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e Suppose an RF wave in stationary homogeneous plasma with k% = Q(w,N). Then
suppose slow N (x). Replacing k — —id, leads to a WKB solution.
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1. The substitution & — —id, can lead to wrong results. More severe and complex
manifestations: at mode conversion in tokamaks, waves in nonstationary plasmas.
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1. The substitution & — —id, can lead to wrong results. More severe and complex
manifestations: at mode conversion in tokamaks, waves in nonstationary plasmas.
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2. Now consider nonlinear waves. Typically, the dispersion is calculated by assuming
a stationary wave, E(t,x) = £(wt — kx), and some fy(v) with V' = 0; that gives

cu(k,c‘:) = wo(k) + 5wNL(k, 5)
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1. The substitution & — —id, can lead to wrong results. More severe and complex
manifestations: at mode conversion in tokamaks, waves in nonstationary plasmas.
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2. Now consider nonlinear waves. Typically, the dispersion is calculated by assuming
a stationary wave, E(t,x) = £(wt — kx), and some fy(v) with V' = 0; that gives

w(k,c‘:) = wo(k) + &,dNL(k, 5) + kV(k,g)

Increasing amplitude accelerates plasma — new fy(v) — Doppler shift. To find it,
a nonstationary wave must be considered — much more complicated PDEs.
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1. The substitution & — —id, can lead to wrong results. More severe and complex
manifestations: at mode conversion in tokamaks, waves in nonstationary plasmas.
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2. Now consider nonlinear waves. Typically, the dispersion is calculated by assuming
a stationary wave, E(t,x) = £(wt — kx), and some fy(v) with V' = 0; that gives

w(k,é’) = wo(k) + &UNL(ka 5) + kV(k,g)

Increasing amplitude accelerates plasma — new fy(v) — Doppler shift. To find it,
a nonstationary wave must be considered — much more complicated PDEs.

3. What is the wave energy-momentum? No (unambiguous) answer in Maxwell's eqgs.
Do electrostatic waves have momentum?.. nonlinear forces on the medium?..
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e Conventional theories of plasma waves ignore special
symmetries (adiabatic invariants) that nondissipative
linear and nonlinear waves have as dynamic objects.

., Dissipation can be added as a perturbation, but the
local symmetries can, nevertheless, be critical.

> Building on these symmetries can help modernize wave
theory and find new physics.

e Investments in modernizing foundations today is an
opportunity to lead wave theory in the future.

e It also helps continue the tradition of innovation that
PPPL has had in wave physics and Hamiltonian dynamics:

current drive for waves in all frequency regimes;

E/CU — 1nv alpha channeling for tokamaks and mirror machines;

classic research by Stix, Dewar, Kruskal, Bernstein, Greene...
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common variational theories: first-principle variational theory:
PDE; fundamental VP, PDE,
* * optional
corollaries
ad hoc VP ¥ PDE, reduced VP, PDEQ

o Dealing with given variational principles (VP) is understood, especially for linear
nondissipative waves. Recent book: Tracy, Brizard, Richardson, & Kaufman (2014).
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o But, except in simplest cases, VPs are hard to guess ad hoc!.

- general linear waves in inhomogeneous nonstationary plasma; e.g., Langmuir 1
- nonlinear, dissipative, and non-eikonal waves are even worse. . .

Goal: replace ad hoc VVPs with more general and unified first-principle VPs

T Dodin et al., PoP (2009); Dodin and Fisch, PRD (2010). . .
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e Any wave has a “photon wave function” 1) and a Hermitian H such that
£ = (i2)[¢"(0rp) — (O )] — P H(t, %, =iV )¢

i0pp = H(t,x,—iV )1, Tp = action operator

e Quantum mechanics emerges as a special case — can
treat particles and waves on precisely the same footing.

Everything has a unified interface, £. What remains is | ~

to describe the coupling through this unified interface.
fraditional wave theory:

o Sufficient semiclassical (= cold-fluid) approximation: chev‘jjssﬁons
» GO Maxwell's egs. | Newton's eqgs.
v =eVT 5 L[0,I] = —[0:0 + H(t,x,V0)|Z EMfield | particles
first-principle variational theory:
Classical limit is redundant yet subsumed too: Z = §(x — X(t)), £3= 81+ &
. wave
(ed’z=P X - H(t,X,P), P=VItX) o =
wave wave

Dodin, PLA (2014); cf. Hayes (1973); Whitham (1974) . . .
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o Scalar waves, geometrical-optics limit: £[0,7] = —[0:0 + H(t,x,V0)|Z

- 0p£ = 0 — action conservation theorem: 0,2+ V- (Zv,) =0

- 07£ = 0 — Hamilton-Jacobi/dispersion: o) +H(t,x, VO )=0
W_) W_/
e k
w k e Consider a test wave modulated weakly
.". ’ S at some ) = —3;0 and K = VO:
Q,K w = @ + Re [@.(t, x, k) e O]

o Averaging over © gives a “dressed” Lagrangian, £ = —[0,0 + H(t,x,V0)] L.
Instantaneous Kerr effect: now conservative & through the linear w(k).

