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Motivation

» Spherical tori (ST) have small onmic heating (OH) transformers
— NSTX has a double-swing solenoid flux of only 0.7Wb [
— flux consumption optimization is more important than in a conventional tokamak.

« Well-optimized Ohmic plasma is needed as a starting point for studies of:
— Confinement scaling
— Stability limits
— Density limits
— Boundary and divertor physics
— HHFW coupling, heating, and CD
— CHI current drive with OH target

 OH plasma will be used as target plasma for high power NBl and HHFW

* Goals:
— Maximize I with available OH flux

— Characterize OH efficiency [0 power balance and Ejima analysis
— Understand why optimal configuration is optimal
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NSTX can ramp to |,> 700kA in 150msec

Maximum sustained dl./dt < 6MA/sec
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NSTX achieves|,> 700kA using 65% of OH flux
[] canreach IMA with short flat-top (as designed)
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Rapid initiation consumes little OH flux
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But, rapid plasma formation also triggers tearing
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activity with decreasing mode frequency

Also persistently observe a rapid
MHD burst at 60-70msec.

Mode(s) may dissipate significant
OH power early in discharge.

Interestingly, mode does not appear
to inhibit di/dt later in discharge.

Future experiments will decrease
initial ramp-rate to investigate
reduced early MHD activity.
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Power Balance Calculations

Start with Poynting’s Theorem:
- [ ExBedS/ = [ dV 0/0t [B2/2u, + £,E%2] + | dV JE

Piput = 1PV surface + 11r 0P1H/0t = OWiig4 /0t + OWJO
Total Energy Inpug [ P, dt

But, |1 0P/0t = [ dV d/0t B 22y, 0
|V e =0V 0/OtBA2u, + 0OW, /ot

Net Power into plasma Poloidal field W / ot Resistive Heating + Radiation

Use time-series of EFITS (S. Sabbagh - Columbia Univ.)
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Ejima Coefficient from Power Balance
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Typical power balance for optimized shots

Shot 100872
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Peak |, from ramp-rate scan is nearly
Independent of |, ramp-rate
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Elongation at peak |, nearly
Independent of |, ramp-rate
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Higher ramp-rates have lower
. at peak |, (as expected)
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Highest |, shots have resistive C.= 0.4,
|. = 0.6, and are diverted with k,>2

Shot 100872 EFITs
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MHD events terminate faster I, ramps

Optimized dl./dt = 4.5MA/sec dio/dt = 8.0 MA/sec
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Optimized J, profile remains broad [
higher natural elongation and higher stable |

Optimized dl/dt = 4.5MA/sec dio/dt = 8.0MA/sec

Mid-plane J,, profile from EFIT

Mid-plane J, profile from EFIT
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Tokamak Simulation Code (TSC)

IN good agreement with present experiments
(for shots without strong MHD activity)
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Flux consumption experiments highlight need
for pre-heating and non-inductive current drive

6 MW HHFW, 5 MW NBI
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TSC simulations show heating during I, ramp
can significantly lengthen [ flat-top
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Summary

« Peak I, from ramp-rate scan is nearly independent of dl./dt
— Low ramp-rate shots deplete OH flux
— Fast ramp-rate shots experience strong MHD events
— Optimized shots U ramp quickly early, ramp slower later (relax J,, profile)

« Optimized shots dissipate 50% of input energy by end of |, ramp
— Resistive Ejima parameter C. = 0.4
— Bake-out of passive plate graphite might reduce this significantly

 MHD activity immediately after initiation may dissipate OH power

* Present experiments extrapolate to short flat-top at 1IMA

e Heating during ramp-up and HHFW and/or CHI non-inductive current
drive are essential to achieving longer duration discharges



