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PPPL Theory
12/19/2014Wave theory has been neglected but is still full of challenges

 Suppose an RF wave in stationary homogeneous plasma with k2 � Qpω,N q. Then
suppose slow N pxq. Replacing k Ñ �iBx leads to a WKB solution.
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PPPL Theory
12/19/2014Wave theory has been neglected but is still full of challenges

1. The substitution k Ñ �iBx can lead to wrong results. More severe and complex
manifestations: at mode conversion in tokamaks, waves in nonstationary plasmas.
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2. Now consider nonlinear waves. Typically, the dispersion is calculated by assuming
a stationary wave, Ept, xq � Epωt� kxq, and some f0pvq with V � 0; that gives

ωpk, Eq � ω0pkq � δωNLpk, Eq
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2. Now consider nonlinear waves. Typically, the dispersion is calculated by assuming
a stationary wave, Ept, xq � Epωt� kxq, and some f0pvq with V � 0; that gives

ωpk, Eq � ω0pkq � δωNLpk, Eq� kV pk, Eq
Increasing amplitude accelerates plasma Ñ new f0pvq Ñ Doppler shift. To find it,
a nonstationary wave must be considered Ñ much more complicated PDEs.
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2. Now consider nonlinear waves. Typically, the dispersion is calculated by assuming
a stationary wave, Ept, xq � Epωt� kxq, and some f0pvq with V � 0; that gives

ωpk, Eq � ω0pkq � δωNLpk, Eq� kV pk, Eq
Increasing amplitude accelerates plasma Ñ new f0pvq Ñ Doppler shift. To find it,
a nonstationary wave must be considered Ñ much more complicated PDEs.

3. What is the wave energy-momentum? No (unambiguous) answer in Maxwell’s eqs.
Do electrostatic waves have momentum?.. nonlinear forces on the medium?..
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12/19/2014Plasma wave theory needs qualitatively new approaches

 Conventional theories of plasma waves ignore special
symmetries (adiabatic invariants) that nondissipative
linear and nonlinear waves have as dynamic objects.

ë Dissipation can be added as a perturbation, but the
local symmetries can, nevertheless, be critical.

ë Building on these symmetries can help modernize wave
theory and find new physics.

 Investments in modernizing foundations today is an
opportunity to lead wave theory in the future.

 It also helps continue the tradition of innovation that
PPPL has had in wave physics and Hamiltonian dynamics:

- current drive for waves in all frequency regimes;

- alpha channeling for tokamaks and mirror machines;

- classic research by Stix, Dewar, Kruskal, Bernstein, Greene...
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12/19/2014The way to deal with symmetries is to develop a field theory

 Dealing with given variational principles (VP) is understood, especially for linear
nondissipative waves. Recent book: Tracy, Brizard, Richardson, & Kaufman (2014).

 But, except in simplest cases, VPs are hard to guess ad hoc:.

- general linear waves in inhomogeneous nonstationary plasma; e.g., Langmuir ë

- nonlinear, dissipative, and non-eikonal waves are even worse. . .

Goal: replace ad hoc VPs with more general and unified first-principle VPs

: Dodin et al., PoP (2009); Dodin and Fisch, PRD (2010). . .
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12/19/2014Waves as oscillations on (unbounded) manifolds: Lagrangians

 Any wave has a “photon wave function” ψ and a Hermitian H such that

L � pi{2qrψ:pBtψq � pBtψ:qψs � ψ:Hpt,x,�i∇qψ� parametric/nonlinear

iBtψ � Hpt,x,�i∇qψ, ψ:ψ � action operator

 Quantum mechanics emerges as a special case Ñ can
treat particles and waves on precisely the same footing.

Everything has a unified interface, L. What remains is
to describe the coupling through this unified interface.

