Assessing the impact of GPU-based
computer architecture on PPPL codes

(How much should we care about it?)

Stéphane Ethier

Theory Department Research & Review Seminar
Friday, March 7, 2014

NERSC turned 40!! Rl Yews

https://www.nersc.gov/nersc-40/galleries/historical-systems/

1974: CDC 6600: The
Controlled Thermonuclear
Research Computer
Center — now known as
NERSC - was established
in 1974 and unveiled its
first supercomputer that
same year: a Control Data
Corporation 6600
“borrowed” from the
weapons program at
Lawrence Livermore
National Laboratory.

NERSC 1975: CDC 7600

1975: CDC 7600: In 1975, a
CDC 7600 replaced the CDC
6600 at NERSC (still known
then as the Controlled
Thermonuclear Research
Computer Center). The 7600
was about 10 times as fast as
the CDC 6600 and was
capable of performing 20
million mathematical
operations per second (or 20
megaflop/s).

9)PPPL

S
e ________________________| -

NERSC 19/8: Cray 1

1978: Cray 1: NERSC
acquired a Cray 1 in 1978
and converted the 7600
operating system, utilities
and libraries to the new
machine, creating the Cray
Time Sharing System
(CTSS). The Cray 1, which
cost about $8 million ($25
million in today’s money),
boasted a million-word
memory and was featured
in the 1982 Disney movie
“Tron.”

9)PPPL

NERSC 1985: Cray 2

1985: Cray 2: In 1985, the
world’s first Cray 2 was
installed at NERSC (then
the Magnetic Fusion
Energy Computing Center).
It was the fastest in the
world. Today, an iPad has
more computing
power...and memory.

NERSC 1992-1996: more Crays...

1992: Cray Y-MP C90: NERSC 1996: Cray J90: NERSC installed its
installed Cray’s Y-MP C90. The C90 first J90s in 1996 at its future
featured a central processor with location at Lawrence Berkeley
sustained performance of 1 National Laboratory

gigaflop. s PPR

NERSC 1997: Something new!
FIRST MPP SYSTEM AT NERSC!!

1997: T3E-900 "MCurie": In
July 1997, NERSC became
the proud owner of a 512-
processor Cray T3E-900
supercomputer, which
offered 128 gigabytes of
memory. Nicknamed
“MCurie” after the scientist
Marie Curie, NERSC’s
T3E-900 was ranked No. 5
on the November 1997
TOPS500 list of the most
powerful computers in the
world.

But... who, at PPPL, truly used that machine??

Meanwhile... back at PPPL in 1998

We shared an SGI Origin 2000 computer with the Astro department
Hecate: 64 processors, fully shared-memory, single OS image
but... non-uniform access memory architecture (NUMA)

NERSC 1999: the end of vector systems

Seaborg at its peak: 3,328 cores (16 cores/node), ~5 Tflops peak
Users forced to use MPI in order to get high performance (charged by node!)
(First GTC simulation of ITER — /AEA 2002: MPI+OpenMP, 1024 processors)

' . In 1999, NERSC installed

- an IBM RS/6000 SP
supercomputer as its
flagship system and
named it Seaborg in honor
of Berkeley Lab Nobel
Laureate Glenn Seaborg.
Seaborg was
decommissioned in 2007
after providing 25 million
CPU hours to users, which
resulted in some 7,000
published scientific
results.

))PPPL

Not so fast! Remember this guy?

Earth Simulator in Yokohama, Japan #1 on the top500 list of

_ : == the fastest computers in
e the world from 6/2002 to

7 —— B = G/2004. 2 full years!!

| — ' Lo ‘

| = = ==

1 || . 5,120 Vector processors
J.I' 41 TF peak

The Earth Simulator.Cé .;-"- ,

Wake-up call for the US - “Computenick”

3.2 MWatts of power to
~ run it!

Revived Cray company by injecting $$%

Led to the development of Cray X1

Although Sandia saved Cray with “RedStorm” in 2004

In 2004 DOE establishes the
“Leadership Computing Facilities”

OLCF (ORNL)

Computer: JAGUAR
Designed by Sandia (Red
Storm project) and built by
Cray.

Commercialized by Cray
as the XT3

Newer versions are the
XT4, XT5, XE6 ...

Bl

ALCF (Argonne National Lab)

Computer: IBM Blue Gene/L (P. Q)
Most energy efficient

Architecture shift in the early 2000s

10,000,000

1,000,000

‘ Dual Core [tanium 2

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

100,000

10,000

1,000

100

10

0

mTransistors (000)
@ Clock Speed (MHz)
A Power (W)

@ Perf/Clock (ILP)

1970

1975 1980 1985 1990 1995

2005

Heat and power
consumption
becomes an
issue!

Solution:

« Stop increasing
frequency

But CPU won’t run

faster anymore!

Solution:
multi-core!

NERSC 2007-now: the Crays are back!
All with multi-core processors

Franklin (2007-2012): 38,288 cores, B Ideal programming model: MPI+OpenMP
F, 4 cores/processor
e e

Edsion (2013-): 133,824 cores, /
2.57 PF, 12 cores/proc (24/node

=F2 yod
.

