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Outline 

•  Data Grand Challenges  
–  Data challenges of simulation-based science 

•  Rethinking the simulations -> insights pipeline  

•  The ADIOS/DataSpaces Project  

•  Conclusion 



Modern Science & Society Transformed by 
Compute & Data 
New	
  paradigms	
  and	
  prac/ces	
  
in	
  science	
  and	
  engineering	
  	
  
•  Inherently	
  mul/-­‐
disciplinary	
  

•  Data-­‐driven,	
  data	
  and	
  
compute-­‐intensive	
  

•  Collabora/ve	
  (university,	
  
na/onal,	
  global)	
  

Many Challenges 
•  Computing, Data, Software, 

People 
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Many Challenges…. 
•  Computing 

–  Multicore; large and increasing core counts, deep memory 
hierarchies (TH-2: 54.9 PF, 3.12 M Cores, 1.4 PB, 25 MW) 

–  New prgm. model, concerns (fault tolerance, energy, etc) 
–  New models & technologies: Clouds, grids, hybrid 

manycore, accelerators, deep storage hierarchies, … 
•  Data 

–  Generating more data than in all of human history: preserve, 
mine, share? 

–  How do we create “data scientists/engineers”? 
•  Software 

–  Complex applications on coupled compute-data-networked 
environments, tools needed 

–  Modern apps: 106+ lines, many groups contribute, take 
decades to develop, very long lifetimes  

•  People 
–  Multidisciplinary expertise essential! 

•  Appropriate academic program, career tracks… 



The Era of eScience and Big Data 
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Many smaller datasets… 

Genome sequencing are 
doubling in output every 9 
months ! 100PB data from LSST 

by the end of this 
decade!! 

Climate Data 
2004 -> 36TB 
2012 -> 2PB  
Keep increasing!  

LHC will produce 
roughly 15PB data/
year! 

SKA project will generate 
1 EB data/day in 2020! 

Credit:  R. Pennington/A. Blatecky 

  
 Clearly, modern scientific network/
instruments/experiments/… are 
producing Big Data!! 
  
 But what about HPC? 

 
 
 
 
O  



Advanced Computing Infrastructure  
•  Large scale, distributed, heterogeneous, multicore/manycore, 

accelerators,  deep storage hierarchies, experimental systems 
…. 

Titan  - Cray XK7 
•  20+ PF / 300 K CPU 

cores 
•  18,688 GPUs 
•  Gemini 3D torus 
•  710TB memory 

TH-2 
•  54.9 PF / 3.12 M cores 
•  32K Xeon + 48K Phi 
•  TH Express-2 
•  1PB memory 

Worldwide LHC 
Computing Grid  
•  >140 sites;  
•  ~250k cores;  
•  ~100 PB disk 

Modern 
Datacenters 
•  1M servers 
•  50-100 MW 

Special Purpose 
HW (Anton) 
•  > 100 time 

acceleration of 
MD 
simulations  

Sequoia – IBM BG/Q  
•  20 PF / 1.5 M cores 
•  18-core processor 
•  5D torus 
•  1.5PB memory 



Scientific Discovery through Simulations  
•  Scientific simulations running on high-end computing systems generate 

huge amounts of data!   
–  If a single core produces 2MB/minute on average, one of these machines could 

generate simulation data between ~170TB per hour -> ~700PB per day -> 
~1.4EB per year 

•  Successful scientific discovery depends on a comprehensive understanding 
of this enormous simulation data 

How we enable the computation scientists to 
efficiently manage and explore extreme scale data: 
“find the needles in haystack” ??  



Scientific Discovery through Simulations 

•  Complex, heterogeneous 
components  

•  Large data volumes and data rates 

•  Data re-distribution (MxNxP), data 
transformations 

•  Dynamic data exchange patterns 

•  Strict performance/overhead 
constraints  

•  Complex workflows integrating 
coupled models, data management/
processing, analytics  
•  Tight / loose coupling, data 

driven, ensembles 

•  Advanced numerical methods (E.g., 
Adaptive Mesh Refinement) 

•  Integrated (online) uncertainty 
quantification, analytics 



Traditional Simulation -> Insight  Pipelines Break Down 

•  Traditional simulation -> insight 
pipeline: 
–  Run large-scale simulation 

workflows on large supercomputers 
–  Dump data on parallel disk systems 
–  Export data to archives 
–  Move data to users’ sites – usually 

selected subsets 

–  Perform data manipulations and 
analysis on mid-size clusters 

–  Collect experimental / observational 
data 

–  Move to analysis sites 
–  Perform comparison of 

experimental/observational to 
validate simulation data 

Figure. Traditional data analysis pipeline 



Challenges Faced by Traditional HPC Data Pipelines 
•  Data analysis challenge 

•  Can current data mining, manipulation 
and visualization algorithms still work 
effectively on extreme scale machine? 

