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The gontrol matrix (CM) approach yields a descrip-
tion of the combinations of knobs Z; which can be
adjusted to provide independent control of physics
figures of merit P; (e.g., ripple levels or kink growth
rates), as well as those combinations which affect none
of these ;. This can be used both in finding superior
design points, as well as in using a configuration’s con-
trol knobs to have good operational flexibility about
those design points.
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oMotiva,tigg!

In developing candidate QAS configurations,! the
NCSX group has relied heavily on an automated op-
timizer, which conducts a search in a parameter space
Z={Z,}(j =1,..N,) describing the stellarator bound-
ary, using an objective function F(P), a function of
figures of merit P = {F,(Z)}(i = 1,..M,) charac-
terizing the physics properties (e.g., transport, kink
stability, etc.) of the configuration. While a powerful
tool, the optimizer is searching a space whose topogra-
phy has been essentially unknown, and we have rather
limited understanding of why the optimizer arrives at
the design points Z, it does. For example, what are
the essential features of the shape that are responsi-
ble for the desired physics properties? Deeper insight
mto this would enhance the our ability to locate at-
tractive design points, and understand the effect of
perturbations from those points.

The control matrix (CM) project is intended to pro-
vide this insight, through increased understanding of
the topography, and through applying mathematical
techniques such as SVD methods to gain a clear grasp
of how the P;(Z) can be changed to achieve superior
base configurations and operational flexibility.
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ekormulations

o We consider 2 linearly-related ‘configuration spaces’
X and Z specifying a stellarator:

o The ‘full-space’ X of coefficients

X= {ijl,--Naz} = (Rrﬂla Zm:LJRmza "'ZmNm/z)

needed for (e.g.) a VMEC equilibrium specification
of the boundary. Here, m = (% = n/Ny,,m), and
N, ~ 70.

«lhe ‘reduced-gpace’ Z of combinations of those X
which capture the most important physics:

Z={Z,_1 n.}, where N = N, < N,.

eOver X or Z, we consider the behavior of M = M, ~
5 phygics fgures of merit

P = {P(Z)} = (x%,x3, W1, W>, \), where:

-P5 = A = kink eigenvalue (from TERPSICHORE),
and P,_4 are 4 measures of the ripple, hence of the
level of nonaxisymmetric transport one might expect:
P].,z = X%,Z — Xz(w]_,g) = Nr:ll Zm’ﬁ950 BIQH/BS, with
¥ the toroidal flux, = v, at the edge, and /v, =
1/47 %/% — 1/2

P34 = W1 5 is the ‘water function’® at ¢y 2, measuring
how deep the ripple wells are over a flux surface.
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eExpand P(Z = Zy + z) = P(Zy) + p about Z = Z,.
One has (writing in component-form, with summation
over repeated indices assumed)

%o +2) = G(Zu)zs + 5 HuTalzsat (o), (1)

. “control matry ? Hessun'
with h.o. = higher—order terms. For small enough z,

one has matrix equation
P = GO ‘2z, (2)

with Go = G(Zg) the M x N ‘control matrix’ at de-

sign point Zy. It may be inverted, using the SVD

theorem

Grxny = Uprxn - Wasw - V%xNa

with U,V unitary matrices, and W a diagonal ma-
trix.

eTaking the particular basis set 7w*=1™ which have
1 in the ¢** position and 0 elsewhere, one has the
corresponding set &' of displacements

£'i EG—I -7'('2.

physically representing a set of displacements which
vary a single physics parameter P, leavmg the others

unchanged. These span the ‘tangg’ of G. The (N —
M) vectors spanning the gullspace of G (change the
configuration without modifying any of the R) are

also important. To begin, we look at the &°.

A
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e c10 : Initial results, for Z = X, N, = N,:
(A)‘More—constrained’ case (M, = 5).
oPlot £(0,¢) = &4 + £ to assess the &
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(B) cont:
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e Topography of Z

-Spaces
The validity of Egs. (1) or
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(2) depends on the typical

scales of variation in X- or Z-space of the P,. We
have assessed this variation for all 78 X; for the P,
presently being used, in the vicinity of the Xg = ¢10-
c82 family of configurations. Some typical results:
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eHistograms of sensitivity over (7, m)—planes
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o T'rendst

eAs for the &', the dominant m are similar for { =
1 — 4, and different from those for 7 = 5. Because of
the symmetrizing action of the optimizer in creating
c10, for almost all m, the fractional changes p;/pq; for
transport (¢ = 1,4) are much larger than that (i = 5)
for kink stability.

