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Effects of non-Maxwellian electron velocity distribution function on two-stream

instability in low-pressure discharges
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Electron emission from discharge chamber walls is important for plasma maintenance in many low-
pressure discharges. The electrons emitted from the walls are accelerated by the sheath electric field
and are injected into the plasma as an electron beam. Penetration of this beam through the plasma
is subject to the two-stream instability, which tends to slow down the beam electrons and heat the
plasma electrons. In the present paper, a one-dimensional particle-in-cell code is used to simulate
these effects both in a collisionless plasma slab with immobile ions and in a cross-field discharge of
a Hall thruster. The two-stream instability occurs if the total electron velocity distribution function
of the plasma-beam system is a non-monotonic function of electron speed. Low-pressure plasmas
can be depleted of electrons with energy above the plasma potential. This study reveals that under
such conditions the two-stream instability depends crucially on the velocity distribution function of
electron emission. It is shown that propagation of the secondary electron beams in Hall thrusters
may be free of the two-stream instability if the velocity distribution of secondary electron emission
is a monotonically decaying function of speed. In this case, the beams propagate between the walls
with minimal loss of the beam current and the secondary electron emission does not affect the
thruster plasma properties.

PACS numbers: 52.35.-g, 52.40.Kh, 52.65.-y

I. INTRODUCTION

In many discharges [e.g., capacitively coupled plasmas,
divertor plasmas, multipactors, direct current (dc) hollow
cathode discharges, dc magnetrons, electrostatic and Hall
thrusters] there are electron emitting surfaces: walls with
secondary electron emission (SEE), thermionic cathodes,
photocathodes, etc.1 Electrons emitted from such a sur-
face are accelerated into the plasma by the intense elec-
tric field in the sheath adjacent to the surface and form
an electron beam. These beams of emitted electrons play
an important part in the discharge maintenance and af-
fect plasma and sheath characteristics.2,3

In low-pressure discharges, where the electron colli-
sions with other particles are infrequent, the two-stream
instability4,5 can be the major factor affecting propaga-
tion of emitted electrons through the plasma. The in-
teraction of beam electrons with resonant waves during
the two-stream instability slows down some electrons and
accelerates others, dispersing the beam electron veloc-
ity distribution function (EVDF). Some plasma electrons
may also interact with the excited waves, modifying the
plasma EVDF. This modification eventually affects the
particle and energy fluxes in the plasma, especially at
the wall. This effect is relevant, e.g., to the temperature
saturation in Hall thrusters,6 or the thermal instability
due to the plasma-wall coupling in tokamaks.7 During
the two-stream instability, the amplitude of the wave (or
waves) resonant with the beam grows exponentially until
it reaches some saturation level.8–11 The instability devel-

ops if the number of beam electrons transferring energy
to the resonant wave exceeds the number of electrons ab-
sorbing energy from the wave. This corresponds to the
condition that the one-dimensional EVDF of the beam-
plasma system f(v) must be an increasing function of
speed in some velocity interval, violating the following
formal criterion of stability:12

∂

∂(v2)
f(v) ≤ 0 for −∞ < v < ∞ , (1)

where v is the velocity parallel to the direction of beam
propagation. Note that form (1) of the stability criterion
is independent on the direction of beam propagation (v >
0 or v < 0).

Theories and numerical simulations of the two-
stream instability usually consider a beam on the
tail of a Maxwellian plasma EVDF. Frequently, peri-
odic boundary conditions are assumed for plasma-beam
systems.8–11,13 This assumption substantially simplifies
the calculations. In such a system, perturbations are pe-
riodic in space and grow with time. In a non-periodic
plasma system with an electron emitting boundary, the
beam EVDF at the point of its origin is intact, unaffected
by the instability. The beam EVDF starts as the velocity
distribution function of electron emission (VDFEE) de-
fined solely by the properties of the emission mechanism.
The intensity of the two-stream instability grows as the
beam traverses the system.14