 Sufficient semiclassical (� cold-fluid) approximation:

ψ � eiθ
?
I GOÑ Lrθ, Is � �rBtθ �Hpt,x,∇θqsI

Classical limit is redundant yet subsumed too: I � δpx �Xptqq,³
L d3x � P � 9X �Hpt,X,Pq, P

.
� ∇θpt,Xq

Dodin, PLA (2014); cf. Hayes (1973); Whitham (1974) . . .
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12/19/2014Test wave experiencing cross-phase modulation (XPM)

 Scalar waves, geometrical-optics limit: Lrθ, Is � �rBtθ �Hpt,x,∇θqsI
- δθL � 0 Ñ action conservation theorem: BtI �∇ � pIvgq � 0

- δIL � 0 Ñ Hamilton-Jacobi/dispersion: Btθloomoon
�ω

�Hpt,x, ∇θloomoon
k

q � 0

 Consider a test wave modulated weakly
at some Ω

.� �BtΘ and K
.� ∇Θ:

ω � ω̄ � Re rω̃cpt,x,kq e�iΘpt,xqs

 Averaging over Θ gives a “dressed” Lagrangian, L̄ � �rBtθ̄ �Hpt,x,∇θ̄qs Ī.
Instantaneous Kerr effect: now conservative & through the linear ωpkq.

H � ω̄ � K

4
� BBk̄

� |ω̃c|2
Ω �K � v̄g




dtx̄ � Bk̄H, dtk̄ � �Bx̄H

Dodin and Fisch, PRL (2014)
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12/19/2014Ponderomotive forces on rays and particles. Asymmetric barriers

 Photons/plasmons, ω0 � pω2
p � k2c2q1{2

H � ω0

�
1 �

�
ω2
p

4ω2
0

ñ

n0


2 pΩ2 �K2c2q

pΩ � K � v̄gq2loooooooooooooooomoooooooooooooooon
Kerr (ponderomotive) term, º0

�

Nonreciprocal propagation due to the “group

resonance” at Ω � K � v̄g.

 Electrons, ~ω0 � ~2k2{2m� eϕ̃
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P 2

2m
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e2|Ẽ|2{4m
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{2mq

2looooooomooooooon
beyond GO

-30
-20

+20
+30

-100-200-300-400
-1.0

-0.5

0.0

+0.5

+1.0

E
�E

m
ax

k0x

-350 -300 -250 -200
50

150

250

350

450

k0x

Κ
02 Ω

p0
t

1.0

0.5

0.0

N�
�Κ

02

-1.0
-0.5
0.0

+0.5
+1.0

N�
�Κ 0

2

-1.0
-0.5

0.0
0.5
1.0

-400 -200 0 200 400

E
�E

m
ax

HaL  k0¤x

-400 -200 0 200 400
0

200
400
600
800

 k0¤x

Κ
02 Ω

p0
t

HbL
-400 -200 0 200 400

0
200
400
600
800

 k0¤x

Κ
02 Ω

p0
t

HcL

 Quantumlike derivations are often simpler, since equations are kept linear.

 EM waves may be better modeled with vector rays. “Spin” effects at ray tracing?

Dodin and Fisch, PRL (2014); Ruiz and Dodin, in preparation
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12/19/2014Hamiltonian dynamics of multiple coherent waves. Mode conversion

 Example: Langmuir waves coupled via low-frequency drive � ηptq cospkNxq

i 9ψn �
°
mHnmptqψm � ωnψn � ηptq pψn�N � ψn�Nq

 Plasma mode conversion � quantum
Landau-Zener problem. The total
action is conserved manifestly:

°
n |ψ|2 � const

 Autoresonant trapping of plasmons at

Ω � Kvg

 Quantum-ladder-climbing emulation
in a classical system. BGK waves
made of plasmons/quantum particles

Barth, Dodin, and Fisch, in preparation



PPPL Theory
12/19/2014Self-consistent dynamics and dispersion. Photons are polarizable

 Low-frequency wave pΘ,J q interacts with many high-frequency waves pθn, Inq:

L � �rBtΘ � Ω0sJ �
°
nrBtθ̄n � pωn � βnJ qlooooooomooooooon

ponderomotive effect

sĪn

� �rBtΘ � pΩ0 �
°
n βnĪnqlooooooooomooooooooon

self-consistent frequency, Ω

sJ �
°
n ��

���
��

pBtθ̄nqĪnloooooomoooooon
independent of pΘ,J q

 EM wave interacting with particles and HF waves:

L � 1

16π
Ẽ

� � p1 � χ̂particlesloooooomoooooon
standard ε̂

� χ̂waveslooomooon
“anomalous”

q � Ẽ� |B̃|2
16π

 Wave quanta contribute to linear ε̂ just like electrons and ions. An improved
formula for a Langmuir wave in a photon bath: extra term + evolution allowed.

