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Current topics of interest

Some interesting (and related) challenges for the theorist:

� submarginal turbulence (linearly stable);

� zonal ows (ky = kz = 0);

� long-time correlations [C(� ) � ���].

There has also been considerable discussion of

� self-organized criticality (SOC).

Is SOC an overarching, unifying theme?

Or is it a special case of more general turbulence phenomena?

It's impossible to discuss all of these topics in 25 minutes (see

references at end of talk). Today,

� some elementary facets of long-time correlations ;

� a (very) few words about the relationship of SOC formalism to

general theory.
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Motivation

� Carreras (1998) [APS/DPP98]: \Perhaps the `standard

transport paradigm' must be abandoned."

{ Long-time tails on edge density correlations: C(�) � ���.

{ Nonintegrable correlation functions may imply local transport

coeÆcients don't exist.

� Carreras et al. (1998): The measurements [on long-time tails]

are \consistent with the SOC paradigm of turbulent transport.

However, it does not prove that this model o�ers the only

explanation. . . . At this point, we are not aware of other

dynamical mechanisms that may provide an alternative answer,

but it may exist."
I will show that there is

an alternative explanation

that does not invoke SOC ideas.

Also, nonintegrability 6) nonlocal transport.
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Goals

The major goal of this talk is to argue that

� not all systems with long-time correlations need have nonlocal,

nondi�usive transport (nor do they need to be SOC).

To do this, I will

� demonstrate that some stochastic systems can possess long-time

correlations while lacking crucial features of SOC models;

� recast (some of) the SOC formalism in the more conventional

framework of statistical turbulence theory;

� emphasize the distinction between Eulerian and Lagrangian correlation

functions.

Longer-ranged goal: a uni�ed, quantitative theory of

� nonlocal as well as local transport;

� submarginal as well as supermarginal regimes;

� avalanches as well as more conventional uctuations.
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Summary

� Pure SOC lives in an asymptotic corner of parameter space. It

is probably not necessary to look there for explanations of

observed long-time correlations.

� Long-time correlations can be present in stochastic systems

that do not possess essential features of SOC.

� The spectral balance equation of statistical turbulence theory

can unify various approaches to, and formulas for uctuation

spectra.

� Even though Eulerian correlation functions can easily exhibit

long-time tails, transport coeÆcients (determined by

Lagrangian correlations) can nevertheless be local.

Long-time tails can coexist with local transport.

This observation should be accounted for

in any formal theory of turbulent transport.
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This talk is not about SOC.

It is about the theory of

long-time correlations.
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Selected references on SOC

� Original papers were by Bak, Tang, and Wiesenfeld (Bak et al.,

1987; Bak et al., 1988).

� Some pedagogical discussions are by Bak and coworkers (Bak

and Tang, 1989; Bak and Paczuski, 1993).

� A recent book for the lay person is by Bak (1996).

� A more technical pedagogical introduction to SOC has been

given by Jensen (1998).

� In plasma physics, authors include

{ Diamond and Hahm (1995),

{ Newman et al. (1996),

{ Carreras et al. (1996).

{ See also a variety of talks at this meeting.
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A simple sandpile

On a 1D n-site lattice, implement toppling rule

hi ! hi �N; hi+1 ! hi+1 +N (1a,b)

when local slope S exceeds Scrit. The following example is for n = 10,

Scrit = 1, N = 2.

forcing

t = 0 t = 1

� � �

t = 15 = T (lifetime).

� The initial toppling triggers an avalanche.

� In this example, the �nal slope is submarginal (lower than critical).
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Signatures of SOC

Characteristics of SOC systems include

� excitations ( \avalanches" ) of all scales;

� a \self-selected" nonequilibrium steady state (no obvious

tuning parameter);

� frequently submarginal pro�les .

In fact, there are parameters: forcing rate ; and local rigidity .

local rigidity

�
forcing

rate
�
�1

SOC

realistic

systems

Be careful about

interchanges of limits:

� �f � �A (conventional);

� �A � �f (SOC).

{ 10 {



Table of Contents

p

Introduction; motivations

p

Brief Remarks on SOC

A Stochastic Model With Long-Time Tails

Overlapping Avalanches and the Spectral Balance

Equation

Correlations and Transport

Summary and Conclusions

References

Long-time tails do NOT require SOC!