To correctly describe the two-stream instability and,
hence, the penetration of emitted electrons into the
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plasma, an accurate kinetic description is necessary for
both plasma and emitted electrons. To this end, for mod-
eling of realistic discharges it is important to take into
account that the plasma EVDF is depleted of electrons
with energy above the plasma potential. The present pa-
per uses particle-in-cell (PIC) simulations to show that
the development of the two-stream instability in a low-
pressure discharge with electron emitting walls crucially
depends on the VDFEE. For different types of VDFEE,
the two-stream instability either is observed for the entire
duration of electron emission, or vanishes soon after the
emission starts, or does not occur at all. The instability
does not occur if the emission is too weak to make the
total EVDF a non-monotonic function of electron veloc-
ity in the direction of beam propagation. Note that this
is possible due to the depletion of the plasma EVDF for
energies above the plasma potential in low-pressure dis-
charges (in contrast to the case of a Maxwellian plasma
EVDF, in which the emitted beams always cause an in-
stability). The effect of vanishing instability largely relies
on the modification of the velocity distribution function
of electrons confined by the plasma potential.

The paper is organized as follows. In Section II, crite-
rion (1) is applied for qualitative examination of stability
of a bounded collisionless plasma-beam system for mono-
tonic and non-monotonic VDFEE. Section III shows the
results of PIC simulations with two different types of the
VDFEE, immobile ions, and constant emission. In Sec-
tion IV, the results obtained with simplified approach
in Sections II and III are verified using more realistic
Hall thruster model simulations. Concluding remarks are
given in Section V.

II. QUALITATIVE ANALYSIS OF DIFFERENT

TYPES OF VDFEE

It is instructive to start analysis with the EVDF in
a one-dimensional collisionless plasma bounded by elec-
tron emitting walls, omitting the perturbations due to
the two-stream instability. Provided both walls have the
same electrical and emission properties, and the emis-
sion is not in the space-charge limited regime,15 the pro-
file of the electrostatic potential in the plasma Φ(x) is
symmetric, with maximum Φp in the plasma center, and
monotonically decaying towards the walls, where it is se-
lected to be zero [see Fig. 1(a)]. Assume that the electron
mean free path between collisions with other particles λ
is larger than or comparable to the distance between the
walls L. Then the plasma EVDF is depleted of elec-
trons with positive total energy εx = wx − eΦ(x) > 0, or
wx > eΦ(x), where wx = mv2

x/2 is the electron kinetic
energy, eΦ(x) plays the role of the confinement threshold
energy, and m, −e, and vx are the electron mass, charge,
and velocity, respectively.16,17 A schematic of such an
EVDF is shown in Fig. 1(b). The plasma EVDF may be

approximated by a cutoff Maxwellian EVDF:

fp(vx, x) =


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Tp

}

if |vx| < v∗ ,

0 if |vx| > v∗ ,

(2)

where np is the plasma electron density at x = L/2,

vth,p = (2Tp/m)1/2 is the thermal velocity of plasma elec-
trons, Tp is the plasma electron temperature (in energy

units), v∗ ≡ v∗(x) = [2eΦ(x)/m]1/2 is the cutoff velocity,
and v∗p ≡ v∗(L/2).

For illustrative purposes, we consider the two limit-
ing cases of the VDFEE: a half-Maxwellian EVDF and
a half-Maxwellian EVDF “shifted” by some energy wbm.
The latter VDFEE, in particular, may represent a sharp
peak in the velocity distribution of SEE from a metal
surface, which occurs at the energy of the order of the
sum of the Fermi energy and the work function of the
metal.18,19 Thus, we assume that the boundary at x = 0
emits electrons with the following VDFEE:

fb0(vx) =
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2nb0

π1/2vth,b erfc(vbm/vth,b)

× exp

(

−
v2

x

v2
th,b

)

if vx ≥ vbm ,

(3)

where nb0 is the density of emitted electrons near the
emitting wall, vth,b = (2Tb/m)1/2 is the thermal veloc-
ity of emitted electrons, Tb is the effective temperature
of emission (in energy units), vbm is the velocity of the
VDFEE maximum, vbm ≥ 0. Note, density nb0 can be
expressed via the emission flux Γ as

nb0 =
π1/2Γ

vth,b

erfc(vbm/vth,b)

exp (−v2
bm/v2

th,b)
.

