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Context: Stated U.S. Fusion Policy and Plans

Policy Goals (FEAC-1996)

Advance plasma science in pursuit of national S&T goals;

Develop fusion science, technology, and plasma confinement innovations as the
central theme of the domestic program; and

Pursue fusion energy science and technology as a partner in the international
effort.

Fusion Energy Science Plan (FESAC-1999, IPPA-2000), Goals 1-4 (of 6):

1. Advance plasma understanding = enhance predictive capability.

2. Advance ICC science = reduced-cost paths to more attractive fusion systems.
3. Advance the AT and participate in an international burning plasma experiment.
4

. Develop technologies: enabling technologies to advance the science; technology
and material innovations, system design to improve the vision; tests in realistic
environments.

This is a good plan that can be built on.



Starting Point: How do the ICCs and a BPX fit into Integrated
Fusion Energy Development?

Specifically:

—  What will each approach contribute to the integrated
development of fusion energy over the next 20 years?
Physics understanding
Reactor attractiveness
Technology/materials

—  What are the requirements for a BPX to advance integrated
fusion energy development in terms of :
Demonstrating fusion burn?
Advancing the science and technology of fusion common
to the portfolio of concepts?
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Program Development “Think” circa 1999 was
Missing Coherent Integration
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FIRE-based Development Path
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Integration of Experiments, Theory, and Modeling Enables
Fusion Energy Development
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An Integrated Development Roadmap for Fusion Energy
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An Integrated Development Path
Is the Keystone for Fusion Development

A coherently integrated development path that encompasses “a
diverse portfolio” of confinement concepts will ensure the continual
advancement of the program’s science and technology base.

The portfolio must allow for a range of concepts advancing through the
concept exploration, proof-of-principle (PoP) and performance extension
(PE) stages (depending on merit).

BPX, as an important element of the integrated development path, must
deliver benefits that are generic to a range of MFE concepts.

Integration of ICC, AT, & BPX Experiments with Theory and

Modeling will Develop the Predictive Capabilities Needed
for Enabling Fusion Energy




Development Path

Development Path: Criteria for Success

» Commercial Fusion is the goal of development path scenario

» Top-Level metrics and goals for fusion power are identified by various national
programs (i.e., FESAC Panel on Priorities & Balances):
1) Safety & environmental goals: low-level waste and no evacuation
a. Requires that fusion core is constructed entirely of low-activation material;
b. Requires intense 14-MeV neutron source and development and testing of power
technologies using low-activation material.
2) Operational goals: High capacity factor and ease of maintenance
a. Requires early integration of integration of physics and technology in order to
develop extensive reliability/maintainability data.
3) Economic Goals: 0.7-1.5 times of present costs of electricity
a. Requires advanced tokamak mode (steady-state) operation;
b. Requires advanced technologies, in particular, high-efficiency blankets.

» We have used relevant power plant studies, e.g., ARIES-RS, ARIES-AT, etc., or similar
studies overseas, e.g., SSTR to derive physics and technology requirements.



Concept Innovation and Development
Attractive Reactor Attributes are Investigated with a Diverse Portfolio
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Integration of Portfolio Science
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Technology Cross-cuts Portfolio Requirements




Conclusion: Expectations for a BPX

Scientific Requirements:
— Define and achieve realistic goals of integrated fusion burn.

—  Operational flexibility (physics phase space) - maximize the knowledge
transfer to and from “the portfolio” with the goal of developing a predictive
capability for designing the best fusion energy sources.

—  Well diagnosed (and diagnosable) to achieve the flexible and integrated
physics mission.

—  Strong theory and modeling support coordinated with experiments to
develop predictive capabilities.

Fusion Technology:
— Integration of fusion technologies in a realistic fusion environment

—  Fusion technologies most likely will have significant transferability to
other concepts



