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Ignition on NIF requires compression to 
extreme conditions 

*ρR = Areal density 

“Cold” fuel 50 million degrees 
100 g/cc 

Eignition ~ ρR
3T ~

ρR( )3T 3

Pstag
2

Hot spot 
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If the fuel ignites well on the NIF…. 

50 million degrees 
100 g/cc 

Energy release 
~ 20 MJ  

~ 1 Kg of coal 
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Conditions are currently ~ factor 2 from ignition 

*ρR = Areal density 

~ 500 g/cc 
 
~ 40 g/cc 
 
~ 180 Gbar 
 
~ 0.75 g/cm 2 

Best performance  
on single shot 

~ 27kJ 
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The National Ignition Facility 
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NIF concentrates all 192 laser beam energy in a 
football stadium-sized facility into a mm3 

Matter 
temperature  >108 K 
 
Radiation 
temperature  >3.5 x 106  K 
 
Densities   >103 g/cm3 
 

Pressures   >1011 atm 
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Glass stats 
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Target Chamber 
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Photoshopped target bay all floors 

Moses - IFSA, 9/9/13 2013-043921s1.ppt 1
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Laser bay Target bay 
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Special shrouds keep the target at – 290 degrees  
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After the shot 
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The laser delivers 1.8MJ of energy to target 
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About 70% of the energy is converted to X-rays 
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A little under 10% is absorbed by the capsule 
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Less than 1% of the energy gets into the fuel 

Fuel energy 
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And the really exciting thing… 

Fuel energy 
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Self heating from alphas starting to become 
significant 

Fuel energy 

Self heating results in ~2X yield enhancement 
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Recent experiments are entering a different regime 

Low-foot (NIC) 

High-foot 
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Hurricane et al, Nature, 2014 
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Alpha energy contributed ~ 50% of the hot spot 
energy at stagnation for DT shot N131119 

Laser energy = 1.9 MJ 
Capsule absorbed ~ 150 kJ 
DT Kinetic Energy ~ 10 kJ 
DT Internal Energy ~ 12 kJ 

12.2 kJ 2.4 kJ 

1 kJ 

1.4 kJ 

4.7 kJ 

2 kJ 

0.8 kJ 

6.1 kJ 

Total yield ~ 17kJ 

Hot  
spot 

Cold fuel 

Preliminary analysis 
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What about ignition? 
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DT yield vs ignition parameter χ	


χ  (Energy for ignition ~ χ 2) 

Ignition requires higher velocity, 
convergence 
 
Principal Challenges 
 
Capsule stability 

Hydro instabilities increase  
as implosion velocity and 
convergence increase 

 
Hohlraum drive symmetry 

Symmetric drive is harder  
to achieve as laser power 
increased 
 

Hot electron preheat? 
Recent analysis suggests 
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The trick of ICF is to turn 100 million atmospheres of 
pressure into 300 billion atmospheres of pressure 

Elaser ~ 1.8 MJ 
Ex-ray ~ 1.3 MJ 

Surface explodes 
Eabsorbed ~ 150 kJ 
Pablator ~ 100 Mbar 

Fuel and remaining ablator 
accelerate inwards 
KEfuel ~ 14 kJ 
Speed ~ 370 km/s 

“Ablator”  
(~195 microns thick)  

DT ice (fuel) layer (~69 microns thick) 

Pstagnation ~ need 300+ Gbar 

Eignition ~
(ρRT )3

Pstag
2 ~ const.

Pstag
2

The implosion's main 
purpose is to 

compress and act as 
a "pressure amplifier" 

M. Marinak 

"hot-spot" 
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X-ray picture of capsule taken down axis of  
the hohlraum just before a shot 

2mm diameter  
capsule 
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Plastic Ignition Capsule 
 

~2 mm diameter 

195 
µm 
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Control is the challenge — near spherical 
implosion by ~35X 

195 
µm 

DT shot N120716 
Bang Time 

(less than diameter 
of human hair) 

~2 mm diameter 
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The hohlraum must provide a symmetric 
implosion at the required velocity 

Laser "Pulse-shape" 

Plastic Ablator 

Gold 
hohlraum 
wall 

Helium gas 

Laser entrance hole (LEH) 
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The capsule must be designed to withstand 
hydrodynamic instabilities 

VGLayoutHoSm.mov 
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The real world is 3D….. 
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The real world is 3D….. 
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The new “High-foot” is a pulse-shape modification 
designed to reduce hydrodynamic instability 

Solid	  DT	  
fuel	  layer	  

CH	  

Si-‐doped	  
layers	  	  

Radius	  ~	  1.1	  mm	  
Thickness:	  

195	  µm	  
70	  µm	  

Gas	  Fill	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
He	  at	  	  

~1mg/cm3	  

~1	  cm	  

5.75	  
mm	  

GOAL: Performance that is understood and well matched to calculations 

NIC	  High-‐	  Foot	  	  

NIC Low-foot High-foot 
Adiabat (a measure of entropy) ~1.5 ~2.5 
In-flight aspect ratio, (IFAR) ~20 ~10 
Convergence ~45 ~30 

Increased	  to:	  

Reduced	  to:	  

Reduced	  to:	  
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Low-foot High-foot 

Prediction – capsule surface at peak velocity 
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Detailed experiments on ablation RT instability verified 
our assertions about stability and modeling 

Image plane 

Backlighter 
x-rays 
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Detailed experiments on ablation RT instability verified 
our assertions about stability and modeling 

Image plane 

Backlighter 
x-rays 

Density 

Tradiation 
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Predictive capability for implosions depends on 
our ability to simulate growth of perturbations 

