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larget designs can be characterized by ignition

nethod,compression method and driver

gnition Driver
Laser
n=5-10%
~ast Ignition H“ﬁh“ T
Accelerator
n=15-40%
Lo X| [
jnition by o i n~15%
::wgent:oﬂ Indirect drive




How do targets interface with the rest of the IFE

system?

+« Sets driver requirements
— Scale and pulseshape(adiabat control) required to meet G
— Illumination geometry and precision: symmetry control
— Beam quality and smoothness: hydro & plasma instabilities

— Beam brightness:convergence ratio or Fast Ignition
requirement

« Sets fabrication requirement
— Ablator/DT smoothness : residual Rayleigh-Taylor instability
— Hohiraum design&materials: symmetry control &efficiency

¢ Delivers photon,neutron and debris insult to first wall and optics

Require sufficient gain(G) q.v. nG > 10: CoE



ere are several factors that control gain

»  Optimal 1-D behavior
- Entropy management by pulseshaping and control of preheat
— Minimum implosion velocity = v(a, Pr, E)
— Rocket efficiency

» Hydrodynamic instability growth must be minimized to control
shell breakup and mixing of high(hotspot) and low(main fuel)
entropy regions

» Implosion symmetry must to controlled so that all fuel elements
stagnate simultaneously in a compact mass

» Coupling efficiency set by beam-plasma coupling and symmetry
requirements
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The ignition energy can be estimated assuming

an 1sobaric hot s

Energy accounting:
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ar implosions suggest the
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'he Rayleigh-Taylor instability is one of the key
hysics issue facing IFE

A target will fail if the perturbation amplitude (a) equals
the shell thickness (AR).

Perturbations grow exponentially:
a (t) = a(tg)ert

Ablative stabilization term
y= "—Mﬂ W/ :
". - e

until saturation & Ppeak

a(t) = ag,{1 + logla (t)/agl)
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ptimization involves trading off

iIstness versus perturbation growth

me fixed adiabat, drive pressure, and fuel energy

sasing Perturbation Growth For fixed capsule absorbed energ

e which velocity is best?
Low Velocity |High Velo
Perturbation
Growth Low High
Gain High Low
Margin Low High

CH 082800



d numerical simulations with imposed
: roughness show the fastest shell is most

ptible to shell breakup

[N

Slow Moderate Fast Very Fast p

150. i o 0]
Router “2:3 MM 3 12 |\ oot Al four capsules sta
EaatW00K) Rl A A with 8x NIF standars
T. ~80eV 3 2 ablator roughness ai
e ot R0 standard ice roughne

= 522 24 28 28 3 32
T max~ 265 eV o e,



yield plastic capsules can tolerate

roughness ~10-20x NIF standard
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For this configuration:

-Slow capsule fails due to
cold fuel into the hot spot

*Very Fast capsule fails di
“shell breakup”

*Moderate and Fast capst
(Margin 1.3-1.6) are most

«Slow capsule gives highe
gain for roughness < 80nr

NIF and High Yield Capsules show similar trade:
between 1-D robustness and perturbation grow




ulse shaping

ligh performance target designs combine wetted
pam with adiabat shaping

high-z material increases |
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» Laser Pulse Offers Large Improvements

lability for the Same Direct Drive Target
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losion symmetry is an important issue for
) convergence-ratio targets

Small nonuniformity when outershell is at large radius
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rcomes magnified when shell is imploded to a very small radius
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A sufficient number of beams provide adequate long-
wavelength uniformity throughout the implosion
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diation symmetry in indirectly driven targets is

ntrolled by three factors

Hohlraum re-radiation smoothes
wall temperature by factor 1/(1-u)
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“or the heavy ion distributed radiator target,
ammatry is achieved by depositing most a
the energy near the zeros of P4 L[E

Zeros of Py

® For a spherical hohlraum,
sources with Gaussian
weights located at the zeros
of P4 causes all moments

converters from F1 to P? to be zero

¢ Converters are placed

near the zeros of P4 so
DEP““::' 2%":;%3; density that most of the energy

is deposited there

0.4
* Converter densities are
adjusted so that P is small
"'"u.u 0.4 0.8

allahan 6/02




smonstrating capsule symmetry control is a
gh priority for near-term experiments on Z

'uble-Pinch 1.4 = Lgec/Rsec =+ 1.9 sy
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* Symmetry control via hohlraum design (e.g. Lsec variation)

« Agreement with viewfactor-RHD + integrated calculations

« Optimum length symmetry is close to scaled HY requiremeni

namic Hohlraum

* Shock emission width consistent with low pinch R

* End-on core x-ray images + spectra, side-on plann

* Foam dopants, radiation burnthrough shielding, ai
converter shaping for pole-equator asymmetry



ing a smaller hohiraum allows us to trade

coupling efficiency and symmetry

lohlraum dimensions reduced by
6% but driving the same capsule

Coupling efficiency: 17%
Gain: 66
Driver Energy: 5.9 MJ

Coupling efficiency: 27%
Gain: 130
Driver Energy: 3.3 MJ



»am plasma coupling seems acceptable but

udies continue

Laser coupling efficiency 70%(direct drive)-90%(indirect drive or
zooming)

— Study SBS in hohlraums

' Filamentation can change location of laser energy
deposition,affecting symmetry and driving other instabilities

' Raman scattering can lead to hot,preheating electrons but levels
seem to be acceptable

» lon beam stopping power has 20% theoretical uncertainties
— Plasma target experiments beginning

— By varying target designs we can accommodate factor 2-3
uncertainty
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Shock heated central spot ignites 4 .y

a density cold shell Fast-e” heated side spot ignites
Hr__p = ap 3@ a lower density, larger uniform
- . fuel bail h"""n
* Tabak, Hamsmes, Glinsiy, Krosr, Wilks, Wioodworih,
Advantages of Fast ignitor

« Fast Ignitor implosions are less stressing: (mix, convergence, ...)
* Lower p — more mass to burn (E_ = a M_p2®) = Higher Gain

~ Significant R&D is required to explore potential of this concept




tion requires several key elements:

@ Efficient conversion:

E,....> beam ofe s or ps with
appropriate range aimed at blob

1 implosion to
high density blob

@ Short pulse ks
aimed and timec
blob implosion

@ Efficient transport ¢

hot electron(or proton
energy to blob
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locussed scheme provides

. of the key Fl elements.

1) Low aspect ratio capsule:
et hi p blob with relatively
{ low drive symmetry

Z/@) Cone provides
pointing & puts deposition

=

@ E,,, = hots at surface,
~50% conversion (exp t)

of laser v. close to hi p blob B

® Laser spot size & pulse

length tuned to give hote s
with optimum range

Other options:
Direct drive

Use produced
proton beam as
intermediary

Without cone:
Ponderomotive
hole boring throug
coronal plasma
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jJa experiments tested cone-focus concept for

anition at 1/5 scale

DT ice
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klit images (@8 keV) show convergence of
focussed targets was very similar to
iction — with perhaps a small time offset.

'rediction (with pi::elatlnn noise, am:l smouthing lilm a:p images) '

wmparison shows some exp. evidence for gold entrainment near tip o




leactor issues

s hohlraum wall material must

itisfy constraints from four areas

i Target Physics 9 &= Fabrication i
Need to produce
Need high opacity
and low heat capacity I::“:n("; m,m)
to minimize en

targets perday  /

S

Environment and Chamber Design b
Need low activation for Need to recover
recycling and waste the material from

disposal ) K the chamber g
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arget designs with varying degrees of risk

rovide adequate gain for all driver concepts
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