The electron emission at x = L is characterized by a
VDFEE defined symmetrically to (3) for vx < 0.

In fact, the choice of the VDFEE in form (3) is not
unique. For physical processes discussed below, any VD-
FEE with a single maximum on the interval 0 ≤ vx < ∞
(for emission at x = 0) is suitable. It is the position of
this velocity maximum which is important: the VDFEE
is a non-monotonic function of speed if vbm > 0 [curve
1 in Fig. 1(c)] and a monotonically decaying function of
speed if vbm = 0 [curve 2 in Fig. 1(c)]. Eq. 3 is just
a convenient and transparent way to introduce such a
function.

The total EVDF of the plasma-beam system is the sum
of the plasma EVDF and the beam EVDF

f(vx, x) = fp(vx, x) + fb(vx, x) , (4)
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FIG. 1: Schematic diagrams. (a) Profile of the electrostatic
potential Φ(x) in a bounded one-dimensional plasma. (b)
EVDF of the plasma in the collisionless regime λ ≥ L. (c)
Two simplified cases of the VDFEE fb0: a half-Maxwellian
EVDF “shifted” along the energy axis by wbm > 0 (curve
1), and a half-Maxwellian EVDF with wbm = 0 (curve 2).
(d) The total EVDF of the plasma-beam system with VD-
FEE given by curve 1 in (c). (e) The total EVDF of the
plasma-beam system with VDFEE given by curve 2 in (c)
for low density SEE beam, fp(v∗, L/2) > fb(v∗, L/2). (f)
The total EVDF of the plasma-beam system with VDFEE
given by curve 2 in (c) for high density beam, fp(v∗, L/2) <
fb(v∗, L/2). All EVDFs are plotted as functions of energy wx

for vx > 0; EVDFs in (b), (d), (e), and (f) are plotted at
x = L/2, and in (c) at x = 0.

where the beam EVDF is expressed via the VDFEE as a
function of the electron total energy

fb(vx, x) = fb0

[

√

v2
x − 2eΦ(x)/m

]

.

In the case of a non-monotonic VDFEE, the maximum
of the beam EVDF is shifted relative to the plasma po-
tential eΦ (which is also the plasma EVDF cutoff energy)
by wbm = mv2

bm/2, creating the gap between the plasma
and the beam on the total EVDF [see Fig. 1(d)]. Because
of the gap, the total EVDF in this case does not satisfy
the criterion of stability (1) for any density of emitted
electrons.

In the case of a monotonically decaying VDFEE, the
maximum of the beam EVDF coincides with the cutoff

vx = v∗ of the plasma EVDF. Then, if

fb(v∗, x) ≤ fp(v∗, x) , (5)

the total EVDF is a monotonically decaying function of
speed [see Fig. 1(e)]. Otherwise, the total EVDF in-
creases stepwise at v = v∗ [see Fig. 1(f)]. Criterion
(5), which in this case is equivalent to criterion (1), is
satisfied if the density of emitted electrons is sufficiently
low. Thus, for a collisionless plasma bounded by electron-
emitting walls with a monotonically decaying VDFEE,
the two stream instability occurs only if the density of
emitted electrons exceeds some threshold.

Note, criterion (5) as an equality defines a separatrix
Γ(Φp) in the phase plane {Φp,Γ}. Points below this sep-
aratrix correspond to the plasma state with a monotoni-
cally decaying total EVDF [Fig. 1(e)], while points above
the separatrix describe the state where the total EVDF
is non-monotonic [Fig. 1(f)]. For a plasma with fp given
by (2) and two symmetrical counter-propagating beams
with fb0 given by (3), the separatrix equation is

Γ =
1

2π1/2

Tb

Tp

n0vth,p

a + b(Tb/Tp)1/2
, (6)

where

a = exp

(

eΦp

Tp

)

erf

[

(

eΦp

Tp

)1/2
]

,

b = exp

(

eΦp

Tb

)

erfc

[

(

eΦp

Tb

)1/2
]

,

n0 = np + 2nb is the quasineutral plasma density at x =
L/2, and nb = nb0b is the electron beam density at x =
L/2.