The costs of data movement are increasing and dominating! 

Figure. Traditional data analysis pipeline 

•  I/O challenge 
•  Increasing performance gap: disks are 

outpaced by computing speed 

•  Data movement challenge 
•  Lots of data movement between simulation and analysis machines, between 

coupled mutli-physics simulation components -> longer latencies  
•  Improving data locality is critical: do work where the data resides! 

 
•  Energy challenge 

•  Future extreme systems are designed to have low-power chips – however, 
much greater power consumption will be due to memory and data movement!  

 



•  The energy cost of moving data is a 
significant concern 

From K. Yelick, “Software and Algorithms for Exascale: Ten Ways to Waste an Exascale Computer”"

The  Cost  of  Data  Movement	


Energy_move_data = bitrate* length2

cross_section_area_of_wire

performance 
gap 

•  Moving data between node 
memory and persistent 
storage is slow! 



Challenges Faced by Traditional HPC Data Pipelines 

Traditional data analysis pipeline 

 
We need to Rethink the Data Management Pipeline!  

–  Reduce data movement 
–  Move computation/analytics closer to the data   
–  Add value to simulation data along the IO path  

The costs of data movement 
(power and performance) are 
increasing and dominating! 



Rethinking the Data Management Pipeline – Hybrid Staging 
+ In-Situ & In-Transit Execution 

Issues/Challenges 
 
•  Programming abstractions/systems 

•  Mapping and scheduling 

•  Control and data flow 

•  Autonomic runtime 
 



Design space of possible workflow architectures  
•  Loca%on	
  of	
  the	
  compute	
  resources	
  
–  Same	
  cores	
  as	
  the	
  simula/on	
  (in	
  situ)	
  
–  Some	
  (dedicated)	
  cores	
  on	
  the	
  same	
  nodes	
  
–  Some	
  dedicated	
  nodes	
  on	
  the	
  same	
  machine	
  	
  
–  Dedicated	
  nodes	
  on	
  an	
  external	
  resource	
  

•  Data	
  access,	
  placement,	
  and	
  persistence	
  
– Direct	
  access	
  to	
  simula/on	
  data	
  structures	
  
– Shared	
  memory	
  access	
  via	
  hand-­‐off	
  /	
  copy	
  
– Shared	
  memory	
  access	
  via	
  non-­‐vola/le	
  near	
  
node	
  storage	
  (NVRAM)	
  

– Data	
  transfer	
  to	
  dedicated	
  nodes	
  or	
  external	
  
resources	
  

•  Synchroniza%on	
  and	
  scheduling	
  
–  Execute	
  synchronously	
  with	
  simula/on	
  

every	
  nth	
  simula/on	
  /me	
  step	
  
–  Execute	
  asynchronously	
  	
  

Processing	
  data	
  on	
  remote	
  nodes	
  Using  distinct  cores on same node 

Sharing cores with the simulation 
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DataSpaces  
In-situ/In-transit Data Management & Analytics  

l  Virtual shared-space programming abstraction  
l  Simple API for coordination, interaction and messaging 

l  Distributed, associative, in-memory object store  
l  Online data indexing, flexible querying 

l  Adaptive cross-layer runtime management  
l  Hybrid in-situ/in-transit execution  

l  Efficient, high-throughput/low-latency asynchronous data transport 

A
D

IO
S/D

ataSpaces 
dataspaces.org  



DataSpaces: A Scalable Shared Space Abstraction for Hybrid 
Data Staging [HPDC10, JCC12] 

l  Virtual shared-space abstraction  
l  Simple API for coordination, 

interaction and messaging 
l  Provides a global-view programming 

abstraction consistent with PGAS  
l  Distributed, associative, in-deep-

memory object store  
l  Online data indexing, flexible 

querying 

l  Adaptive cross-layer runtime 
management  
l  Hybrid in-situ/in-transit execution  
l  Data-centric mappings  

l  High-throughput/low-latency memory-to-
memory asynchronous data transport 
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•  Dynamic coordination and interaction 
patterns between the coupled 
applications  
–  Transparent data redistribution 
–  Complex geometry-based queries 
–  In-space (online) data 

transformation and manipulations 
 



DataSpaces: Scalability on ORNL Titan 

•  Evaluate weak scaling with an increasing number of processors 
•  Applications redistribute data through DataSpaces 

