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50 MANY DYNAMOS!

S0 many dynamos (so men’€ di nuh-moz”), 1. a phrase which
reads the same backwards and forwards, i.e. a palindrome.
2. a whole slew of electric generators.
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So Many Dynamos

¢ Mechanical

¢ Astrophysical
¢ Numerical
¢Liquid metal
¢ Plasma




What is a self-exciting dynamo?

Faraday's Law of Induction -
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Magnetic energy from Kinetic energy
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The self-excited generator
of Werner von Siemens (1866)

The "dynamo electric principle”
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MHD in the limit of high conductivity and weak

magnetic fields

Induction Equation

0B 1 2
W—VXVXB | ,u-()UVB

VXV xB

T o2
5 V2B

~ oo LVy = Rm

Equation of Motion

p(Hr +V-VV)=-Vp+IxB+uV2V+ Fyrop

J x B 1 B~
1 implies =pV% > — or V/V4 > 1
VoY < 1 implies 5P > n or V/Va >
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When Rm > 1 and V/Va > 1

B is frozen into and stretched by moving fluid

0B )
f =V XV X BA- H(MB

Step 1: Shear flow induces new field.

Seed magnetic field Stretched magnetic field
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Astrophysical Dynamos

" Highly conducting and fast flowing

Rm = pgoVL>1 Magnetic Reynolds

® Turbulent

VL
Re = > 1 Kinetic Reynolds
vV
= Kinetic energy dominated
1 B?

— oV > or V/V4>1 Alfvén Mach
2 2/40



The Earth dynamo

Rm-~500-1000, Re=107, Liquid Metal
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+ smaller scale fluctuations
1630

Contour interval = 25000




SDO/AIA 193 2012-04-17 22:30:08 UT
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The Sun dynamo

Rm~108, Re=10!, Plasma
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weak large scale field
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Galactic Magnetic Fields: weak large-scale

field + much stronger small-scale
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Faraday rotation along 38000 lines of sight
In the Milky Way (NVSS survey)

M51

Rm-~10%, Re=10?, Plasma
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How could a rotating body, such as the Sun
become a magnetic?

“. .. possible for the internal motion to act as a
self-exciting dynamo, and maintain a magnetic
field at the expense of some of the energy of
the internal circulation.”

J. Larmor Br. Assoc. Adv. Sci. (1919)

Wednesday, June 5, 13



Standard Model of an MHD dynamo

Step 1: dipole field can be converted into strong toroidal field

The "Q effect”
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The Dark Ages of Dynamos (1920-1955)

When the magnetic field and the fluid
motions are symmetric about an
axis...no stationary dynamo can exist.

T.G. Cowling, The magnetic fields of sunspots,
Monthly Notices Roy. Astron. Soc. 94 39 (1933).
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Standard Model of an MHD dynamo

Step 2: Nonaxisymmetric, helical flows convert
toroidal field back into dipole

The "X effect”:
generates current in
direction of B

E.N. Parker, Hydromagnetic dynamo models,
Astrophys. J. 122 293 (1935)
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Overarching Goal

Create a steady, large, hot, weakly
magnetized flowing plasma in which the
kinetic energy of the flow drives
magnetic instabilities

Rm= LooUL>1
K.E.»M.E. (super Alfvenic: pU?»>B2/ o)

New regime for plasma experiments-
astrophysical applications




Plasmas are Challenging

~difficult to stir
-some confinement required with weak B

(conductivity: plasma must be hot)
Use Liquid Metals
-confinement is free
-easy to stir
-BUT power scaling is challenging: Pmech ~Rm? / L
[Rm=100, Pmech=100 kW]
-Re = 10° Rm (always turbulent)
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VKS Liquid Sodium Dynamo at
Cadarache
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Two vortex flow is simplest flow which

generates a stationary dipole (Rmcrit~50)

Flow Magnetic Field
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Dynamo is of the stretch-twist-fold type: field
line stretching and reinforcement leads to dynamo

For sodium, L=0.5 m,
Rm = 6 X Vs
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Turbulence makes homogeneous dynamos

notoriously difficult

For liquid metals Re~10° Rm
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Long Standing Prediction:

Turbulent ftransport of magnetic field

® Transport of B is controlled by fturbulent EMF
E = <i7 X f)>

® closure ansatz: £ =aB - 5V x B

o < flow helicity

12 )Y
5—§U Tcorr:§

= Modifies induction equation

9B =V XV xB+VxaB+ n,,V’B

1, oL
Mo O | 3

Tlturb —
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Turbulence Enhances Effective Resistivity

Definitions
Rm=VL/n  Rmp=129l/n n = uo%

Mean-Field Electrodynamics predicts
(confirmed by measurements)

nr =n(1+ Rmr/3)

Self-Excitation Requirement

Rm > Rmyrit(1 + Rmp /3)
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Numerical simulations show turbulence

suppresses the dynamo for Unconstrained Flows
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turbulent small
scale dynamo
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Turbulent MHD dynamo action in a spherically bounded von Karman flow at

small magnetic Reynolds number
Reuter, Jenko, and Forest, New Journal of Physics 13 073019 (2011).
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Localized measurement of the turbulent EMF

Three-axis velocity and magnetic field probe

radial electrodes
N
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The turbulent EMF opposes the local current,

equivalent to increase resistivity
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Next Step: Plasma Dynamo Experiments