III. PIC SIMULATIONS WITH IMMOBILE

IONS

In order to test the conclusions of the simplified anal-
ysis above, a one-dimensional collisionless plasma slab of
length L with electron emitting boundaries at x = 0 and
x = L is simulated making use of a 1d3v PIC code. The
PIC code is based on the direct implicit algorithm,20,21

the code is described in detail elsewhere.22 Simulations
start with a uniform quasineutral plasma of density n0

with Maxwellian EVDF of temperature Tp and immo-
bile ions. Both boundaries are electrically grounded.
At the initial stage of simulations, the boundaries ab-
sorb electrons. Due to thermal motion, the electrons
from the high-energy tail of the Maxwellian EVDF leave
the plasma, charging it positively relative to the walls.
The electrostatic potential acquires a Π-shaped profile,
with narrow high-gradient near-wall sheath regions and
a plateau Φ(x) = Φp = const stretching across nearly
the entire system. The emission starts after a delay time
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te much larger than the electron flight time between the
walls, te ≫ L/(2eΦp/m)1/2. This procedure suppresses
transitional processes related to initial massive escaping
of high-energy electrons to the walls. The VDFEE is
given by Eq. 3.

The walls in the considered system have equal po-
tentials, Φ(0) = Φ(L) = 0. Every electron emitted
from one (source) wall reaches the opposite (target) wall
if the potential profile Φ(x) is stationary. If the two-
stream instability develops, the emitted electron may lose
some of its energy during the flight through the plasma.
Then, if the total energy of an electron becomes nega-
tive, εx = wx − eΦp < 0, it will be reflected by the po-
tential barrier of the sheath and become trapped within
the plasma volume. The trapping of beam electrons in-
duced by the two-stream instability reduces the electron
beam flux collected at the target wall (referred to below
as the primary penetrated beam flux). The decrease of
the primary penetrated beam flux in comparison with the
emitted beam flux can be a characteristic of the intensity
of the two-stream instability.

It is necessary to mention that in addition to the pri-
mary penetrated beam flux, the total electron flux col-
lected by a target wall may contain a contribution from
the plasma electrons and the former beam electrons,
which were previously trapped by the plasma potential
and performed multiple bounces between the opposite
walls. These so-called weakly trapped electrons can be
heated by the waves and eventually escape to the walls.23

The weakly trapped electrons must be excluded when cal-
culating the primary penetrated beam flux.

We discuss two simulations with immobile ions car-
ried out with different VDFEE. These simulations have
the following common parameters: L = 2.5 cm, n0 =
1011 cm−3, Tp = 12 eV, Tb = 3 eV, and the emission de-
lay time is te = 100 ns. Below, the beam that is emitted
at x = 0 and propagates in the positive x direction is
considered.

A. Non-monotonic VDFEE

In simulation 1, the VDFEE is non-monotonic, with
maximum at wbm = 3 eV. Note, the emitted electron
beam flux [curve 1 in Fig. 2(a)] is about two times larger
than the primary penetrated electron beam flux [curve 2
in Fig. 2(a)] for the duration of electron emission. This
provides evidence for the two-stream instability perma-
nently existing in the system. The phase plane {x, vx} of
the electron beam [Fig. 2(b)] shows the development of
the instability along the system. Many beam electrons
are too slow by the end of their flight through the plasma
to penetrate through the potential barrier near the target
wall at x = L [the arrow in Fig. 2(b) marks the “height”
of this barrier].