•  Application 1 runs on M processors and insert data in the space 
•  Application 2 runs on N processors and retrieve data from the space 

•  Result: A 128 fold increase in the application sizes from 512 to 64K writers, total data 
size exchanged per step is increased from 2GB to 256GB 
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Multphysics Code Coupling at Extreme Scales  [CCGrid10] 
PGAS Extensions for Code Coupling [CCPE13] 

DataSpaces: Enabling Coupled Scientific 
Workflows at Extreme Scales  

Data-centric Mappings for In-Situ Workflows [IPDPS12] 
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Dynamic Code Deployment In-Staging [IPDPS11]  

kernel_min {
for i = 1, n
    for j = 1, m
        for k = 1, p
            if (min > A(i, j, k))
                min = A(i, j, k)
}

data_kernels.c

0x69 0x20 0x61
0x6d 0x20 0x63
0x6f 0x6f 0x6c 
0x0

data_kernels.o Applications.o

Applications
executable

aprunap
ru

n

Compute
nodes

Link
gcc -c

Staging
nodes

rexec()
return()

for i = 0, ni-1 do
    for j = 0, nj-1 do
        for k = 0, nk-1 do
            val = input:get_val(i,j,k)
            if min > val then
                min = val
            end
     end
end

    

data_kernels.lua

Runtime execution system
(Rexec)

Load



In-Situ Feature Extraction and Tracking using 
Decentralized Online Clustering (DISC’12, ICAC’10) 

DOC	
  workers	
  executed	
  in-­‐situ	
  on	
  
simula%on	
  machines	
  

Simula/on	
  Compute	
  Nodes	
  

One compute node 

Processor	
  core	
  runs	
  	
  simula/on	
  

Processor	
  core	
  runs	
  	
  DOC	
  worker	
  

Benefits of runtime feature extraction and tracking 
(1) Scientists can follow the events of interest (or data of 
interest) 
(2) Scientists can do real-time monitoring of the running 
simulations  

DOC	
  Overlay	
   



Pixplot 
8 cores 

Pixmon 
1 core  

(login node) 

ParaView Server 
 4 cores 

In-situ viz. and 
monitoring with staging" Pixie3D 

1024 cores 

DataSpaces 

record.bp record.bp record.bp 

pixie3d.bp pixie3d.bp pixie3d.bp 



DataSpaces 

AMR-as-a-Service using DataSpaces 
•  FEM-AMR workflow 

Grid 
GridField 

	
  
FEM	
  

	
  
AMR	
  

	
  

•  Components: 
•  FEM: model uniform 3D mesh of near-realistic engineering problems such 

as heat-transfer, fluid flow and phase transformation(Grid and GridField) 
•  AMR: localize areas of interest where the physics is important (pGrid and  
•  pGridField) to allow truly realistic simulations  

•  Goals: 
•  Enable in-memory data coupling between FEM and AMR code  
•  Allow multiple AMR codes to be plugged in and read Grid/GridField data as 

FEM progresses. 
 

pGrid 
pGridField 

Grid 
GridField 

pGrid 
pGridField 



Overview of Research Work @ RU  
•  Programming abstractions / system 

–  DataSpaces: Interaction, coordination and messaging  abstractions for coupled scientific 
workflow [HPDC10, CCGrid10, HiPC12, JCC12] 

–  XpressSpaces: PGAS extensions for coupling using DataSpaces [CCGrid11, CCPE13] 
–  ActiveSpaces: Dynamic code deployment for in-staging data processing [IPDPS11] 

•  Runtime mechanisms  
–  Data-centric Task Mapping: Reduce data movement and increase intra-node data sharing 

[IPDPS12, DISC12]  
–  In-situ & In-transit Data Analytics: Simulation-time analysis of large volume data by 

combining in-situ and in-transit execution [SC12, DISC12] 
–  Cross-layer Adaptation: Adaptive cross-layer approach for dynamic data management in 

large scale simulation-analysis workflow [SC13] 
–  Value-based Data Indexing and Querying : Use FastBit to build in-situ, in-memory value-

based indexing and query support in the staging area  
–  Power/performance Tradeoffs: Characterizing power/performance tradeoffs for data-

intensive simulations workflows [SC13] 
–  Data Staging over Deep Memory Hierarchy: Build distributed associative object store over 

hierarchical memory storage, e.g. DRAM/NVRAM/SSD [HiPC 13] 