oT'he linear approximation Eq.(2) is valid only for
fairly small displacements z (~ 1 millimeter) for some
Z;. However, the quadratic form (1) appears a good
approximation for perturbations z on the order of a
few centimeters. The simple Z-space topography in
the vicinity of c10 suggests that we can obtain a highly
tractable model for study in this region. FE.g., from
Eq.(1) one can compute the control matrix for any Z
in this region:

Gii(Z) = 0pi(Z)/0z; = Giyj(Zo) + Hijpz,  (3)

and from this, find the correct &' at any Z, along with
the extrema of the F,, efe..

spHere, we will present a Lst calculation of both Gi;
and H,;, around the c10 design point, within a ‘re-
duced model’ having N, <« N,, and demonstrate nu-
merically the ‘proof of principle’ of the CM method
for this model. | -
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eReducing the dimensionality of 73

eThe dimensionality N, = N, of the search space
used up to now and N, — M, of its null subspace are
large ( 78 and 73, resp.). The smaller we can make
these, the better. Here, we shall reduce N, by 2 gen-
eral methods: -
(a)Removing the redundancy in the X-specification.
This reduces N, from N, = 78 to NI£2 = 39.
(b)Taking only the perturbations most effective in
varying some P;. Here, we choose the 4 most eflective
for P, and for Ps, thus further reducing N, from 39
to 8.

e¢On method (a): For the calculations presented so {ar,
each R, and Z, harmonic is independently varied.
However, these variations are not, in fact, indepen-
dent since the poloidal angle variable is not uniquely
defined. Such redundancy in the representation con-
tributes extra nonphysical dimensions to the null space.
In calculating the Control and Hessian matrices [Eq.(1)]
we should use the N, ~ N, /2 linear combinations of
the Ry, Zm that define normal displacements to the
plasma boundary.



DEC-82-1993 15:43 FPPL — THEORY DEPARTMENT 6E9 243 2662 FP.13-26

eDefining normal displacements to the plasma
boundary:

For a plasma boundary defined by

o ~

X(0,¢) = R(8,9)R(¢) + Z(6,9)Z, (4)

a general displacement 1s 5 =6X =8SRR+6Z7 , and
a normal displacement is

. X 80X OR 87
Fc P _R(%dzw%éﬁ,}. (5)

Multiplying by cos (mf + n¢) and integrating over 6
and ¢ yields a matrix equation in the form

&= Bié;. (6)
J

Here §;(j = 1,---, N) is the set of Fourier expansion
coefficients of both R and 67, £;(i = 1,---, M) is the
set of Fourier coefficients of the normal displacement
to the plasma boundary, and B;; is the M x N rect-
angular influence matrix that relates the two. Our

goal is to calculate the §; since these are required by
VMEC.

- An SVD decomposition of the matrix B is

Barsn = Unix NEN«N Vi v (7)
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where U and V are orthogonal matrices and X is a
diagonal matrix of singular values ox. In terms of
the decomposition a solution to Eq. 6 is conveniently
written as

N
0 =) Virts (8)
k=1

where
M
tk = 0'}:1 ZUjké’j lf a - 0,
j=1

= Ok < Ocutof f ™~ 0(9)

It is convenient to rewrite Eq. 8 in the equivalent
vector form

N
6= bl (10)
k=1

where 7j, is the k’th column (vector) of matrix V.
Suppose we order the singular values in descending
order such that

g, > 0 for k=1,2,---, Ny
or, = 0 for k=N,+1,.--- N (11)
Then

§ = LU (12)
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provides a complete description of an arbitrary nor-
mal perturbation of the plasma boundary. The ¢, are
given by LEq. 9.

Now consider a specific normal displacement § = ¥ =
€y, where

& =10,0,--+,1,0,---,0/T (13)

with the “1” in the £’th entry. Thus {;?(E) corresponds
to a pure harmonic of the normal displacement with
modenumbers m(¢), n(f). From Eq. 12 this ¥ cor-
responds to a vector of 0R,, ., 2%, , displacements
which we can write as

— Ns Y
61 = 755: ) Uk
k=1
with
1
1 = =~ Uy (14)
Ok

The vectors 5@ are the displacement vectors used to
form the control and quality matrices.
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eReduced Model & 1st Calculation of Gy;, Hij:

= ggeme ——

e Sensitivity histograms in the N, = 39 Z-space?

(/=) lt=2)

eRanking |P;/ Py — 1|, select 4 most effective harmon-
ics m for each of : = 1, 5:
sFor Fy: (ﬁ:m) = {(170)> (23 0)3 (35 0
For Py: (7,m) = {(1,3), (1,4), (2,4), (1,5)}.
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e’ lopography of reduced spaces
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eDistill G;;, H;;,=Quadratic Model’
for N, = 8: (Requires 2N? = 128 perturbed equilib-
ria about Zg.)