The two-stream instability develops and is sustained in
this simulation because the total EVDF near the emitting
wall has a permanent gap between the plasma part [solid
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FIG. 2: For simulation with non-monotonic VDFEE. (a) Elec-
tron flux emitted at wall x = 0 (curve 1) and corresponding
primary penetrated flux detected at wall x = L versus time
(curve 2). (b) Phase plane {x, vx} of electron beam emitted
at wall x = 0 at time 499 ns, the other wall is at x = 25 mm.
(c) EVDFs of plasma (solid curve) and beam emitted at wall
x = 0 (dashed curve) at time 499 ns averaged over the region
0.4 mm < x < 0.8 mm. (d) The total EVDF at time 499 ns
averaged over the region 23.5 mm < x < 24.5 mm. The hor-
izontal arrow in (b) and the vertical dashed lines in (c) and
(d) mark the confinement threshold energy eΦp = 36.2 eV.
All EVDFs are plotted as functions of energy wx for vx > 0.

curve in Fig. 2(c)] and the beam part [dashed curve in
Fig. 2(c)] and thus does not satisfy stability criterion (1).
The gap of width wbm, similar to the one described above
[compare Fig. 2(c) with Fig. 1(d)], forms because (i) the
VDFEE is non-monotonic and (ii) the plasma EVDF
near the emitting wall has a cutoff at wx = eΦp. The
cutoff is formed because the sheath reflects only electrons
with negative total energy (i.e., wx < eΦp for electrons
outside of the narrow sheath regions).
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Note, the plasma EVDF near the emitting wall has a
plateau for 25 eV < wx < 36 eV [see the solid curve in
Fig. 2(c)]. This plateau corresponds to the low-energy
part (wx < eΦp) of the wider plateau (25 eV < wx <
45 eV) that forms on the total EVDF near the target wall
[see Fig. 2(d)] in qualitative agreement with the predic-
tions of the quasilinear theory9 for the saturation stage
of the two-stream instability. The electrons creating the
low-energy part of the plateau are mostly trapped for-
mer beam electrons bouncing between the sheaths. Al-
though the modification of the plasma EVDF by these
electrons does not affect the beam penetration in simula-
tion with non-monotonic VDFEE, it becomes important
for a monotonically decaying VDFEE.

B. Monotonically decaying VDFEE

In the low emission flux case, such that the total EVDF
is a monotonic function of electron energy wx, the two-
stream instability does not occur and the emitted elec-
trons freely penetrate through the plasma in the absence
of collisions. Otherwise, one expects the two-stream in-
stability to develop and the primary penetrated beam
flux to weaken significantly.

In simulation 2, the VDFEE is monotonically decaying,
wbm = 0. Immediately after the start of emission, the
primary penetrated electron beam flux is only about one
half of the emitted electron beam flux [compare curves 1
and 2 in Fig. 3(a) for time 100 ns < t < 130 ns]. Then,
the primary penetrated flux grows with time, gradually
approaching the emitted flux value, and for t > 300 ns
the primary penetrated flux is about 91% of the emitted
flux [see Fig. 3(a)]. The increase of the primary pene-
trated flux shows that in this simulation the two-stream
instability appears at the initial stage of emission, but
then it weakens significantly. Indeed, the electron beam
phase plane {x, vx} obtained at t = 119 ns shows strong
perturbations typical for the instability [Fig. 3(b)], while
the beam phase plane obtained at t = 499 ns is practi-
cally unperturbed [Fig. 3(c)].

The two-stream instability develops moments after the
beginning of emission because criterion (5) is not satisfied
at this time. For the given emission flux [see curve 1 in
Fig. 3(a)], the emission density nb0 is sufficiently large to
ensure fb(v∗, x) > fp(v∗, x), as one can see by comparing
the plasma and beam EVDFs shown as solid and dashed
curves in Fig. 3(d), respectively. Since these EVDFs are
obtained near the emission wall soon after the emission
starts, the plasma EVDF [solid curve in Fig. 3(d)] is al-
most unperturbed by the instability and is close to the
cutoff Maxwellian EVDF. It is important that although
the initial unperturbed plasma EVDF is characterized by
the relatively low fp(v∗, x), with time the shape of the
plasma EVDF changes and the value of fp(v∗, x) grows.

