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Physics in Cancer Research!

Initiated by National Cancer Institute in 2008:
Physical Sciences Oncology Centers

http://physics.cancer.org

John Niederhuber, Director (2006-2010), National Cancer
Institute: ‘it is the NCI’s hope that physics, physical
chemistry, mathematics, and engineering can help to
solve some of the most difficult and complex problems in
cancer biology today”

What can Physics
contribute to
Cancer Research?




What is Cancer?
(a physicist's perspective)




T'he Beginning of Cancerous Growth

(from National Cancer Institute— “Understanding Cancer” Series)




Tumors Spread Into Surrounding Tissue
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Tumor invades into the bloodstream
and develops metastasis at nhew location

cells grow as a benign
tumor in epithelium  break through basal lamina invade capillary

(less than 1in 1000 cells
will survive to form metastases)
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Alberts, B. et al. Molecular Biology of the Cell p. 1325 (2002)




Metastatic tumors are localized in specific
organs and grow after a long delay

a Breast carcinoma
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Metastasis: from dissemination to
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Don X. Nguyen*, Paula D. Bos* and Joan Massagué**




What changes in cell behavior are
associated with Cancer?




The Hallmarks of Cancer:
Key capabilities of Cancer Cells

Sustaining proliferative
signaling

Resisting Evading growth
cell death suppressors
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Inducing Activating invasion
angiogenesis and metastasis

Enabling replicative
immortality

Hanahan and Weinberg 2000



Hallmark capabilities are
driven by complex Circuits
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Some of the many
Challenges in Cancer Research







How to target cancer cell subpopulations?

Primary Tumor

Circulating Tumor
Cells

Metastasis

cells grow as a benign
tumor in epithelium break through basal lamina invade capillary

travel through bloodstream
(less than 1 in 1000 cells
will survive to form metastases)
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Source:



What can Physics contribute to
Cancer Research?




What can Physics contribute to
Cancer Research?

Experimental Tools for Diagnosis and Therapy
MRI for high resolution imaging
X-ray tomography

Experimental Tools for Studies of Living Systems

Superresolution imaging (Betzig)
NextGeneration Gene Sequencing (Quake)

Physical Principles: Forces and Motion

(stochastic system far from equilibrium)

ysics Approaches: Quantitative Approaches to
Complexity & Information




Constraints on Forces & Motion
for Cancer Metastasis

Cancer cells generate
forces & migrate

Cells are deformed by
fluid forces

Cells adhere to blood
vessel walls

Cells grow in tissue
with different stiffness

grow as a benign
agithelium break through basal lamina invade capillary
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Alberts, B. et al. Molecular Biology of the Cell p. 1325 ( 2002)



Mechanics of the Cell

a complementa erspective on cancer




Proteins Actively Control rorces and lViotion
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Cells cultured frrom
tumorous or metastatic

-

lissue are usuaily sorter

than normal celis.
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Activation of Cancer related genes increase softness
231: Breast Cancer Cell line
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Kiessling, Herrera, Nnetu, Balzer, Girvan, Fritsch, Martin, Kaes, and WL, Euro. Biophys. J (2013)




Physics of Cell Migration




What is Cell Migration?

Immune Response Wound Healing Cancer Cell Migration
(white blood cells) (epithelial cells) (multiple cell types)

"\‘%l TR I

L. Liu, S. Das, W. Losert,
& CA. Parent Dev. Cell (2010) CA Parent, PLOS ONE
(2013).

In-Situ Imaging of §ollociive fpirands)

Tumor Growth and
Spreading in a
Living Mouse

Alexander, Koehl, et al. Histochemistry and Cell Biology(2008).



Signaling Pathways Control Cell Migration

Genes
Proteins
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Dictyostelium

F Comer & CA Parent Cell (2002).

R. Skupsky, C. McCann, R. Nossal,
& W. Losert, J. Theor. Biol. (2007).

White Blood Cells
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Parent Developmental Cell (2010).




A physical moael ot Cell Migration
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(top view, data)  (side view, schematic)

> Amoeboid type migration > Protrusion of front
> Weak adhesion to surface » Adhesion of front
(no focal adhesion complexes) » Retraction of back




I Shape Dynamics
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Driscoll et al., PLOS Comp. Biol. (2012)



Analyzing Shapes and Shape Dynamics

Driscoll, Fourkas and Losert, Physical Biology (2011)



L ocal Shape Kkeveals Ilraveling Frotrusions

Curvature
Peaks

Driscoll, Fourkas and Losert, Physical Biology (2011)
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Protrusions Correlate with Actin Vaves
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Does the wave-like nature of Cell Migration
provide a new perspective on Cancer?

