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Policy Goals (FEAC-1996)
• Advance plasma science in pursuit of national S&T goals;

• Develop fusion science, technology, and plasma confinement innovations as the
central theme of the domestic program; and

• Pursue fusion energy science and technology as a partner in the international
effort.

Fusion Energy Science Plan (FESAC-1999, IPPA-2000), Goals 1-4 (of 6):

1. Advance plasma understanding ⇒ enhance predictive capability.

2. Advance ICC science ⇒ reduced-cost paths to more attractive fusion systems.

3. Advance the AT and participate in an international burning plasma experiment.

4. Develop technologies: enabling technologies to advance the science; technology
and material innovations, system design to improve the vision; tests in realistic
environments.

Context: Stated U.S. Fusion Policy and Plans

This is a good plan that can be built on.



– What will each approach contribute to the integrated
development of fusion energy over the next 20 years?
• Physics understanding
• Reactor attractiveness
• Technology/materials

– What are the requirements for a BPX to advance integrated
fusion energy development in terms of :
• Demonstrating fusion burn?
• Advancing the science and technology of fusion common

to the portfolio of concepts?

Starting Point:  How do the ICCs and a BPX fit into Integrated
Fusion Energy Development?

Specifically:
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Integration of Experiments, Theory, and  Modeling  Enables
Fusion Energy Development
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Identify, explore, and understand
basic science Issues for Fusion:

• theory and modeling development
• experimental investigation

Technology Issue ID
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•    modeling development
•   experimental investigation

Science Capability Technology Capability

  Fusion 
 Energy

   
Bas

ic
  e

xp
er

im
en

ts
   

   
   

In
te

gr
at

ed

CE   
   

  P
oP

   
   

   
   

   
   

PE   
   

   
BPX

               Technology Test Facilities:

               IFM
IF/VNS      BPX?           Present

DEMO

Validated Predictive 
Capability



An Integrated Development Roadmap for Fusion Energy
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• A coherently integrated development path that encompasses “a
diverse portfolio” of confinement concepts will ensure the continual
advancement of the program’s science and technology base.

• The portfolio must allow for a range of concepts advancing through the
concept exploration, proof-of-principle (PoP) and performance extension
(PE) stages (depending on merit).

•  BPX, as an important element of the integrated development path, must
deliver benefits that are generic to a range of MFE concepts.

An Integrated Development Path
is the Keystone for Fusion Development

Integration of ICC, AT, & BPX Experiments with Theory and
Modeling will Develop the Predictive Capabilities Needed

for Enabling Fusion Energy





Concept Innovation and Development
Attractive Reactor Attributes are Investigated with a Diverse Portfolio
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Integration of Portfolio Science
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Technology Cross-cuts Portfolio Requirements

• Magnetics - superconducting and normal coil technology
         -  3D shaping

• Heating and current drive   - RF and helicity injection

• Fueling    -    gas puffing & pellet injection
       -   CT injection

• Plasma facing components  -  high wall loading

• Remote handling and Nuclear technologies - 

• Materials



Scientific Requirements:
– Define and achieve realistic goals of integrated fusion burn.

– Operational flexibility (physics phase space) - maximize the knowledge
transfer to and from “the portfolio” with the goal of developing a predictive
capability for designing the best fusion energy sources.

– Well diagnosed (and diagnosable) to achieve the flexible and integrated
physics mission.

– Strong theory and modeling support coordinated with experiments to
develop predictive capabilities.

Fusion Technology:
– Integration of fusion technologies in a realistic fusion environment

– Fusion technologies most likely will have significant transferability to
other concepts

Conclusion:  Expectations for a BPX