Similar to simulation 1, the two-stream instability cre-
ates a plateau on the total EVDF near the target wall.
Due to the bouncing of trapped electrons between the
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FIG. 3: For simulation with monotonically decaying VDFEE.
(a) Electron flux emitted at wall x = 0 (curve 1) and corre-
sponding primary penetrated flux detected at wall x = L
(curve 2) versus time. Phase planes {x, vx} of electron beam
emitted at wall x = 0 at time 119 ns (b) and 499 ns (c), the
other wall is at x = 25 mm. EVDFs of plasma (solid curve)
and beam emitted at wall x = 0 (dashed curve) averaged over
the region 0.5 mm < x < 1.5 mm at time 119 ns (d) and
499 ns (e). All EVDFs are plotted as functions of energy wx

for vx > 0. The horizontal arrows in (b) and (c) and the verti-
cal dashed line in (d) and (e) mark the confinement threshold
energy, which is eΦp = 31 eV for (b) and (d) and eΦp = 27 eV
for (c) and (e).

walls, the plateau appears on the plasma EVDF near the
emitting wall. Note, the plasma EVDF in Fig. 3(d) has
a narrow plateau for 26 eV < wx < 31 eV. The slowed
down beam electrons trapped by the plasma potential are
slowly accumulated inside the plasma. This process grad-
ually increases the plateau level of the plasma EVDF,
and, respectively, the value of fp(v∗, x). The plateau
growth is closely related with the presence of the instabil-
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FIG. 4: Schematic diagram of the Hall thruster model. The
two dielectric walls represent the coaxial ceramic channel of
a Hall thruster.

ity and it continues until criterion (5) becomes satisfied
near the emitting wall [compare the plateau level of the
plasma EVDF shown by solid curve in Fig. 3(e) with the
maximum of the beam EVDF shown by dashed curve in
Fig. 3(e)]. Then the total EVDF becomes a monotonic
function of speed and the two-stream instability vanishes,
allowing the practically unperturbed beam propagation
shown in Fig. 3(c).

It is necessary to mention that this mechanism can-
not suppress the two-stream instability if there is a gap
between the plasma and the beam EVDF due to the non-
monotonic VDFEE, as in simulation 1.

IV. TWO-STREAM INSTABILITY IN HALL

THRUSTER PIC SIMULATIONS

It is instructive to verify the simulation results for
the case with immobile ions described in Section III
with those of a real physical system. Below we present
some results of PIC simulations of a plane geometry Hall
thruster model.22,24 The PIC code used to do this is the
same as above, but with more features enabled.

The plasma in Hall thruster simulations is bounded
by secondary electron emitting dielectric walls and im-
mersed in an external constant electric field Ez and mag-
netic field Bx (see Fig. 4). Both electrons and ions are
treated as particles. The electron-to-ion mass ratio is
that of xenon. Simulations resolve the x coordinate and
the three velocity components vx, vy, and vz for each
particle. The electron motion is determined by the Ex,
Ez, and Bx fields, while the ion motion is due to the
Ex field only. The electrons perform elastic, excitation
and ionization collisions with neutral atoms with realis-
tic frequencies for xenon.25 Additional “turbulent” col-
lisions that scatter electrons in the plane parallel to the
walls are introduced to account for the anomalous elec-
tron mobility in Hall thrusters.26 The SEE model27 ap-
proximates the properties of boron nitride ceramics.28

The one-dimensional emission EVDF is a monotonically
decaying function of speed, which can be approximated
by a half-Maxwellian EVDF (3) with vbm = 0 and some
effective temperature Tb.

In Hall thrusters, the important parameter is the co-
efficient of secondary electron beam penetration defined
as

α =
Γ1b

Γ2

,

where Γ2 is the secondary electron flux emitted from one
wall and Γ1b is the flux of these electrons registered at the
opposite wall (i.e., the primary penetrated beam flux).
The penetration coefficient characterizes the thermaliza-
tion of secondary electrons within the plasma volume and
the effect of plasma cooling due to the SEE.23,29 Due to
the chosen geometry, the magnetic field Bx and the ex-
ternal electric field Ez cannot affect electron propagation
normal to the walls. The frequency of collisions is low,
so that λ ≫ L. The main mechanism that decreases
the energy of emitted (secondary) electrons and the pri-
mary penetrated flux of secondary electron beam is the
particle-wave interaction during the two-stream instabil-
ity.

