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Introduction
• Non-inductive current drive is essential for

high-performance STs because of
– lack of room for large OH solenoid
– desire to operate long-pulse or steady state

• Options for current buildup include
– RF current drive
– Bootstrap current
– NB current drive

• What are the time-scales associated with
these, and are they acceptable?



4

Basic Equations and Essential Physics
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(a) Inductive Current Buildup
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(b) Non-Inductive Current Buildup
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For inductive current buildup,
poloidal flux at magnetic axis
increases

For non-inductive current buildup
poloidal flux at magnetic axis
decreases

Note: OH coil is absolutely
necessary for inductive current
buildup

Outer PF coils by themselves can
never provide flux to ramp up
plasma current in a high beta ST.

Examples of TSC calculations of current buildup in an ST
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2D Results…application to NSTX-U
• Simulation of non-inductive

rampup using RF + Bootstrap

• Complete transport calculation
(4.3 keV peak)

• Start with 100 kA, ramp to 750 kA
10% RF + 90% bootstrap

• βP ≅ 2  for bootstrap overdrive

• IP ∝ a BT CT / βP

• For a and CT fixed,     IP ∝  BT

• Time-scales are very long, 75 + 45
seconds for steady state

• Compare with t0 = a2 µ0η(0) = 85 s
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Another series of calculations with slightly lower central
temperature (3.5 keV) shows that calculation will fail because
li becomes too small for ramp time too fast.
Also, higher bootstrap fractions require longer times.

tRAMP=55 s, fBS=0.33

tRAMP=55 s, fBS=0.66

tRAMP=27 s, fBS=0.33

time (s)
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From the definition of
the plasma inductance

A simple 1D equation can be derived that contains
all of the essential physics
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In the 1D runs, the resistivity
function is taken to have the
following form: η(r)=η0(1-r2/a2)-m

with m=4.

The current drive is of the form:
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In these runs, the plasma starts in
resistive equilibrium at t=0 with a
current 0.1 I0.  The current source is
then ramped up linearly from 0.1 I0
to I0 in a time 0.1 t0.

Note: t0 = a2µ0/η(0)

Time history of IP and li/2 for current rampup t1=0.1t0
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Note that the time at which it
takes the plasma current to reach
99% of it’s final value depends
on the curent turnon time t1.

For the inductive case (a) on
previous slide, this time is the
same as the turnon time.

For all the non-inductive
current-drive cases, it is much
longer.

Dependence of Current Buildup time on Turnon time
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This illustrates how distorted the
plasma current profile can become
as it approaches steady state.

Plotted are the minimum values of
the plasma internal inductance and
of the plasma current peakedness
as a function of the current turnon
time t1, for the inductive rampup
as well as for several non-
inductive rampups with differing
bootstrap fractions.

Note that a negative value of q*/q0

means that the central current
actually went negative during the
transient.

Dependence of minimum internal inductance on turnon time
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These are the trajectories in
(li/2, q*/q0) space during the
current rampup.

High bootstrap fractions and
short rampup times cause
large excursions into the
unstable regimes.

(b) Current Drive Rampup with 50% Bootstrap
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(a) Inductive current rampup with transformer
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(c) Current Drive Rampup with 90% Bootstrap
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Natural non-Inductive Current Rampup Time for an ST
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•  Time set by central resistivity

•  Compounded because Current Drive systems also heat

•  For sudden application in time t<T, transients will dominate

•  For high bootstrap fractions especially, it may require 
several of these times to rampup
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These estimates are consistent with non-inductive current
buildup times reported in the literature for tokamaks

WT-2[1] T-IIU [2] PLT[3] PLT [4] Alcator-C [5]
τ

0 = a2µ
0/η(0) 0.2 ms 5.8 ms 0.3 s 1.65 s 0.42 s

∆I / I 4 8 3.3 0.18 0.4
T / τ0 105 27 7.6 0.18 0.35

[1] S. Kubo, M. Nakamura, T. Cho, et al, “Toroidal Plasma Current Startup and Sustainment by rf in the
WT-2 Tokamak”, Phys. Rev. Lett., 50, p. 1994 (1983)
[2] K. Toi, K. Ohkubo, K. Kawahata, et al, “Startup and Quasistationary Drive of Plasma Current by
Lower Hybrid in a Tokamak”, Phys. Rev. Lett.,52, p. 2144 (1984)
[3] F. Jobes, J. Stevens, R. Bell, S. Bernabei, A. Cavallo, et al, “Formation of a 100-kA Tokamak
Discharge in the Princeton Large Torus by Lower Hybrid Waves”, Phys. Rev. Lett., 52, p. 1005 (1984)
[4] F. C. Jobes, S. Bernabei, T. K. Chu, W. M. Hooke, E. B. Meservey, R. W. Motley, J. E. Stevens, and S.
von Goeler, “Current Rampup by Lower-Hybrid Waves in the PLT Tokamak”, Phys. Rev. Lett., 55,  p.
1295 (1985)
[5] Y. Takese, S. Knowlton, and M. Porkolab, “Plasma current ramp-up and Ohmic-heating transformer
recharging experiments using lower-hybrid waves on a tokamak”, Phys. Fluids 30, p 1169 (1987)
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Summary and Conclusions
• Plasma current rampup for non-inductive current drive is

fundamentally different than for inductive:
– governed by central resistivity where temperature is highest
– transients aggravated by singular source term in j evolution equ.
– timescales are typically 4-5 times longer for same Te

• Simulation of 90% bootstrap MHD stable current buildup
in an ST presented
–  Shows importance of high BT for high IP

– T ≅ 70 s for .65 m Te=4300 ev plasma in ST

• These estimates in apparent agreement with existing
experiments

• Most of the relevant physics is 1D