And they can coexist with local transport.
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General procedure

I will show that some of the experimental signatures can arise from

stochastic systems that lack important features of SOC models.

Consider a \black box" that exhibits (at least some of) the

experimental phenomena.

.
Flux \Black" boxwith turbulent velocity~

eV (~x; t)

measure various

time series

�

.

.

The black box can be either

� a real experiment; or

� a mathematical stochastic model .
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1D stochastic models

For the simplest demonstration, Krommes and Ottaviani (1999)

studied a 1D stochastic model (with properties that emulate more

realistic turbulence).

�

1D stochastic model

with statistically speci�ed

random velocity eV (x; t)

We specify the statistical properties of eV (x; t). (Random eV implies

an e�ectively multidimensional model.)

� autocorrelation time �ac; autocorrelation length Lac;

� threshold condition (NONE). (Fluctuations are always on.)

NOTE:
NO THRESHOLD ) NO AVALANCHES.
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A stochastic boundary-value problem

Consider @t eT (x; t) + @xe�(x; t) = 0 (0 < x < 1); (2)

where

e�(x; t) := e�tb + e�cl (3)

e�tb :
= (Æ eV ÆT )(x; t) (turbulent ux); (4a)

e�cl := �R�1@x eT (classical ux); (4b)

and Æ eV is a centered Gaussian random variable with covariance

V(�; � ) = V 2 exp(�j� j=�ac) exp(�
1

2
�2=L2
ac
): (5)

Æ eV ÆT
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Properties of the model

The stochastic model

@t eT (x; t) + @xe�(x; t) = 0 (0 < x < 1) (6)

shares with realistic con�nement experiments the following

properties:

1. The temperature pro�le is free to evolve.

2. The correlation scales of the velocity �eld can be taken to be

small (\microscopic") with respect to macroscopic values by

choosing �ac and Lac to be much smaller than 1.

3. The mean temperature obeys @tT + @x� = 0, which in a

steady state reduces to the statement that the total (mean)

ux is a conserved constant, independent of x.

4. The uctuations are not forced by arbitrary additive noise on

the right-hand side of Eq. (6), but by multiplicative noise of

the usual advective variety.
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Direct measurement of correlations

R
/S

C
(τ

)

(a) Correlation function of the temperature evolved according to

Eq. (2) and measured at x = 1
4
. C(�) � ��1=2 .

(b) Analysis of the Hurst exponent H for the temperature �eld by

the R=S method. H = 3=4 . [C(�) � ���, H = 1� 1
2
�.]
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Additional remarks on

long-time correlations

� C(� ) � ��1=2 is nonintegrable.

� Yet the measured transport coeÆcients (not shown) are

essentially quasilinear.

One can already infer that there is

no intrinsic link between

long-time tails and nonlocal transport.

� Krommes and Ottaviani (1999) also studied long-time

correlations in the Hasegawa{Wakatani system.

{ Preliminary interpretation is consistent with long-time tails.

{ However, those measurements were very diÆcult; much

more work should be done here.
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A uni�cation of some formulas for spectral density

� spectral density of independent, overlapping avalanches (Jensen, 1998);

� spectral balance equation (statistical turbulence theory).
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Jensen's power spectrum

of overlapping avalanches

Jensen (1998) showed that the power spectrum of the dissipation

rate of independent, overlapping avalanches driven at rate � is

CJ(!) = 2�
Z 1

0

dT

�
1� cos(!T )

!2

�
�(T ); (7)

where the weighted lifetime distribution � is

�(T )
:
=

1
T 2

Z 1
0

dS P (S; T )| {z }
PDF

S2 (8)

and

S | time-integrated signal from a single avalanche;

T | avalanche lifetime.

How is this approximate formula related to

the general statistical theory of turbulence?
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Spectral balance equation

Consider the primitive amplitude equation

@t + iL = 1
2
M  = ef|{z}

random

internal noise
� �  |{z}

coherent

nonlinear damping
: (9)

) Langevin representation:

R�1 = ef; with R�1
:
= @t + iL+ �| {z }

\mass operator" �

: (10a,b)

Solution:  = R ef or h  i| {z }
C

= R h ef efi| {z }
F

Ry: (11a,b)

Spectral balance

equation:

C(!) = R(!)F (!)R(!)y: (12)

There has been considerable analysis of this equation:

� direct-interaction approximation (DIA) (Krommes, 1984);

� clumps (Krommes, 1997);

� Markovian closures and successful comparisons with direct numerical

simulations (Bowman and Krommes, 1997; Hu et al., 1997).
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After decades of theoretical and numerical work,

The spectral balance equation

of statistical turbulence theory

is understood quite well.