In Table I, the initial parameters and results of two
Hall thruster simulations are presented. Here na is the
neutral atom density, νt is the frequency of “turbulent”
collisions, Tp is the effective plasma electron tempera-
ture (in the direction normal to the walls). The values
of Φp, Tp, Tb, n0, Γ2, and Γ1b are obtained at the well
established stationary plasma state.

TABLE I: Initial parameters and results of Hall thruster PIC
simulations.

Simulation number 3 4
L , [cm] 2.5 3.5
Ez , [V/cm] 52 200
Bx , [G] 91 100
na , [1012cm−3] 2 1
νt , [106 s−1] 7.81 0.7
Φp , [V] 23.5 21.2
Tp , [eV] 10 12.3
Tb , [eV] 5.6 3
n0, [1011 cm−3] 2.31 2.25
Γ2(x = 0), [1020 m−2s−1] 7 95.5
Γ1b(x = L), [1020 m−2s−1] 6.2 84.7
α 0.89 0.89

A. Case with low emission current

Simulation 3 with low Ez corresponds to the low-
voltage regime of a Hall thruster, when SEE is weak
and the secondary electron flux emitted from the walls
is low.6 In the phase plane {Φp,Γ}, the point describing
the plasma in simulation 3 is below the corresponding
separatrix [compare the cross and the curve in Fig. 5(a)].
Therefore, criterion (5) is satisfied and the total EVDF
should be similar to the one shown in Fig. 1(e) provided
the plasma and beam EVDFs can be approximated by
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FIG. 5: Phase plane “plasma potential – emitted electron
flux”. (a) The cross indicates the plasma state in simulation
3, the separatrix curve is calculated by Eq. (6) with Tp/Tb =
10/5.6. (b) The cross indicates the plasma state in simulation
4, the separatrix curve is calculated by Eq. (6) with Tp/Tb =
12.3/3.

(2) and (3). Indeed, the plasma EVDF [solid curve in
Fig. 6(b)] is strongly depleted for wx > eΦp, the beam
EVDF [dotted curve in Fig. 6(b)] has a maximum and
a cutoff at wx = eΦp. The total EVDF [solid curve in
Fig. 6(a)] is a decaying function of speed. As a result, the
instability does not develop and the beam penetration co-
efficient is close to unity (see Table I). Note, the total
EVDF well agrees with its approximation by Eqs. (2–4)
[dashed curve in Fig. 6(a)].

B. Case with high emission current

Simulation 4 has high Ez corresponding to the
medium-voltage regime of Hall thrusters.6 Here the SEE
is much stronger and the emitted current is much more
intense than in the case of low Ez. In the phase plane
{Φp,Γ} shown in Fig. 5(b), the point (cross) describ-
ing the plasma state in simulation 4 is above the sep-
aratrix (solid curve). The corresponding approximate
EVDF [dashed curve in Fig. 7(a)] given by Eqs. (2–4)
has a beam spike. However, the actual total EVDF
[solid curve in Fig. 7(a)] is a decreasing function of speed,
and the beam penetration coefficient is close to unity
(see Table I), which shows that the instability is absent.
The mechanism that suppresses the two-stream instabil-
ity here is the same as in simulation 2. Electrons with
energy barely below the confinement threshold slowly ac-
cumulate to form a small plateau on the plasma EVDF
[see the solid curve in Fig. 7(b) for 15 eV < wx < 21 eV],
increasing the value of fp(v∗, x). Then, the electron beam
[dotted curve in Fig. 7(b)] and the plasma electrons form
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FIG. 6: EVDF over velocity normal to the walls in simulation
3 obtained in the center region 10 mm < x < 15 mm and
plotted as a function of energy wx = mv2

x/2 for vx > 0. (a)
The solid curve is the total EVDF, the dashed curve is the
approximation of the total EVDF by Eqs. (2–4). (b) The
actual plasma EVDF (solid curve) and the actual SEE beam
EVDF (dotted curve). The vertical dashed lines mark the
confinement threshold energy eΦp.

a monotonically decaying total EVDF stable with respect
to the two-stream instability.

