
MHD modes in NSTX

Roscoe White, Nikolai Gorelenkov



Straight field line Boozer coordinates ψp, θ, ζ, with dζ/dθ = q(ψ)

Normalized parallel velocity ρ‖ = v‖/B
Covariant representation ~B = g(ψp)∇ζ + I(ψp)∇θ+ δ(ψp, θ)∇ψp

Canonical momentum, toroidal flux ψ, dψ/dψp = q

Pζ = gρ‖ − ψp, Pθ = ψ+ ρ‖I,

Hamiltonian H = ρ2‖B
2/2 + µB + Φ,

θ̇ =
∂H

∂Pθ
Ṗθ = −∂H

∂θ

ζ̇ =
∂H

∂Pζ
Ṗζ = −∂H

∂ζ
.

Perturbation δ ~B = ∇× α~B and α =
∑

m,nαm,n(ψp)sin(Ωmn)

Φ =
∑

m,n φm,n(ψp)sin(Ωmn), Ωmn = nζ −mθ − ωnt− φn.

Mode frequency much less than cyclotron frequency, so µ is constant



Typical mode structure in NSTX.

10 modes 38 harmonics

α =
∑

m,n
αm,n(ψ)sin(Ωmn),

Ωmn = nζ −mθ − ωnt− φn.

Electric potential Φ to cancel the parallel

electric field induced by d ~B/dt, with

∑

m,n
ωBαm,ncos(Ωmn) − ~B · ∇Φ/B = 0,

Φ gives zero parallel electric field,

(gq+ I)ωαmn = (nq −m)Φmn.

α related to the ideal displacement ~ξ.

αmn =
(m/q − n)

(mg+ nI)
ξψmn.



Resonance Determination - Kinetic Poincaré Plot

Single n, Hamiltonian a function of the combination nζ − ωt,

then from Ṗζ = −∂H
∂ζ and dE

dt = ∂H
∂t , with Pζ = gρ‖ − ψp

Fixed n, µ we have E−Pζω/n = constant in time - Energy in mode frame

Kinetic Poincaré plot - plot of positions of orbits in the Pζ, θ plane

at times when nζ − ωt = 2πk, k integer

All particles having the same value of E − Pζω/n and µ

This plot shows mode-particle resonances along E − Pζω/n = constant

Poincaré plot in the Pζ, θ or E, θ or ψp, θ plane.

Given Pζ, θ, E is determined , so also ρ‖ and ψp.

Pζ is constant without perturbation, but perturbation is function of ψp.



Poincaré plots made with 500 transits, or about 0.5 msec

Without resonance there is no irreversible energy transfer

Fine scale mixing produced by rotation in island a function of radius



α =
∑

m,n
Anαm,n(ψ)sin(Ωmn),

Ωmn = nζ −mθ − ωnt− φn.

Stepping equations for mode, k=particle index, Yang Chen 1998

<>= time average over rapid time scale, a few mode periods

dAn

dt
=

−ν2A
ωn

∑

k,m

〈[

ρ‖B
2αmn − Φmn(ψp)

]

cos(Ωmn)
〉

− γdAn

dφn

dt
=

−ν2A
ωnAn

∑

k,m

〈[

ρ‖B
2αmn − Φmn(ψp)

]

sin(Ωmn)
〉

.



Orbit described by E, Pζ, µ. Construct a δf formalism in these variables.

Usual δf is in ~x, v, µ. After some algebra

Ė = −ρ‖B2∂tα+ ∂tΦ, Ṗζ = ρ‖B
2∂ζα− ∂ζΦ

These terms typically smaller than those for stepping ~x, v, by 104

The distribution is completely described by f(E,Pζ, µ, t) = f0 + δf

δf(E,Pζ, /mu, t) =
∑

wjδ(E − Ej(t))δ(Pζ − Pζ,j(t))δ(µ− µj(t))

Markers

g(E,Pζ, µ, t) =
∑

j

δ(E − Ej(t))δ(Pζ − Pζ,j(t))δ(µ− µj(t))

We then find an equation for the time evolution of the weights wj

g
dwj

dt
= −Ėj∂Ef0 − Ṗζ,j∂Pζf0 − µ̇j∂µf0

Driving terms ∂Ef0, ∂Pζf0, ∂µf0.



n = 5 TAE mode, 7 ≤ m ≤ 11, 157 kHz, γ/ω = 1.2 × 10−5

No collisions or source. Saturation in one bounce time

Poincaré plot of resonance with 1000 transits, and 40 transits



Mixing (bounce) time shortens with island size or amplitude

A = 10−3, A = 2 × 10−3, A = 4 × 10−3



Steady state distribution, with collisions and slowing down,

maintained by beam injection or alpha production, repopulates islands.

This gives a growth rate, not going to zero in one bounce time

As island increases and bounce time shortens, γ decreases

Initial transient due to particle load, lasts one mixing time

Saturation occurs when deposition rate matches island mixing time



Case with strong repopulation of islands

When nearby resonances overlap the mixing rate and γ strongly increase.



Growth rate and saturation amplitude are determined by:

1. The magnitude of the driving terms ∂Ef0, ∂Pζf0, ∂µf0,

2. The rate of island repopulation due to

beam injection rate or alpha production rate

3. Island repopulation due to collisions.

Saturation amplitude and initial γ depend on repopulation and collisions

To Do- Realistic simulations, compare with experiment and models



Thermal Island Destabilization

and the Greenwald Density Limit

Roscoe White, David Gates, Dylan Brennan, Qian Teng



• Magnetic reconnection is ubiquitous in the magnetosphere, the solar

corona, and in toroidal fusion research discharges.