ΩpKq � Ω0pKq �
K2ω4

p0

8men0Ω

» ∇k̄ � rKf0pk̄qs

pΩ � K � v̄gqω2
0

d
3
k̄�

K2ω4
p0

8men0Ω

»
f0pk̄q

ω3
0

d
3
k̄.

cf. Tsytovich (1970); Bingham et al. (1997); Mendonça (2000); Dylov and Fleischer (2008) . . .
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12/19/2014Wave energy and momentum. Effect of kK on RF-driven rotation

 The variational approach is the only unambiguous and reliable way to define the
wave energy-momentum, both “canonical” and “kinetic”.

- Example: The effect of kK has been unclear, since
kK does not cause resonant acceleration along B0.

- Quasilinear calculation: [Lee, Parra, Parker, and
Bonoli, PPCF (2012)]. But detailed dynamics is
unimportant. The symmetry of L already gives

∆PK � kK∆E{ω Ñ ∆rgc � ckK∆E{peB0ωq
Ñ charge separation Ñ Poynting momentum

Guan, Dodin, Qin, Liu, and Fisch, PoP (2013)
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12/19/2014Same ideas apply to nonlinear waves, where H is more complicated

 Klein-Gordon Hamiltonian Ñ Chen-Sudan Lagrangian, Akhiezer-Polovin waves

ω2 � k2c2 � ω2
p r1 � xpeA{mc2q2ys�1{2 (same in the Dirac model)

Ruiz and Dodin, in preparation

 Advanced kinetic nonlinearities: waves with autoresonant trapped particles

L � xE2y
8π

�
�
np xεppJq � ωJ �mv2

ph{2yloooooooooooooomoooooooooooooon
generalized ponderomotive potential

� nt xεtpJqyloooomoooon
bouncing

�
� ntmv

2
ph{2loooomoooon

t.p. inertia

Dodin, Fusion Sci. Tech. (2014); Dodin and Fisch, PRL (2011), PoP (2012a,b,c); Schmit et al., PRL (2013)
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12/19/2014Example: BGK wave dispersion in the limit when E � eikx

Lpa, ω, kq � E
2
m{16π �

�
npxεpy�((((

((((
(((

((((

npxmv
2
ph{2 � ωJy �ntxεty

�
�
���

���
��

ntmv
2
ph{2

a � keEm{pmω2q, ε is the single-particle energy in the wave rest frame

0 � BaL � Ba
�
E2

m{16π � nxεy
�

ω
2
�

2ω2
p

a

» 8

0

gpJq F pJq dJloooomoooon
ensemble averaging

ë Deeply trapped particles: ω2 � ω2
L � 2ω2

t a
�1

ë Flat-top beam: ω2 � ω2
L � β a�1{2

ë Smooth distribution: ωNL � C1 a
1{2 � C2 ln a

cf. Goldman and Berk (1971); Manheimer and Flynn (1971); Dewar (1972);

Rose and Russell (2001); Khain and Friedland (2007); Krasovsky (2007) . . .

 There are 3-4 communities working on this and largely ignoring each other.
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12/19/2014Anharmonic waves: clumps & holes, Maxwellian distribution

 Bisinusoidal-wave model: φ � a1 cos θ � a2 cos 2θ, two independent amplitudes

ω2

ω2
p

�
2

a1

» 8

0

GpJ, a1, a2qF pJq dJ �
1

2a2

» 8

0

KpJ, a1, a2qF pJq dJ

 Indistinguishable from Breizman’s exact solution for a clump. Automatically
accounts for both fluid and kinetic nonlinearities, unlike in ad hoc models.