•  High-throughput/low-latency asynchronous data transport  
–  DART: Network independent transport library for high speed asynchronous data extraction 

and transfer [HPDC08] 



Integrating In-Situ and In-Transit Analytics (SC’12) 

•  S3D: First-principles direct 
numerical simulation 

•  Simulation resolves features on 
the order of 10 simulation time 
steps 

•  Currently on the order of every 
400th time step can be written to 
disk 

•  Temporal fidelity is compromised 
when analysis is done as a post-
process 

Recent	
  data	
  sets	
  generated	
  by	
  S3D,	
  developed	
  
at	
   the	
   Combus/on	
   Research	
   Facility,	
   Sandia	
  
Na/onal	
  Laboratories	
  



In-situ Topological Analysis as Part of S3D* 

61 

Topology	
  

Sta/s/cs	
  

Identify features of 
interest 

Volume	
  Rendering	
  

*J. C. Bennett et al., “Combining In-Situ and In-Transit Processing to Enable Extreme-Scale Scientific 
Analysis”, SC’12, Salt Lake City, Utah, November, 2012. 



Integrating In-Situ and In-Transit Analytics 
(SC’12) 

•  Primary resources execute 
the main simulation and in 
situ computations 

•  Secondary resources 
provide a staging area 
whose cores act as 
buckets for in transit 
computations  

•  4896	
  cores	
  total	
  (4480	
  simula/on/in	
  situ;	
  256	
  in	
  
transit;	
  160	
  task	
  scheduling/data	
  movement)	
  

•  Simula/on	
  size:	
  1600x1372x430	
  
•  All	
  measurements	
  are	
  per	
  simula/on	
  /me	
  step	
  



Simulation case study with S3D:  Timing results 
for 4896 cores and analysis every 10th 
simulation time step 
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Simulation case study with S3D:  Timing results 
for 4896 cores and analysis every 100th 
simulation time step 

1685%
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Cross-Layer Adaptation for Dynamic Data Management 
(SC13) 

•  Coupled simulation-analytics 
workflow based on dynamic 
formulations such as 
Adaptive Mesh Refinement 
(AMR) running at extreme 
scales present new 
challenges for in-situ/in-
transit data management  
•  Large and dynamically 

changing volume of data 
•  Dynamic imbalanced data 

distribution  
•  Heterogeneous resource 

(memory, CPU, etc.) 
requirements 

 
    



Cross-Layer Adaptation for Dynamic Data 
Management 

Dynamic cross-layer adaptations 
that can respond at runtime to the 
dynamic data management and 
data processing requirements 
•  Application layer: Adaptive 

spatial-temporal data resolution 
•  Middleware layer: Dynamic in-

situ/in-transit placement and 
scheduling  

•  Resource layer: Dynamic 
allocation of in-transit resources 

•  Coordinated approaches: 
Combine mechanisms towards a 
specific objective (e.g. minimized 
time-to-solution) 



Cross-Layer Adaptation for Dynamic Data 
Management 

Application layer adaptation of the 
spatial resolution of data using user-
defined down-sampling based on 
runtime memory availability. 
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Application layer adaptation of the 
spatial resolution of the data using 
entropy based data down-sampling.  
(Top: full-resolution; Bottom: 
adaptive resolution) 
 



Cross-Layer Adaptation for Dynamic Data 
Management 
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Cross-Layer Adaptation for Dynamic Data 
Management 

 a. Data transfer with/without middleware 
adaptation at different scales 

Adapt the placement on-the-fly, utilizing the 
flexibility of in-situ (less data movement). 

 

 b. Comparison of cumulative end-to-end 
execution time between static placement 
(in-situ/in-transit) and adaptive 
placement. End-to-end overhead includes 
data processing time, data transfer time, 
and other system overhead. 
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Cross-Layer Adaptation for Dynamic Data 
Management 

 a. Data transfer comparison between 
performing adaptive placement and 
performing combined cross-layer 
adaption (adaptive data resolution + 
adaptive placement) 

 

 b. Comparison of cumulative end-to-
end execution time between 
adaptive placement and combined 
cross-layer adaption (adaptive data 
resolution + adaptive placement).   