L L] L
is in full swing!!!

&4y BUT WHAT’S NEXT??

OLCF has already made the move to GPU!

TITAN SYSTEM

»20 PF peak
»CPU+GPU
>#2 on top500

NERSC director Sudip Dosanjh at NUG 2014

NERSC-8 Mission Need I L ke

The Department of Energy Office of Science requires an HPC system
to support the rapidly increasing computational demands of the
entire spectrum of DOE SC computational research.

* Provide a significant increase in computational capabilities,
at least 10 times the sustained performance of the Hopper
system on a set of representative DOE benchmarks

* Deliveryin the 2015/2016 time frame

* Provide high bandwidth access to existing data stored by
continuing research projects.

 Platform needs to begin to transition users to more energy-
efficient many-core architectures.

What kind of system will NERSC-8 be?

Although architecture for NERSC-8 is not yet =,
known, trend is toward manycore processors =2

* Regardless of chip vendor
chosen for NERSC-8, users
will need to modify
applications to achieve
performance

* Multiple levels of code
modification may be
necessary

— Expose more on-node
parallelism in applications

— Increase application
vectorization capabilities

— For co-processor architectures,

locality directives must be
added

Office of

@E&E’/‘w@vﬁv.rsmce“)r”sc.‘é.gov/assets/UpIoadé?NERSC-Dosanjh-NUGZO14.pdf |

Manycore?? Is that the same as multi-core?

No... “manycore” currently refers to GPU-like architecture that
has about one order of magnitude more cores per chip than
available multi-core processors

o Examples: Nvidia Tesla GPU (K20, K40), Intel Xeon Phi

The GOOD NEWS:

o The way to achieve good performance on these architectures is
essentially the same as vectorization on the old Crays!

The BAD NEWS:

o The “vectors” need to be much longer in order to keep the hardware
busy (= good performance) because memory latency is high

The secret is to expose as much parallelism as possible from
your code and make each item of work independent (no
dependencies...)

Using and programming GPUs

* Many possibilities

Q

OpenGL: computer graphics functions used by game developers. NOT
a good idea for scientific codes!!

CUDA: NVIDIA-specific programming language built as an extension of
standard C language. Best approach to get the most out of your
NVIDIA GPU. CUDA kernel not portable though so it won’t work on the
Intel Xeon Phi. Also available for FORTRAN but only for the PGI
compiler.

OpenACC compiler directives similar to OpenMP. Portable code. Easy
to get started. Available for a few compilers. Not very mature yet but
getting better.

Libraries, commercial software, domain-specific environments, . . .

OpenCL: open standard, platform- and vendor independent
* Works on both GPU AND CPU!!
* Even harder than CUDA though...

The PPPL GPU effort...

XGC1 has already made the jump!
o Ported to GPU using PGl CUDA FORTRAN

0 Runs production simulations on OLCF Titan computer, a CPU-GPU system
currently #2 on the top500 list

o CPPG Dr. Jianying Lang is GPU expert assigned to this project
o Help from ESPI project collaborators from ORNL
GTS
o Collaboration with NVIDIA engineer
o Making progress but not in production yet
GTC-P (PPPL/LBNL collaboration)
ESC-EEC (Zakharov)
o Particle orbit part was ported to GPU in ~2 days by Xujing Li!
ORBIT

o NUF summer student Ante Qu from Princeton University made an OpenMP,
OpenACC, and CUDA Fortran version of ORBIT > 56X faster

0 Only the core of the code was modified

So the answer to the original question is...

 YES! We should care about porting PPPL codes to the
manycore architectures in order to achieve good performance

in the future. Without changes, these codes could end up
running slower!

Lots of codes to work on:

Q

o 0O 0O 0O O o

The flagship codes: M3D-C1, GTS, XGC1 (Xeon Phi)

GTC-NEO, M3D-K, HYM, SPEC, GKEYLL, ... (sorry to those I’'m missing...)
| believe that TRANSP could benefit as well

Some work was done for PIES a few summers ago

Space physics codes

Experimental codes? SPIRAL?

We need to build the expertise.

Recommendation

e Still lots of room for improvement on current CPU
architecture

e Start with OpenMP then move to OpenACC 2.0
* Use CUDA for those who want max performance

Side-by-side comparison of

CPU vs. GPU
Processor Intel Xeon E.5-2690 “Sandy NVIDIA K20 Tesla (.EPU
Bridge” “Kepler” (Fermi)
No. of cores per “node” 16 cores (2x 8/chip) 2,880 (512)

Frequency 2.9 GHz ~1 GHz
Memory bandwidth 51.2 GB/sec ~320 GB/s (177)

Peak Flops 371 GFlops ~2000 Gflops (665)

Memory (shared) 32-64GB 6 GB

* The Kepler K20 will be the GPU in the Titan system at ORNL
» The Cray Cascade system “Edison” at NERSC has the latest
version of the Intel lvy Bridge processor

®)PPPL

Current model: a CPU is required
to drive the GPU

Ideally, both GPU and
CPU should be
working concurrently

20-180 GB/s 6-35 GB/s

This is
. temporary!
I The architecture
IS moving toward
Bottleneck in many cases iIntegration