Because it is exact, it must include Jensen's results.

What is the relationship between

the spectral balance equation

and Jensen's formula for the

spectra of overlapping avalanches?

Clue: For the classical Langevin equation

_v + �v = f(t); F (� ) = 2DvÆ(� ) (13a,b)

(with the Einstein relation Dv = v2
t
�), one has

hÆv Ævi(!)| {z }

C(!)

= (!2 + �2)�1| {z }

jR(!)j
2

(2� �|{z}
forcing

rate

� v
2

t|{z}
intensity

)

| {z }

F (!)

: (14)
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Jensen vs. balance eq'n

By comparing Jensen's approximate formula

CJ(!) = 2�
Z 1

0

dT

�
1� cos(!T )

!2

�
�(T ); (15)

to the rigorous spectral balance equation

C(!) = jR(!)j2F (!); (16)

one can deduce that the weighted lifetime distribution normalized to

I =

R1
0

dT �(T ) is (b� :
= �=I)

b�(!) = 1� !2jR(!)j2: (17)

As a check, recall that R(!) = [�i(! + i�!)]
�1. Assume that �! is real.

Then b�(!) = �2
!=(!
2 +�2

!). This formula generalizes the characteristic

function of the PDF for Poisson-distributed events. Thus, if �! ! � (a

constant), then b�(�) = 1
2
dP (�)=d� , where P (�) = 1� e��� is the

probability of at least one event occurring (with rate �) in (0; �).

Shift focus from � (avalanches) to � (turbulence).
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Long-time tails can be compatible with local transport.
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Taylor's formula for D

According to Taylor (1921), the particle di�usion coeÆcient is

D =

Z 1
0

d� CL(� ); (18)

where CL is the Lagrangian velocity autocorrelation function:

CL(� )
:
= hÆV (x(t+� ); t+�)ÆV (x(t); t)i: (19)

along trajectory

It is important to distinguish the Lagrangian correlation function

from the Eulerian one (~x and t speci�ed independently; easy to

measure):

CE(� )
:
= hÆV (x; t+ � )ÆV (x; t)i: (20)

same point

CE(� ) and CL(� ) can behave quite di�erently.
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Eulerian vs. Lagrangian

correlations

A simple 1D model emphasizes the distinction between Eulerian and

Lagrangian correlations. Let

V (x; t)| {z }

arbitrary random �eld
= X(x)T (t); (21)

where X and T are statistically independent,

� X(x) = cos(kx+ �) [� uniform on (0; 2�)],

� T (� )
:
= hT (t+ � )T (t)i is arbitrary.

Now

CE(� ) = hV (x; t+ � )V (x; t)i (22a)

= hX2(x)ihT (t+ � )T (t)i (22b)

= const.� T (� )| {z }

could have

algebraic tails
: (22c)
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CL can behave di�erently from CE

For example, let x(t) = x+ vt for Gaussian v. Then

CL(� ) = X (� )T (� ); (23)

where
X (� ) = hX(x+v(t+� ))X(x+ vt)iT (� ) (24a)

=

1
2
h[cos(kv� ) + cos(kv�+2k(x+vt)+2�)]i (24b)

=

1
2
hcos(kv� )i =

1
2
e�k
2v2�2=2: (24c)

Thus, for V (x; t) = X(x)T (t), one �nds

CE(� ) / T (� ); CL(� ) / e�k
2v2�2=2| {z }

dominates

� decay

T (� ): (25a,b)

A more realistic random trajectory need not change this conclusion.
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In some models, the Lagrangian correlation function

decays more rapidly than the Eulerian one, due to linear

and/or turbulent phase mixing.

CL(� ) can be integrable

even when CE(� ) is nonintegrable.