Preliminary analysis  
V. Smalyuk, K. Raman, Luc Peterson 

Lo-Foot vs Hi-Foot Growth factor at 650 µm 

50 100 150 250 200 

400 

600 

O
pt

ic
al

 D
ep

th
 G

ro
w

th
 F

ac
to

r 

800 

1200 

200 

-200 

1000 

0 
0 

Low foot data 

High foot data 

 
        Low foot 
        High foot 

Mode Number 

650  
µm Simulaion 

Future developments: 
•  Native surfaces 
•  Mitigation schemes – e.g. adiabat shaping, drive spectrum control 

Higher 
convergence 
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A number of prepatory experiments need to be 
performed before firing a yield producing DT shot 

X-Ray drive symmetry 
("Re-emit") 

Implosion shape 
("2DConA's") 

Hot-spot shape  
("Symcaps") 

Ablator trajectory and 
speed ("1DConA's") 

Ti
m

e 

Diameter 

... DT shot! 

Shock-timing  
("Keyholes") 

Time 

A
zi

m
ut

h 
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Neutron imager measures location of  
hot spot and cold fuel (N140304) 

Unscattered  
13-17 MeV 

Downscattered  
6-12 MeV 

P0=33.9 um 
P2/P0=-31% 

P0=57.6 um 
P2/P0=-3% 

Over-layed images 

Hot spot “Cold” fuel Registered 
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Neutron spectrometers to measure  
stagnated fuel 

Spec A 

Spec SP 

MRS 

Spec E  
(timing 
calibratio
n needed) 

Multiple nuclear activation  
around the chamber  
detectors not shown 
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Nuclear data from typical shot 
(note asymmetries) 

Tion 

“dsr” ~ ρR/21 g/cm2  
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Three nearly orthogonal nToF’s and MRS  
-> high quality average fuel velocity 

Spec A 

Spec SP 

MRS 

Spec E  

(timing 
calibratio
n needed) 

Data  0.2 

0 

0.4 

time [ns] 
368 372 376 380 384 

Vbulk ~ 75 km/s 
dt ~ 500 ps 

v=0 
case 
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Preliminary analysis from new nToFs show 
sizable fuel velocities at “stagnation” 

4
9

Some velocities are large enough to be significant 
Currently subject of ongoing scrutiny 
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Gas-filled expt DT layered experiments 
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Nuclear activation data from 
N140304 (fuel ρR variations) 
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Many high-foot implosions had a toroidal shape 
 

High-foot DT N130812 

Polar X-ray Image Equator X-ray Image 
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We can estimate the DT fuel energy balance  
from measured quantities 

Reconstructed hot-spot 
shape to obtain volume 

Tion → σ v

Efusion = 7.04×10
−13n2 σ v Vhsτ

DT reaction-rate 

Fusion power density 

N130927 

mhs

Phs
ρrhs → fα → Eα

3
2 PhsVhs

"

#

$
$

%

$
$

Mass conservation and DSR measurement 
(Check consistency with neutron images)  

rfuel − rhs =
mfuel

2π (ρr) fuel
− rhs

2 − rhs

Isobaric assumption 
3
2 PfuelVfuel α =

Pfuel
PFermi
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Energy budget for N130927  
Gfuel = Ytotal/EDT > 1.2 

EDT = Ehs +Efuel + 1
2 e

−τ fuel EBrems − 1
2 Eα

Ytotal = 14.4 kJ 

Ehs = 3.5 – 4.8 kJ 
Phs = 129 - 150 Gbar 

Eα = 1.8 – 2.5 kJ 

ρhs = 34 – 49 g/cm3 

= 10 -12 kJ 

EBrems = 2.3 – 4.5 kJ 
τfuel = 0.32 – 0.66 Efuel = 6.9 – 7.8 kJ 

ρfuel = 385 – 402 g/cm3 

α = 2.9 – 3.3 
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Energy budget for N130927  
Gfuel = Ytotal/EDT > 1.2 

EDT = Ehs +Efuel + 1
2 e

−τ fuel EBrems − 1
2 Eα

Ytotal = 14.4 kJ 

Ehs = 3.5 – 4.8 kJ 
Phs = 129 - 150 Gbar 

Eα = 1.8 – 2.5 kJ 

ρhs = 34 – 49 g/cm3 

= 10 -12 kJ 

EBrems = 2.3 – 4.5 kJ 
τfuel = 0.32 – 0.66 Efuel = 6.9 – 7.8 kJ 

ρfuel = 385 – 402 g/cm3 

α = 2.9 – 3.3 
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Yield multiplication 
(from alpha-
heating) contours 

Experiments are entering a new regime 
“α-heating” becoming significant 

Higher ρr Lower ρr 
ρrfuel ≈ 20.3⋅ f ⋅DSR

2X 
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Key issues have been identified and self-heating is 
becoming significant 

Time 

Energy Breakdown 

Feedback of 
alpha-particle 
self-heating 

Hot  
spot 

Cold fuel 

§  Capsule instability and "mix" was a major 
factor limiting performance 

§  We must now get the implosion speeds up 
and try to compress the DT more while 
maintaining control of shape and mix 

§  We will likely encounter other phenomena 
that will have to be overcome eg recent 
work on impacts of hot electrons 

§  This will be challenging, but of course 
there are many ideas! 
§  Adiabat shaping 
§  Drive spectrum control 
§  Hohrlaum dopants 
§  Shaped hohlraums 
§  Diamond/beryllium ablators 
§    
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