Liu and Dodin (in preparation); cf. Winjum et al. (2007); Krasovsky (2007); Breizman (2010)
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12/19/2014Adiabatic dynamics of BGK-like waves

 Wave action (� momentum) conservation
in compressing plasma: e.g., k � const

vph � ω{k � ωpptq{k �
a
nptq

inv �
³
BωL dx � E2

m Bωε{p16πq � ntmvph{k

Schmit et al., PRL (2013); Dodin and Fisch, PoP (2012a,b,c)

 Self-action is not described by the NLSE

ipBtψ� vg0 Bxψq �
1
2 v

1
g0 B

2
xxψ �ωNLψ

 The modulational instability is revised:

γ � vg0 ∆k
b�

eEmk
mω2

p

�
S
2 p2S � 1q

�

cf. Dewar et al. (1972); Rose (2005) . . .
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12/19/2014Nonadiabatic dynamics. Negative-mass instability (NMI)
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cf. Smith and Pereira (1978); Adam et al. (1981);

Tennyson et al. (1994); Herrera et al. (2013) ...

 New instability is identified for BGK waves:
trapped particle bunching due to Ω1pJq   0
cf. Kruer et al. (1969); Goldman and Berk (1971); Liu (1972) . . .

1 � ω2
t

εeff

» J�
0

JF 1
tpJq

Ω2pJq � pω̃ � k̃vphq2
dJ

1{εeff � 1{εpω̃ � ω, k̃ � kq � 1{εpω̃ � ω, k̃ � kq

 Applies also to aperiodic waves. Akin to the
NMI in accelerators, FELs, ion traps. . .
Kolomenskii and Lebedev (1959); Strasser et al. (2002) . . .

 Follow-up studies by other groups
Brunner et al. (2014); Hara et al, submitted (2014)

 Connection with KEEN waves
Dodin and Fisch, PoP (2014)

Dodin, Schmit, Rocks, and Fisch, PRL (2013)
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 New “object-oriented” approach to linear and nonlinear plasma waves is being
developed that blends variational methods of fluid and quantum theories.

- Every object is a wave, every interaction is ponderomotive, every equation roots in a VP.

- Lagrangians are unified and serve as building blocks to model multiple-wave coupling.

 Immediate advantages:

- Unified and manifestly conservative equations, even beyond geometrical optics.

- Lowest-order wave-wave coupling gives linear dispersion, “photons are polarizable”.

- Energy-momentum is well defined, even dissipation enters naturally.

 Applications to nonlinear waves (e.g., BGK-like) and quantum plasmas
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12/19/2014Research status and plans

 Present: developing robust understanding of variational principles (VPs) for waves

- VPs for dissipative waves; photon polarization & Landau damping (with A. I. Zhmoginov, UCB)

- Origin and limitations of reduced VPs explored through quantum parallels (with D. E. Ruiz)

- Resonant ponderomotive effect on photons: BGK modes comprised of plasmons (with I. Barth)

- Nonlinear dispersion of anharmonic nonlinear waves, including BGK modes (with C. Liu)

- KEEN waves as the NMI-saturated modes (with A. H. Hakkim and U. Verma)

- Reduced analytic model for nonlinear dissipation of BGK-like waves through separatrix crossing...

 Future: improving robustness of modeling linear RF waves in fusion and other
plasmas; synergistic nonlinear physics of energetic-particle modes and LPI

- Manifestly conservative analytical framework for modeling linear RF waves in realistic settings

- Symplectic algorithms for modeling linear RF waves (quantum methods?), test simulations

- Nonlinear waves: manifestly conservative reduced nonlinear models + trapped particles

- Working on synergistic applications in RF physics (as in the case of RF-driven plasma rotation)

 Teaching: updating the “waves” course [cf. Tracy, Brizard, Richardson, & Kaufman,
Ray tracing and beyond: phase space methods in plasma wave theory (2014)]

The work follows the recently approved 5-year plan for the BPPG effort in modernizing RF basic

theory. Synergies with campus grants and teaching provide 50% of funding.
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