What about more realistic velocity �elds?
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Eulerian correlations in the SCF

The Fluctuation{Dissipation Ansatz is

C~k(� ) = R~k(� )C~k(� = 0) (� > 0): (26)

(This is exact in thermal equilibrium; otherwise, it is known as the

Self-Consistent Field Approximation .a) Then

CE(� ) =

Z
d~k

(2�)d
R~k(� )C~k (27a)

=


d

(2�)d
Z 1

0

dk kd�1Rk(� )Ck; (27b)

If one assumes that Rk(� ) � e�k
2D� as k ! 0, then by stationary

phase
CE(� ) � ��d=2: More generally, CE(� ) � ���: (28)

aRediscovered by Krommes and Oberman (1976) in the context of convective cells.
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Lagrangian correlations in turbulence

CE(� ) � ��d=2 is reminiscent of the famous long-time tails in

many-body kinetic theory (Alder and Wainwright, 1970; Krommes

and Oberman, 1976). But those were for Lagrangian correlations!

Note: If CL(� ) � ��d=2, then � =

R1
0

d� CL(� ) is nonintegrable

for d � 2! In that case, local transport coeÆcients do not exist.

How does one assess

the integrability of Lagrangian correlations

in conventional turbulence theory?

Either

� study (the time dependence of) the mass operator �~k(� ), say

in the DIA (this is diÆcult);

� study (the convergence of) the turbulent damping rate �~k in a

Markovian closure. E.g., � = limk!0 �~k=k
2. [If limit exists:

local transport; CL is integrable.]
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Turbulent damping

in the EDQNM

In the eddy-damped quasi-normal Markovian (EDQNM)

approximation,
�~k = �
X

�

M~k~p~q
M�
~p~q~k
��~k~p~qC~q: (29)

For example, consider the turbulent damping rate of vorticity in the

Hasegawa{Mima equation:

�~k = �
X

�

jbz � ~p� ~qj2(p�2 � q�2)(q�2 � k�2)

([k�2] + 1)([p�2] + 1)

�

C~q

(�~k + �~p + �~q)�
: (30)

� The bracketed terms in the denominator stem from adiabatic

electron response; when they are omitted, the model reduces to

the 2D guiding-center model (Krommes and Similon, 1980).

� Assume isotropy for simplicity.
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Markovian �~k, cont'd

�~k = �

2
(2�)2

Z
�

dp dq p2q2j sin�j

�

(p�2 � q�2)(q�2 � k�2)

([k�2] + 1)([p�2] + 1)

Cq

(�k + �p + �q)�
; (31)

� �k converges for HM.

� But it diverges (logarithmically) for the guiding-center model

(adiabatic electron response omitted). That is a manifestation

of long-time tails in the Lagrangian Green{Kubo integrand.

CE(� ) | ��� (quite general)

CL(� ) | ??? (either integrable or nonintegrable)

Don't infer predictions about transport

from Eulerian correlation functions.
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Related researcha

Burgers' equation: For some recent thoughts, see

J. A. Krommes, Renormalized dissipation in the nonconservatively

forced Burgers equation, Phys. Plasmas, submitted.

Stochastic models and submarginal turbulence: See

J. A. Krommes, Submarginal pro�les and turbulent transport: An

exactly solvable model, Phys. Plasmas 4, 1342 (1997).

Dynamical mechanisms for submarginal turbulence: For a summary

of the current status, see

J. A. Krommes, Recent results on analytical plasma turbulence theory:

Realizability, intermittency, submarginal turbulence, and self-organized

criticality, Plasma Phys. Control. Fusion 41, A641 (1999).

Zonal ows: For some new perspectives, see

J. A. Krommes, The inuence of random zonal ows on saturation

levels in simple stochastic models, Phys. Plasmas (in press).

aSee http://www.pppl.gov/docs/publications/pages/publications.html.
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Summary

� Pure SOC lives in an asymptotic corner of parameter space. It

is probably not necessary to look there for explanations of

observed long-time correlations.

� Long-time correlations can be present in stochastic systems

that do not possess essential features of SOC.

� The spectral balance equation of statistical turbulence theory

can unify various approaches to, and formulas for uctuation

spectra.

� Even though Eulerian correlation functions can easily exhibit

long-time tails, transport coeÆcients (determined by

Lagrangian correlations) can nevertheless be local.

These points ought to be taken into account

in future discussions of paradigms for transport

and interpretations of experimental results.
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