«Compare this semi-analytic model with numerical re-
sults just shown:
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eUse QQuadratic Model to analyse Z-space
structure, compute £'’s, etc.s

oPlot P, 5 versus pairs (2, 2, ):
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o' Proof of Principle’ of CM methods

ePlot P; versus a&’=1°, verifying their inde-
pendent control of P 5:

L. ] i s s e T T
104 ]
t

, —
1020 L - , .
a0 / -
2 J
098 pu J
T + . E
- - e m
LT [-' 5 -
4 [+ 17 | N T N S SV {

e 216 7ot 10 PV mr“i

107 0 (s o
_ {clo}
eCompare with numerical results from per-
turbed equilibria:

o o B S A
1.4 4
' (=l
=
102 -]
100 e SRR S S = m e e =
L e :
i e T 2]
.85 / e . -
i - ]
n [ . i
k ~— - J
098 (=5 T -
L = ]
.
- . 5 -
ool o0 ] N T T T T e ]
0™ wIGT e sar Terp™* o g P a0 g 3
A I - A _q
G Xt — 107 0 X £ o

iy



DEC-8Z2-1993 15:4% FPPL — THEORY DEPARTMENT

e(ther %S Design

6E9 243 2662

Points?

FP.21-26

vc10 was arrived at along an involved path of hu-
man interaction with the optimizer, and it is unclear
that other regions of Z-space, which would have been
reached from different starting points, might not yield
superior configurations. Thus, we are starting to study
other proposed QAS configurations®® with the same
methods, and to consider the variation of the P, as
one moves from one such point Zy to another.

eWarmup (Z’s nearby): The path c10 — ¢82:
ec82 was obtained from c10 in an effort to stabilize
the kink. The level of QA-ness was slightly degraded
in compensation. This borne out by the P’s along a

straight-line path in Z-space:
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oThe path c10 — PGI (preliminary):
ODé"ffne Norm JX/ E[% XJ?] 2 3 IXFLI H_X‘:w/{‘: V2728 M

«P (1 characterized by much better kink stability, sub-
stantially worse QA-ness (mainly due to large mirror
field By,—0#—1 present to enhance stability.
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eP (12 preliminary results?

oFor M, = 5:

eNot as much difference discernable between the trans-

port and kink £(8, ¢):
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eKink perturbation again enhances the triangularity
at Ny = 7, which is positive for PG1, consistent
with tokamak-based intuition:
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eSummarys

e We have set up the machinery needed to do the
indicated CM analysis of NCSX, and have pro-
vided a 1st demonstration of the basic princi-
ple of the UM method, showing for ¢10 that the
SVD-obtained perturbations &' can in fact be
used to vary the P; independently.

e For the 1st time, we have provided a picture of
the topography of the configuration space X or Z
in which our searches for good stellarators are oc-
curring. In an appreciable neighborhood of ¢10,
the F; may be modeled by a quadratic function
of z = Z —Zg, and vary with little structure even
over a scale comparable to the distance from ¢10
to PG1. We have constructed this quadratic rep-
resentation about c10 for a reduced set (IV, = 8)
of perpendicular displacements of the ¢10 bound-
ary, computing both the CM G;; and Hessian
Hjjp, for this set. |

e The 4 different transport figures of merit produce
boundary displacements £°(6,¢) similar in ap-
pearance. However, the G-matrix eigenvalues w;
show these are linearly independent, NOT nearly
collinear.

e The £° for kink stability differs in appearance
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from those for transport. For c10, £° provides the
outboard indentation previously seen to stabilize
the kink, enhancing ¢10’s negative triangularity
at Ny,¢ = 7, while for PG1, £° enhances its pos-
itwve triangularity, consistent with tokamak intu-
1tion on kink stabilization.

o We have' reduced the dimensionality NNV, of the
search space from N, = 78 to N, = & of the re-

duced model by 2 means:

(a)Removing the redundancy in the X-specification.
(b)Taking the perturbations most effective in vary-
ing F;’s of interest.

We intend to refine method (b), with the goal
of expressing the physics characteristics of these
stellarators in terms of a relatively modest set of
parameters, which should aid in both our under-
standing, and in focussing the optimizer.

e The same approach will be used to study how a
given set of coils (with perturbations §I) could
produce a range of physics behavior 7 for exper-
imental flexibility:

G - § = 7 (as above),
C .ol =& (from free-boundary runs),

:-}"'GQCSI:?TjWIthGQEGC
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