= Rm > 1000 Rm = 50 Te10ev*? Vim/s Lm

= Independent Re = 8 U Y2nuems Vkm/s Lm /Tiev™?
= Rapidly Rotating

= Compressibility, stratification, buoyancy

= Plasma Effects beyond MHD: neutrals, kinetic
effects, Hall MHD

—Study confinement and stirring in an
unmagnetized plasma
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Flowing, unmagnetized plasmas in the Lab

Plasma Couette Experlment Madison Plasma Dynamo Experlment

eChallenge:

-Need confinement for plasma to be
hot (o) and dense (p)
-Difficult to drive flow in an unmagnetized plasma
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Plasma Couette Experiment is a profotype
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Multicusp confinement reduces loss area

Mirror
losses
leave

deposits

Wednesday, June 5, 13



The Concept: Create Plasma Rotation Using Biased Cathodes

- Cathode

Initial Setup for Spinning
from Outer Boundary

_ Mach Probe

IBI [mT]
80

60 _||_

40

* Toroidally localized electrodes are biased
to create JxB torque

*Velocity couples inward through viscosity o 01 02 03 04 05
R [m]

20

0

*Rotation is axisymmetric

35
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The Rotation Scheme Works!

He Velocity Profile
2 Outer Cathodes Biased 550V

5 (measured with Mach probe)
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Electrostatic biasing controls edge rotfation

Arbitrary
V(p (I‘ — d, 6)



Two Vortex Plasma Dynamo Flow can be driven at

boundary (spherical Von Karman Flow)

g
S 0.5}
1.0:
0.0
Angle [Radians]
10 -Velocity il 05 0.2 0.0 0.2 0.5
- Magnetic ; V [arb]
= 10 .
LA ] B Plasma Rm=300, Re=100
S| ) €® Te=10 eV
w 10
| ] ¢ U=10 km/s,
10-12- _ ‘ n=1018 m-3
¢ Hydrogen

Spence, Reuter, and Forest, 4 Spherical Plasma Dynamo
Experiment, The Astrophysical Journal 700 470 (2009).
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Madison Plasma Dynamo Experiment

L=1.5m
Prer=100 kw@2.45GHz
Pcathodes:250 kw STIRRING

ELECTRODES

fionization’” 1

Te=20 eV
n.=1017-1019 m-3 _
V=0-20 km/s

Rm >1000
Re ~ 1-104
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3000 4 kG SmCo magnets installed MPDX

./
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3000 4 kG SmCo magnets installed MPDX

2012/03/30 10:12
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First Plasmas use hot cathodes

LaB; 30 cm inside magnets in unmagnetized region

Plasma fills
machine

Emissive
LaB6

Emissive
LaB6

VdiSCh - 350 V, IdiSCh - 30 A, PdiSCh - 105 kW
Final Phase: 16 LaBe x 10 kW > 150 kW heating

Wednesday, June 5, 13



High lonization fraction and rotation observed
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Particle balance
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Unmagnetized plasma confined by ring cusp

MPDX Basic Experimental Parameters
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2 LaBg cathodes, 400 V @ 45 A = 18 kW, n,=5.2x10*/cm3 Ar, T=1 eV
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Power balance _ ‘EneroyBaance i)

consistent with
first results

First results |
with hot cathode

I Qtot

- Qionizatio

0 20

40 60 80 100
Te [eV] density: 5.0E+17 m ™

Loss Mechanism

Expression [Energy/Time]

Ion losses at cusps
Electron losses at cusps
Replacement ionization
Neutral radiation
Charge-exchange collisions

Ion radiation

Wednesday, June 5, 13
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T'Acusp(57Te)

Qioniz = I'Acusp Fioniz
M(Te)Qioniz
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Operational space set by power, density, and

lon species

Electron Temperature_?
P=200 kW

helium -

1 ReNew

10" T
density (m®)
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Von Karman Flow Dynamo Scenario *

Wednesday, June 5, 13

0y

Dynamo growth rate
a

i

0 200 400 600 800

Khalzov et al, Phys of Plasmas 19 112106 (2012) Do

[l North pole faces plasma
B South pole faces plasma

B LaB, cathode
@ Molybdenum anode

Von Karman type dynamo

Re=150, Rm=300

Parameter
ne (1/cm?3)
T, (eV)

power (kW)
Vegge (kM/s)
B... (G)

eqp

Argon
2X10%
7.5
100
6
8

Helium
1.2X10%2
12
140
3
3

Steady state flows
with DC LaB bias

set v, (0)



Time dependent flows are also feasible

= MPDX Galloway-Proctor Flow gives smooth but
chaotic flow

Time=0.1

Wednesday, June 5, 13



Fast Dynamo Scenario *
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B North pole faces plasma
B South pole faces plasma

J LaB_ cathode

Khalzov et al, PRL in process of submission

Parameter
n, (1/cm3)
T, (eV)

power (kW)
Vedge (kM/s)
B... (G)

eqp

fdrive (HZ)

Galloway and Proctor type dynamo
Re=100, Rm=1000

Argon Helium
1X10%! 8X101!
12 27
50 250
10 3
9 3
637 191

Dynamo growth rate

Rm=1000|

50000 100000

Rm

Time dependent
flows and LaB¢ bias

set v, (6,t)



2013: Diagnostics and ECH will be installed

Helmholtz coils (50 G)

2D Automated Probe Drives

Fabry-Perot Interferometer,
LIF, and Line Spectroscopy

AEZERT o, A | Edge Mach Probe Array
320 GHz Interferometer

18 x LaBg Stirring Electrodes

! 5 x 20 kW 2.45 GHz Magnetron
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