Scalable In-Memory Data Indexing and Querying for 
Scientific Simulation Workflows 

Motivation 
•  Query-driven data analysis is an important technique for analyzing the 

enormous amounts of data produced by large-scale scientific simulations 
–  Flame front tracking in combustion simulations: scientists need to formulate a set of 

queries to discover the data points whose values lie within a certain range 
 

Goal 
•  Enable parallel in-memory indexing and querying to support online 

query-driven data analysis for large scale scientific simulations 
 

Problems of traditional file-based approach 
•  Parallel I/O operations become the dominating cost factor, and introduces 

significant overhead to both index building and query processing 
•  Only data from selected steps is written for post-processing, thus some 

highly intermittent and transient phenomena could be lost 
 



Scalable In-Memory Data Indexing and Querying for 
Scientific Simulation Workflows 

Highlight 
•  Parallel in-memory indexing 

and querying on dedicated 
staging nodes 

•  Scalable and efficient online 
indexing/query performance 

•  Support SQL-like query syntax 
and simple querying APIs 

•  Flexible framework that can be 
integrated with different index 
techniques (current 
implementation uses FastBit – 
compressed bitmap index) 

 

Figure. Conceptual overview of the presented 
framework, and interaction between scientific 
simulations and querying applications 



Scalable In-Memory Data Indexing and Querying for 
Scientific Simulation Workflows 

Performance comparison with file-based approach 
•  I/O overhead is the dominating cost for file-based approach 
•  DataSpaces approach is significantly faster for both index building and 

querying 
 

Figure. (Left) Breakdown of index building time; (Right) Query processing time 



Scalable In-Memory Data Indexing and Querying for 
Scientific Simulation Workflows 

Performance with increasing number of cores 
• Increase the number of index/query servers from 32 to 1k 
• The index building time reduces from 30.7s to 2.1s for 128GB data set. 
• The query processing time decreases significantly for different selectivities.  
 

Figure. (Left) Index building time for different data size; (Right) Breakdown of query 
processing time for different query selectivities 



Scalable In-Memory Data Indexing and Querying for 
Scientific Simulation Workflows 

Scaling Performance 
• Increase both the total data size and number of index/query servers 
• Our approach shows overall good scalability for both index building and 
query processing 
 

Figure. (Left) Index building time; (Right) Query processing time 



Data Staging over Deep Memory Hierarchy 
Motivation 
•  Given small DRAM capacity per core, even aggregated memory on 

dedicated nodes will not be sufficient for staging data 

Hybrid Staging 
•  Spans horizontally across 

the memory of compute 
nodes of both primary and 
secondary resources 

•  Spans vertically across the 
multi-level memory 
hierarchy, e.g., DRAM/
NVRAM/SSD, to extend the 
capacity of in-memory data 
staging 

 

...

...

...
...... Data

Primary resources

Secondary resources



EPSI @ Rutgers -- Objective 
•  Enable tightly coupled XGC1 and XGCa workflow using hybrid 

staging -- XGC1 and XGCa processes on the same compute 
node, and exchange data through on-node memory 
–  Explore two different execution model 

•  Concurrent coupling: execute XGC1 and XGCa concurrently on different set 
of processor cores of each compute node 

•  Sequential coupling: execute XGC1 and XGCa sequentially on the same set 
of processor cores of each compute node 

 
 

 

multi-core compute node 

a processor core 

XGC1 XGCa 

Timeline Illustration of tightly coupled execution of XGC1 and XGCa: (Left) 
concurrent coupling; (Right) sequential coupling 



EPSI XGC1-XGCa Coupled Workflow 
•  Preliminary evaluation results on ORNL Titan 

–  File-based: ADIOS/BP method,  Memory-based: ADIOS/DataSpaces 

Comparison between file-based and memory-based coupling. (Left) XGC1 turbulence 
writing; (Right) XGCa turbulence reading. Note: Y-axis is total wallclock time (seconds), 
which is the accumulated sum over all processes and all time steps. 
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Summary & Conclusions 
•  Complex applications running on high-end systems generate extreme 

amounts of data that must be managed and analyzed to get insights 
–  Data costs (performance, latency, energy) are quickly dominating 
–  Traditional data management/analytics pipelines are breaking down 

•  Hybrid data staging, In-situ workflow execution, & Dynamic code 
deployment can address this challenges 
–  Users to efficiently intertwine applications, libraries, middleware for complex 

analytics  
 
•  Many challenges; Programming, mapping and scheduling, control and 

data flow, autonomic runtime management…. 

•  The ADIOS/DataSpaces project explores solutions at various levels: 
–  High-level programming abstractions for in-situ / in-transit workflows for code 

coupling, online analytics, UQ, etc. 
–  Efficient adaptive runtime mechanisms for hybrid staging, locality-aware 

mapping and location-aware data movement, performance/energy tradeoffs 
–  Support for dynamic code deployment and execution for moving code to data 



Thank You! 
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