Amoeboid e
Individual cells Collective (strands) — *

Amoeboid ([nult_igel'l_ular) |
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Our observations of mechanical waves
raise two new questions about
cancer related cell migration

1) How does topography of surrounding affect waves?

2) How do waves cooperate in cell groups?




Dictyostelium Cells Follow Ridges on Surface

Nano-Ridges
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Optimal Ridge Spacing for Contact Guidance

Fit to Circular
Normal Distribution

Weighted
Orientation

Stochastically driven
damped harmonic
oscillator?

Efficiency
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Quantirying waves or

Tracking Waves |
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Can Actin Waves Affect Signaling Pathways?

Genes
Proteins

Dictyostelium White Blood Cells

A
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/
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Actin €— PI3.4.5P

F Comer & CA Parent Cell (2002). 7'“‘

R. Skupsky, C. McCann, R. Nossal, L. Liu, S. Das, W. Losert, & C.A.
& W. Losert, J. Theor. Biol. (2007). Parent Developmental Cell (2010).

Surface
opograph
N




Actin Waves Guide PIP3 Signals 'il
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Our observations of mechanical waves
raise two new questions about
cancer related cell migration

‘1) How does topography of surrounding affect waves?

Amoeboid (multicellula

-, SINsow S

2) How do waves cooperate in cell groups?




onape VWaves can Couple Cell-to-Cell
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Physics of Collective Cell Migration




Vioaels or Coliective Cell Migration

Healthy “wound healing” Perturbed “wound healing”
Mammary ep/thel/al MCF10a Ras activated, metastatic MCF10a

MC. Weiger, V. Vedham, CH. Stuelten,...W. Losert, & CA. Parent PLOS ONE (2013).



Viodel sys

MCF-10A

Immortal line from
non-malignant human

breast

tem T1or brea

MCF-10AT1k

Ha-Ras transfectant

st cancer progression

MCF-10CA1h

Line from MCF-10AT
xenograft

MCF-10CA1la

Line from MCF-10AT
xenograft

“Normal” Pre-malignant
M1 M?2
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Tumorigenic
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Speed is not an indicator of tumorigenicity
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Weiger, M., et al. (2013). PLoS ONE
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Extracting information from the movies:
Farticie Image velocimetry
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Variability in Direction

Weiger et al PLOS One (2013)



EXxponents
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Shadden S., et al. (2005). Physica D:

Nonlinear Phenomena



-TLE Analysis ol non-malignant cells

RED: Cells move away
from their neighbors




FTLE Analysis distinguishes
pre-malignant and tumorigenic
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Summary

The physics perspective provides new insights into
Cell migration, a key process of cancer metastasis.

Observed and measured the wave-like nature of cell
migration (amoeboid cells)

Waves play a role in Contact Guidance and Streaming

Physical properties may be suitable for phenotyping
of Cancer (as a complement to other indicators)

Cancer cells tend to be softer as measured by optical
stretching

Cancer cell groups move in a more chaotic manner as
measured via FTLE
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Measuring
Chaotic Motion
via
Lyapunov Exponents
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Lee R, et al. (2013). New Journal of Physics
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Outline

1. What is cancer?

2. Physics Perspectives on Cancer
Defining the Physics Perspective
Cell Mechanics and Migration
Physics of Collective Behavior

3. How to contribute to the Convergence of
Physics and Biology



How to contribute to the Convergence
of Physics and Cancer Research

1. Learn the basics of Biology

2. Build an intuition for the Physics of Living
Systems

3. Remember, it may not be known what
physical processes are important for specific
biological observations.

GOAL: Bring a Physics Perspective to Cancer
Research



Physics of Amoeboid migration

Physics: Protrusion and retraction

rotrusion
%"
\ N\ 1\
retractio
*_&

(top view, data)  (side view, schematic)

Dictyostelium discoideum




Measuring protrusion dynamics by

tracking cell shape dynamics

Active contour with 400
equidistant boundary points

Modified from snake program by Xu and Prince

Color based on local curvature
-> highlights protrusions



Kymograph representation of
shape dynamics

Smoothed Curvature Space-Time Plot (motion)
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Protrusions travel from front toward back

Driscoll, Fourkas and Losert, Physical Biology (2011)



Suspended Dictyostelium highlight
traveling protrusions

traveling/>

ainjeaIn)
BAIlSOd

Boundary Position (a.u.)
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Time (min)
Driscoll, McCann, Fourkas, Parent, and Losert PLOS Comp Biol (2012).