?)PPPL

The standard performance plots
comparing GPU and CPU

meoretial FlO@ting point performance meoretialce/s VMlemory bandwidth
GFLOP/s GeForceGTX 680
3250 200
3000 GeForceGTX48(0
—a—NVIDIA GPU Single Precision 180
2750 «=s==NVIDIA GPU Double Predision == CPU
2500 —e—Intel CPU Single Precision 160
= Intel CPU Dauble Predision =8=GPU (. rorceGTX 280

2250 140
2000 120
1750 /
1500 _?Fli‘tfil..,T/
1250 80 /
1000 60 LeForce7800GTX Sandy Bridge

750 Tesla C2050 T / wes'““e’e/

500 Sandy Bridge 40 Bloomfield

TeslaC1060 T E‘J::// Woodcrest /_/
252 Woodcrest v. 0 Mertown
- Westmere Northwiood T T T T T T T T 1
Sep-BFNHUM4 jun-04 Mar-07 12PN e 09 Aug-12 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

*Plots from CUDA C Programming Guide Version 4.2 é) m

Start with a “CPU-style” core...

==

Data Cache
(A big one)

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf

Remove everything that makes a single

instruction stream go fast

ALU

(Execute)

==

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf

Put many of these simple cores together

* Let’s not forget the original
purpose of the GPU though:
» Same operations
applied to a large
number of vertices,
pixels, polygons, ...

= DATA PARALLEL or
SIMD (Single Instruction
Multiple Data)

Better known in our
community as
VECTOR PROCESSING

ALU

[0 [0ED (R [
[0 [0ED (R0 [
[0 [HED (R [

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf @) m

So let’s add some arithmetic units and
have them share a stream of instructions

ALU1| | ALU2 | [ALU3 | | ALUS4

ALU5 | | ALUG6| (ALUZ7 | | ALUS8

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf

The secret to GPU high throughput:
massive multi-threading + interleaving

Time Frag1...8 Frag 9...16 Frag 17 ... 24 Frag 25... 32
(clocks) o [o T o [oooooooo oooooooo ooDoooooo N OT S I M D

(1) 9) 9) Q) But rather

SIMT!
Single
Instruction
Multiple
Threads

Runnable

255 registers
per thread!!

Runnable

- Runnable

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf 6 m

Classic picture of CPU vs. GPU

m [[[[[[TTTTTTTTT]
m [[[[[[TTTTTTTTT]

m [[[T TTTTTTTTTT]

| [[[[[TTTTTTTTTT]

mm [[[[[TTTTTTTTTT]

ALU

ALU

ALU

ALU

Control

m [[[[[[[[[TIITT]]

m [[[[[[TTTTTTTTT]

m [[[[[ITTTTTITTT]

GPU

CPU

What to do first...

* MOST IMPORTANT:

0 Find and expose as much parallelism as you can in your
code.

o Try to remove as many dependencies as you can between
successive iterations in a loop.

0 The ideal case is when each iteration is completely
independent from the others = VECTORIZATION

Try OpenACC directives first

http://www.openacc-standard.org

http://www.pgroup.com/doc/openACC gs.pdf

Least changes to your code
It is portable across different platforms and compilers
Not all compilers support Open ACC though

o CRAY, PGI, and CAPS are the only ones at this point

When running the same code on a multi-core CPU you can use OpenMP
directives instead of OpenACC and run in parallel there too!

Hides a lot of the complexity
Works for Fortran, C, C++

Example of OpenACC directive

It can be as simple as the following:

subroutine smooth(a, b, w0, wl, w2, n, m, niters)
real, dimension(:,:) :: a,b
real :: w0, wl, w2
integer :: n, m, niters
integer :: i, j, iter
do iter = 1,niters
!1Sacc kernels loop
do 1 = 2,n-1
do j = 2,m-1
a(i,j)= w0 * b(i,]j) + &
wl * (b(i-1,j) + b(i,j-1) + b(i+l,j) + b(i,j+1)) + &
w2 * (b(i-1,3j-1) + b(i-1,j+1) + b(i+l,j-1) + b(i+1,j+1))
enddo
enddo

OpenACC not giving good performance?
move to CUDA

* CUDAC

o http://developer.download.nvidia.com/compute/DevZone/docs/html/
C/doc/CUDA C Programming Guide.pdf

* CUDA FORTRAN

o http://www.pgroup.com/doc/pgicudaforug.pdf

Some GPGPU references

http://www.gputechconf.com/gtcnew/on-demand-gtc.php

http://www.nvidia.com

http://gpgpu.org
o In particular: http://gpgpu.org/ppam2011

http://www.olcf.ornl.gov/event/cray-technical-workshop-on-xk6-programming/

http://www.pgroup.com/resources/index.htm

http://www.caps-entreprise.com/products/openacc-compiler/

Conclusion

No matter where you will run your code tomorrow, you need
to exploit all the parallelism and think in terms of shared
memory multi-threading

This is valid for both CPU and GPU

In the future, CPU and GPU will merge to become a highly
power efficient, highly multi-threaded compute hardware