• In a fusion device a magnetic island saturates

at the magnetic energy minimum of the configuration.

Further modification of the current density profile in the island interior

causes additional growth or contraction of the saturated island.

• An island is thermally isolated from the outside plasma and can heat

or cool depending on the balance of Ohmic heating and radiation loss,

changing the resistivity and the current in the island.

• A model of island destabilization due to radiation cooling of the island

is constructed. An additional destabilization effect is described, and it is

shown that a small imbalance of heating can lead to exponential growth

of the island.



Single helicity analysis

Equilibrium helical flux a combination of

toroidal ψt and poloidal ψp fluxes

ψ0(r) = ψt − (n/m)ψp/2

ψ′
0(rs) = 0, q(rs) = m/n

Perturbed helical flux

ψ(r) = ψ0(r) + ψ1(r)cos(mθ)

∇2
⊥ψ1 =

dj

dψ0
ψ1 + δj1.



Time evolution for islands larger than the tearing layer

dψ1

dt
=
η(rs)∆′(w)ψ1

w
− η(rs)δj1

With ∆′ approximately given using the unperturbed eigenfunction

∆′(w) =
ψ′

1(rr) − ψ′
1(rl)

ψ1(rs)
, w = rr − rl

The effect of the current perturbation gives a modification of ∆′

by the addition of ∆′
δj with

∆′
δj(w) = −w< δj1 >

ψ1(rs)
,



Island asymmetry A = (rr−rx)/(rx−rl)−1

destabilizing effect producing a δj.

∆′
A(w) = fF

∫

[j(rx) − j(r)]cos(mθ)dθdr

ψ1(rs)
,

fF Fitzpatrick, island partially flattened.

Secondly, flattening not valid for small

width, due to perpendicular heat diffusion

Multiply ∆′
δj, ∆′

A by w2/(w2 + w2
F ),

wF =
√

8(κ⊥/κ‖)
1/4(Rrs/ns)1/2,

For typical fusion parameters

κ⊥/κ‖ ∼ 10−9

aspect ratio R = 5 wF ∼ 0.02.



The effective value of ∆′ due to perturbed j and flattening

can be found analytically using local approximations.

Including the Fitzpatrick factor for small islands we have

∆′
δj(w) = 16

< δj1 >

ψ′′
0

w

w2 + w2
F

, ∆′
A(w) =

2j′(rx)
πψ′′

0

w2

w2 + w2
F

fA,

where fA takes account of asymmetry A and degree of island flattening,

given by fA = AfF . Both ψ′′
0, j

′(rx) negative

Determination of fA requires analysis with thermal transport

Qualitative results are independent of fA for values between 0.5 and 1



Magnetic islands including the effect of current flattening. The small

island has amplitude α = 10−4, and width w = .05, A = .26. The

amplitude of the large island is α = 1.5 × 10−3, with width w = 0.18,

and asymmetry A = .78. Profile parameters are those of the disruption

test case with fF = 1.



Balance of Ohmic heating and radiation

∂tE = ∇ · (κ∇T ) +H(T ) −R(T )

Steady state temperature profile

in the island. κ‖ >> κ⊥, T = T (ψ).

Average on the flux surfaces In the island

∇2ψ ≃ ψ′′
0(rs)

which is order one,

and (∇ψ)2 ≤ (ψ′′
0(rs)w)2/4 << 1,

giving

0 = κψ′′
0(rs)

dT

dψ
+H(T ) −R(T )

Solve for T (ψ) in the island



Spitzer resistivity produces a current perturbation

from the temperature perturbation

Heating gives a positive stabilizing δj

Cooling gives a negative destabilizing δj

Flattening is always destabilizing

jI(ψ) = js
T3/2(ψ) − T

3/2
s

T
3/2
s

,



Time evolution

dw

dt
= r2s [∆

′(w) + ∆′
δj(w) + ∆′

A(w)]

Growth of an island with a fixed temperature gradient fF = 1.

a) radiation and heating balanced, b) and c) radiation dominated,

d) heating dominated. At t = 0.2, TO/Tx = a) 0, b) -.002, c) -.003.

In case (c) the temperature differential at t=0.5 with w = 0.1 was 3

percent.

In (d) the final central island temperature differential was .001.



Qian Teng - Analysis of approach to density limit

Insertion of radiation and Ohmic heating models into code.

At approach to the density limit the current channel shrinks,

reaching an internal inductance limit li = 0.12qedge + 0.6

and at this point radiated power balances Ohmic heating
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The relative thermic isolation of a magnetic island and the effects of

Ohmic heating and radiation can lead to rapid growth or mild

contraction of a saturated island due to a tearing mode.

The m = 2 island has long been a candidate for the onset of significant

loss of plasma to the wall and violent disruption

Minor modification of the current profile in an island interior can lead

to rapid change in the saturated island width, and a dominant effect

can be produced by temperature changes within the island.

Small imbalance between radiation and Ohmic heating can lead to rapid

island growth. Confirmed with DEBS, to do NIMROD - Dylan Brennan

With models for Ohmic heating and radiation, this mechanism is a

candidate for accounting for the Greenwald density limit. - Qian Teng


