Fact Sheets
National Spherical Torus Experiment (NSTX)
The National Spherical Torus Experiment (NSTX) at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) is yielding research results that may open an attractive path towards developing fusion energy as an abundant, safe, affordable and environmentally sound means of generating electricity.
The NSTX device is exploring a novel structure for the magnetic field used to contain the hot ionized gas, called plasma, the fuel for the production of fusion energy.
The National Compact Stellarator Experiment (NCSX)
The National Compact Stellarator Experiment (NCSX) represents a promising and uncompleted pathway to fusion as a safe, clean and virtually limitless source of energy for generating electricity.
Magnetic Reconnection Experiment (MRX)
The PPPL Magnetic Reconnection Experiment (MRX) was built to study a fundamental plasma process in a controlled laboratory environment. A plasma is a hot, ionized gas that can be confined using a magnetic field. Plasmas are often considered to be the fourth state of matter after solids, liquids, and gases, and account for more than 99 percent of the visible universe.
Magnetorotational Instability (MRI) experiment
Currently, scientists do not understand the required conditions and the accretion, or matter collection process, involved in star and planet formation. But the Magnetorotational Instability (MRI) experiment at PPPL may shed light on this mystery.
Miniature Integrated Nuclear Detection System (MINDS)
Anti-terrorism efforts are getting a boost from the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL). A team led by PPPL engineer Charles Gentile has developed a Miniature Integrated Nuclear Detection System, called MINDS, which can be used to scan moving vehicles, luggage, cargo vessels, and the like for specific nuclear signatures associated with materials employed in radiological weapons.
Investing in Fusion Research Crucial to U.S. Competitiveness
An Interview with Stewart Prager, Director of the U.S. Department of Energy's Princeton Plasma Physics Laboratory
Science Education
In a quest to educate the next generation of scientists, and to engage students and teachers in scientific inquiry, PPPL created the Science Education Department nearly two decades ago.
How Seawater Can Power the World
Harnessing nuclear fusion, the energy that powers the sun and the stars, has been a goal of physicists worldwide since the 1950s. It is essentially inexhaustible and it can be created using hydrogen isotopes — chemical cousins of hydrogen, like deuterium — that can readily be extracted from seawater.
Lithium Tokamak Experiment (LTX)
The Lithium Tokamak Experiment (LTX) produced its first plasma in September, 2008. The new device will continue the promising, innovative work started on CDX-U in 2000, involving the use of pure lithium metal on surfaces facing or contacting the plasma. PPPL researchers believe that LTX may herald a new regime of plasma performance with improved stability, lower impurity levels, better particle and temperature control, and more efficient operation.
Fusion Power
For centuries, the way in which the sun and stars produce their energy remained a mystery to man. During the twentieth century, scientists discovered that they produce their energy through the fusion of light atoms.
E=mc2, Albert Einstein's familiar formula, provided the basis for understanding fusion. Einstein's theory that mass can be converted into energy was further explored by other physicists who discovered two practical methods for achieving this conversion.
The Paul Trap Simulator Experiment (PTSX)
The Paul Trap Simulator Experiment (PTSX) at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory doesn't trap people named Paul or simulate the trapping of Pauls. Its mission is much grander.
Scientist’s Quest For Artificial Muscle Aided by PPPL
PPPL collaborator Lenore Rasmussen, the sole proprietor of her Princeton-based, startup firm, Ras Labs, LLC, has the gift of serendipity. Two disparate life experiences sparked the polymer chemist’s interest in the development of electro-responsive “smart materials” — electrically-driven polymers that are strong and durable enough to act as artificial muscles in prosthetic devices and robotics.
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000
Website suggestions and feedback
© 2013 Princeton Plasma Physics Laboratory. All rights reserved.