Dictyostelium cells follow ridges on surface
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Actin polymerization in guided cells

Ridge
Orientation

Speed of ain patches comparable to
wave-like protrusion speed (~30 um/min)



Principal Component Analysis of Global Shape

All Shapes
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At surface, actin waves move along ridges

kymograph
actin waves along ridges
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Where do our Findings Lead Us

Understanding Collective Shape Based Phenotyping
Cell Migration (with NCI) (with NIST, NIH & UM Med School)

090 Cell Ensemble

20900030 0000
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RM. Lee...NT. Ouellette,& W. Losert, M.K. Driscoll, ...W. Losert, & K. Cao,
New J. of Physics (2013). Aging (2012).

C. Guven, ...E. Ott, & W. Losert, J. Candia, ...& W. Losert,
PLOS Comp. Biol. (2013). PLOS Comp. Biol. (2013).
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dorsal view ‘_ 03:00:00

ventral view




Contact Guidance depends on
ridge spacing and cell speed

Optimal guidance efficiency: Faster Cells are guided
1.5 um ridge spacing better
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Cell orientation with respect to ridges with respect to ridges



Untreated

Few organized
actin filaments

Lamellipodia Stress fibers Filopodia




Physics Approaches continued

Can the concepts of entropy and information
theory be applied to model cancer?

Differential network entropy reveals

cancer system hallmarks

James West'23, Ginestra Bianconi“, Simone Severini?® & Andrew E. Teschendorff'3

Nature,2012




Collective Motion is different bulk vs edge

c —Edge

4 [ IExpC

0.15¢

0.1F

Relative <D?  >MSD
|
Probability Density

Bulk
Length (um)

Lee, R., et al. New Journal of Physics (2013)

« Bulk has a higher non-affine motion than bulk.

* Bulk predominately rearranges on a longer length scale



Network Analysis reveals the potential
of multiple mechanical modules

c3: Mechanical Models

1| Relative Deformation & frame 37

2| Relative Deformation @ frame 45

10| Change in Relative Deformation @ frame 37

19| Plateau Shear Modulus €2: Deformation
cl: Relax Power Laws 20| Steady State Viscosity 3| Relative Deformation @ frame 60
12| Change in Relative Deformation @ frame 60 21 Stress Relaxation T 4| Relative Deformation @ frame 90
13| Change in Relat!ue DEfﬂ”“atiU“ @ frame 51 22| Spring Constant 5| Relative Deformation @ frame 97
15| Change in Relative Deformation @ frame 105 23-24] Viscosity 6| Relative Deformation @ frame 105
17| Change in Relative Deformation @ frame 150, 31-33|Stretch Exponential Fits 7| Relative Deformation @ frame 120
25-27|Stretch Power Law Fits 8| Relative Deformation @ frame 150
28-30|Relax Power Law Fits 11| change in Relative Deformation @ frame 4

39| Uniaxial Cell Size 8| Relative Relaxation After 2 Seconds
40| Cell Area During Trap .

c5: Relax Exponential Fits
33-35|Relax Exponential Fits
c4: General Observations

38| Ellipticity during Trap
41| Simple Poisson Ratio Estimation @ end of stretch

I 42| Maximal Angle Correction I .
7: Quantitative Optical Measures w c6: Quantitative Optical Measures

46| Variance of inner Cell Pixels @ trap 44| Variance of inner Cell Pixels @ trap
47| Relative Pixelvalue @ trap 45| Relative Pixelvalue @ trap

T. Kiessling, M. Herrera, D. Nnetu, E. Balzer, M. Girvan, S. Martin, J. Kaes, W. Losert,
European Journal of Physics (2013)



How to classify cancer?
No unique genetic signature in many cancers

Lymphoma: Gene Expressions
show a variety of genetic phenotypes
“‘one cancer, many diseases”

| (L. Staudt, NCI, Nature 2000)

I Pan B cell

T cell
Activated B cell

Proliferation

...........................

sauab 000°'0Z

Lymph node

T ——— 0 2 4 6 8 10 12
400 patients Overall survival (years)



Forces can Trigger Protein Production

Matrix Elasticity Directs Stem Cell Lineage Specification
Disher Group, Cell 2006

Blood  Brain Muscle Collagenous Bong
l I
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Genes
~ Proteins
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Summary

Demonstrated the wave-like Actin waves and cell migration
character of single cell migration are guided by nanotopography

Amoeboid

S

Alexander, Koehl, et al. Histochemistry and Cell Biology(2008). )
R —
Genes Amoeb0|d'»ST.gllltliczellllul_ar) .
Proteins

Friedl and Alexander Cell (2011).

l I : Shape waves can couple in cell

Actin Surface groups. Synchronization?
Waves Topography




