, norm. edge emittance = 300 π mm-mrad
Peak cathode shroud surface field = 165 kV/cm, peak non-electrode "cathode" surface field = 100 kV/cm
Ten 15-W drive lines/cell
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IBX Source (0.5-MeV, 500-mA, K+ beam)

72 cores @ 7 kV/core = 0.5 MV, 2605SC Metglas®, core area = 28 cm2 , ρ = .75, ∆B = 2.5 T, ∫ Vds = 750 ns
Alumino-Silicate Source, 6.5-cm-diameter cathode @ 15 mA/cm2 = 500 mA
Ion transist time = 275 ns,  norm. edge emittance = 1 π mm-mrad
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We will need to modify the PFN boards for a longer pulse
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We will need to operate at lower voltage to widen the voltage waveform.
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Lampel-Tiefenback solution for a 1-D diode

V(x=d, t)  = Vf [4/3 (t / tr) – 1/3 (t / tr)4]

Where tr = 3 d [m/(2qVf)]1/2 is the particle transit 
time with m and q being the mass and charge of the 
ions.

The electric potential behind the beam front is 
according to Child-Langmuir whereas the potential 
in front of the beam front is due to a linear vacuum 
field.

This solution can provide a zero rise-time flat-top 
current and energy pulse with a long tail.  (For J = 
3mA/cm2 and d = 30cm, t = 0.6µs.) 

The duration of a flat-top is determined by how 
long the voltage is held constant after reaching the 
peak value.
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Beam voltage will not have a sharp risetime

• Real extraction optics is 3D.

• Particles will be lost in transport during the rise time.
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Issues for single aperture approach

Large current sources require large area sources

• Presently, examining 10-15 cm diameter sources to 
produce 0.5-1.0 A beams.

• Large beams more prone to spherical aberrations. 

Emittance constraint requires ion temperature below 1 eV

• Presently, this restricts source technology to surface 
ionization type sources, e.g. contact ionizers and 
aluminosilicates.

Size mismatch between injector and accelerator

• Beam to beam distance at emitter surface is 25-30 cm.  
• Beam to beam distance at accelerator is 7-10 cm.  
• Requires special matching section to funnel beams 

together.
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We are beginning to explore a novel compact   
“merging beamlet” injector concept
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• Multiple beamlets (~ 5 mA/beamlet)

Reduces transit time

Work at lower voltages

• Current experiments on rf plasma source will address if 
this technology can be used at ion source for HIF 
applications. 

• time for meniscus to stabilize

• Ion temperature

• Ionization state

Small gap sources
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The mini-beamlet approach can drastically reduce 
the size of a multiple beam injector

• The merging beamlet approach requires a high current density 
ion source, but it can tolerate a higher intrinsic ion 
temperature.  So there are more acceptable ion source options.

Replacing this

with this

Low J
Source

High J
multi-beamlet
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Simulations of two injector approaches: similar 
emittances, qualitatively different phase spaces

ESQ injector (555 mA) Merging-beamlets injector (572 mA)

Initial 0.5 m

1.9 m 4.1 m

(distances past end of Pierce columns)

End of Match

End of Injector
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Stack using HGI insulators

Mechanical design for the Einzel lens
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Summary

• We can provide a 0.5-A, 0.5-MeV, low-emittance, 
short-pulse, K+ beam by converting RTA.

• If current experiments with the rf plasma source 
provide high quality beamlets we would like to 
use this approach in IBX.