K 0 [P
H=wty 'aR(Q—K-vg>

dt)_( — ﬁl{H, dtl_{ — —@;{H

Dodin and Fisch, PRL (2014)
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e Photons/plasmons, wy = (w? + k2c?) 12
NERT
= wp 4“8 no/) (2 -K- \_’9)21

.

~
Kerr (ponderomotive) term, <0

Nonreciprocal propagation due to the “group
resonance” at {} = K - v,.

e Electrons, fwg = h*k?/2m + e@

P? e?|E|?/4m
H = + 2 2
2m  (Q—-K - -V)2—(hK"/2m)
beyo?g GO
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e Quantumlike derivations are often simpler, since equations are kept linear.

e EM waves may be better modeled with vector rays. “Spin” effects at ray tracing?

Dodin and Fisch, PRL (2014); Ruiz and Dodin, in preparation
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o Example: Langmuir waves coupled via low-frequency drive ~ n(t) cos(knx)

= 2im

Hnm() m:

W’nwn + 77<t) <¢n—N + wn-l—N)

1

e Plasma mode conversion = quantum

1

Landau-Zener problem. The total

freque
N

drive frequency vs. time -

] action is conserved manifestly:

20
TIME, 7

> |¥]? = const

T

_average "level number"

» o @ -

e

Fé """ plasmons are trapped |
into autoresonance |

e Autoresonant trapping of plasmons at

TIME, +

"occupation numbers"

2~ Ku,

-[ the total action [
o4t is conserved

Barth, Dodin, and Fisch, in preparation

e Quantum-ladder-climbing emulation

| in a classical system. BGK waves
AVLYVWARY.VV made of plasmons/quantum particles
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o Low-frequency wave (©, ¢) interacts with many high-frequency waves (60,,,Z,):

L= —[@@ + QO]/ - Zn[ate_n + (Wn + Bn/)]in

- -
~"

ponderomotive effect

= —[0:® + Qo+, 8:In) |7 — X, @205)T,

self-consistent frequency, €2 independent of (©, ¢)

e EM wave interacting with particles and HF waves:

1 = ) ) - |BJ?
stana;rd € “anomalous”

e Wave quanta contribute to linear € just like electrons and ions. An improved
formula for a Langmuir wave in a photon bath: extra term + evolution allowed.

k.

Q(K) ~ Qp(K) — 3

Kwyo [ Kfo®)] o Kwp [ fok)
(Q-—K-v,)w? 8mnoQ ) wy

8menof?

cf. Tsytovich (1970); Bingham et al. (1997); Mendonga (2000); Dylov and Fleischer (2008). . .
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e The variational approach is the only unambiguous and reliable way to define the
wave energy-momentum, both “canonical” and “kinetic”.

- Example: The effect of k| has been unclear, since
k| does not cause resonant acceleration along By.

|iu* .[:-‘T};‘u.;,«r:

e ‘l

kJ_' €y kH-e@

- Quasilinear calculation: [Lee, Parra, Parker, and
Bonoli, PPCF (2012)]. But detailed dynamics is
unimportant. The symmetry of £ already gives

AP = kI AEjw — Arg. = cki AE/(eByw)

— charge separation — Poynting momentum

Guan, Dodin, Qin, Liu, and Fisch, PoP (2013)



»»» - - . .
FPPPL Same ideas apply to nonlinear waves, where ‘H is more complicated

PLASMA PHYSICS
LABORATORY

e Klein-Gordon Hamiltonian — Chen-Sudan Lagrangian, Akhiezer-Polovin waves

w? ~ k*c® + wg [1+ ((eA/mc®)®]| Y2 (same in the Dirac model)

Ruiz and Dodin, in preparation

e Advanced kinetic nonlinearities: waves with autoresonant trapped particles

passing

= T
2A

- -~

£ = @ — [np (ep(J) £ wd + mvgh/2> + ny <8t(J>>] + ntmvgh/Q

. - . -~

' ' '
generalized ponderomotive potential bouncing t.p. inertia

Dodin, Fusion Sci. Tech. (2014); Dodin and Fisch, PRL (2011), PoP (2012a,b,c); Schmit et al., PRL (2013)



-~ Example: BGK wave dispersion in the limit when E ~ e'**

Sa,w, k) = E, /167 — [nyep) + nlmas 2+ wl) + ndey] + nmu /2

a = keEm/(mwQ), g is the single-particle energy in the wave rest frame

£ > |ewm| € = |e®n|

0 = 0,8 = 0| EZ /16T — nle)]

5 2w§ ©
w :—J g(J) F(J)dJ
a 0 ——

ensemble averaging

€ = —|ewn| € > |e®m|

2 -1

L, Deeply trapped particles: w? ~ wi — 2wt2a

|, Flat-top beam: w? ~ wi — 3 a2

Ly Smooth distribution: wn1, &~ C4 a'’? + Coylna

cf. Goldman and Berk (1971); Manheimer and Flynn (1971); Dewar (1972);
Rose and Russell (2001); Khain and Friedland (2007); Krasovsky (2007). . .

e There are 3-4 communities working on this and largely ignoring each other.
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Anharmonic waves: clumps & holes, Maxwellian distribution

e Bisinusoidal-wave model: ¢ = a1 cosf + as cos 260, two independent amplitudes
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Indistinguishable from Breizman's exact solution for a clump.

2

ai

o0

0

G(J, ai, CLQ) F(J) dJ =
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clump: amplitude vs. frequency
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Automatically

accounts for both fluid and kinetic nonlinearities, unlike in ad hoc models.

Liu and Dodin (in preparation); cf. Winjum et al. (2007); Krasovsky (2007); Breizman (2010)
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—PIC o Wave action (~ momentum) conservation
5 : :
< in compressing plasma: e.g., £ = const
£
o
<
opn = w/k ~ wy(8)/k ~ /()
i
2 <
B inv = {0,8dx ~ E2 0,¢/(167) + nimuvpy/k
5 / 01 Schmit et al., PRL (2013); Dodin and Fisch, PoP (2012a,b,c)
n/no
. . . 100 50
o Self-action is not described by the NLSE
., 50 . 0
- 2 = S
z(&tw + Vg0 0:,;10) + % ’U/gO qu,b %+ wNL@D %?n 0 l§’n ~50
z -50 = -100
S=1/4 S=1
e The modulational instability is revised: 00 2000 4000 6000 8000 U0 200 400 600 800
wpt wpt
N eEmk\ S
V= Vg0 Ak\/('mf;% )5 (25 - 1)] g trapped-e energy flux

passing-e energy flux
cf. Dewar et al. (1972); Rose (2005). . .
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w pOt
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o
Ul P
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w/wpo wpot

x/A x/A
cf. Smith and Pereira (1978); Adam et al. (1981);
Tennyson et al. (1994); Herrera et al. (2013)...

Dodin, Schmit, Rocks, and Fisch, PRL (2013)

e New instability is identified for BGK waves:
trapped particle bunching due to Q'(J) <0

cf. Kruer et al. (1969); Goldman and Berk (1971); Liu (1972). . .

W[t IR

= dJ
€eff Jo Q2(J) — ((Z) — ]ﬂ}ph)Q

1 =

/e = 1/e(@+ w, k+ k) + 1/e(@ — w, k — k)

e Applies also to aperiodic waves. Akin to the

NMI in accelerators, FELs, ion traps. . .
Kolomenskii and Lebedev (1959); Strasser et al. (2002). . .

e Follow-up studies by other groups
Brunner et al. (2014); Hara et al, submitted (2014)

e Connection with KEEN waves
Dodin and Fisch, PoP (2014)
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e New “object-oriented” approach to linear and nonlinear plasma waves is being
developed that blends variational methods of fluid and quantum theories.

- Every object is a wave, every interaction is ponderomotive, every equation roots in a VP.
- Lagrangians are unified and serve as building blocks to model multiple-wave coupling.

traditional wave theory: first-principle variational theory:

wave equations £3=£1+ £
wave wave
VS.
Maxwell's egs. | Newton's egs. i Lo
EM field parficles wave wave

e |Immediate advantages:

- Unified and manifestly conservative equations, even beyond geometrical optics.
- Lowest-order wave-wave coupling gives linear dispersion, “photons are polarizable”.
- Energy-momentum is well defined, even dissipation enters naturally.

o Applications to nonlinear waves (e.g., BGK-like) and quantum plasmas



...~ Research status and plans

Present: developing robust understanding of variational principles (VPs) for waves

- VPs for dissipative waves; photon polarization & Landau damping (with A. I. Zhmoginov, UCB)
- Origin and limitations of reduced VPs explored through quantum parallels (with D. E. Ruiz)

- Resonant ponderomotive effect on photons: BGK modes comprised of plasmons (with I. Barth)
- Nonlinear dispersion of anharmonic nonlinear waves, including BGK modes (with C. Liu)

- KEEN waves as the NMl-saturated modes (with A. H. Hakkim and U. Verma)

- Reduced analytic model for nonlinear dissipation of BGK-like waves through separatrix crossing...

Future: improving robustness of modeling linear RF waves in fusion and other
plasmas; synergistic nonlinear physics of energetic-particle modes and LPI

- Manifestly conservative analytical framework for modeling linear RF waves in realistic settings
- Symplectic algorithms for modeling linear RF waves (quantum methods?), test simulations

- Nonlinear waves: manifestly conservative reduced nonlinear models + trapped particles

- Working on synergistic applications in RF physics (as in the case of RF-driven plasma rotation)

Teaching: updating the “waves” course [cf. Tracy, Brizard, Richardson, & Kaufman,
Ray tracing and beyond: phase space methods in plasma wave theory (2014)]

The work follows the recently approved 5-year plan for the BPPG effort in modernizing RF basic
theory. Synergies with campus grants and teaching provide 50% of funding.
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