V. CONCLUSIONS

In low-pressure discharges, electron emission from the
walls can result in the formation of intense electron fluxes
in the plasma. Examples of such emission are secondary
electron emission, thermionic emission from heated metal
surfaces (e.g., emissive probes), and field emission (e.g.,
emission from dust particles). The emitted electrons are
accelerated into the plasma by the voltage drop across
the sheath. The presence of such electron streams in
the plasma can lead to the two-stream instability if the
total electron velocity distribution function (EVDF) of
the electron stream and plasma has a region with posi-
tive derivative with respect to the electron speed. If the
plasma electrons are described by a Maxwellian EVDF,
the combination of plasma and emitted electrons re-
sults in a non-monotonic total EVDF leading to the
two-stream instability. However, in low-pressure dis-
charges, the EVDF is not Maxwellian, it is depleted at
energies above the plasma potential relative to the wall.
Therefore, the development of the two-stream instabil-
ity in low-pressure discharges is different compared to
Maxwellian plasmas. We performed systematic studies
of the two-stream instability and found that the pattern
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FIG. 7: EVDF over velocity normal to the walls in simulation
4 obtained in the center region 10 mm < x < 15 mm and
plotted as a function of energy wx = mv2

x/2 for vx > 0. (a)
The solid curve is the total EVDF, the dashed curve is the
approximation of the total EVDF by Eqs. (2–4). (b) The
actual plasma EVDF (solid curve) and the actual SEE beam
EVDF (dotted curve). The vertical dashed lines mark the
confinement threshold energy eΦp. Some numerical noise in
the SEE beam EVDF for energies of 30 − 35 eV is related to
the finite number of macroparticles.

of its development depends crucially on the shape of the
velocity distribution function of electron emission (VD-
FEE).

One type of VDFEE considered in the present paper
is a monotonically decaying function of electron energy,
which starts from a positive value at zero emitted en-
ergy. The total EVDF consisting of the plasma EVDF
and the VDFEE accelerated by the plasma potential is
a monotonically decaying function of speed if the emis-
sion current is below some threshold. In this case, the
two-stream instability does not occur. If the emission
current is above this threshold so that the total EVDF is
a non-monotonic function of speed, then the two-stream
instability does occur but quickly vanishes. This hap-
pens because the two-stream instability forms a plateau
on the velocity distribution function of electrons confined
by the plasma potential (i.e., the plasma EVDF), then
the total EVDF becomes a monotonic function of speed
and the beam propagates through the plasma without
perturbations.

Alternatively, the VDFEE may be equal to zero at
zero energy of emitted electrons and grow as a func-
tion of energy for a few electronvolts. Such a non-
monotonic VDFEE is a feature of secondary electron
emission from metals.30 At low pressures, the total EVDF
of the plasma-beam system near the emitting wall has

a gap of a few electronvolts at the energy correspond-
ing to the wall potential. This gap is responsible for
the development of the two-stream instability, which is
confirmed by simulations with a non-monotonic VDFEE.
In these simulations, the two-stream instability reaches
the nonlinear saturation stage and exists for as long as
the emission lasts. As a result, the plasma electrons
accelerate while the emitted electrons decelerate, which
leads to the partial trapping of emitted electrons in the
plasma. In our simulations with immobile ions and con-
stant emission current, about 50% of emitted electrons
become trapped in the plasma during their first flight
between the walls. However, the two-stream turbulence
accelerates these electrons back to an energy above the
plasma potential so that they leave the plasma after sev-
eral bounces between the walls. In fact, during a steady
state, the sum of wall fluxes of emitted electrons that
reach the wall after multiple bounces and those that cross
the plasma directly is close to the emitted electron flux.23

For some applications (e.g., Hall thrusters) it is therefore
expedient to assume that the two-stream instability does
not affect the beam propagation and that the effective
penetration coefficient is close to unity.23

The plasmas considered in the present paper are con-
fined by a symmetrical potential well between floating or
electrically connected walls, like in Hall thrusters or hol-
low cathode discharges. However, even in these plasma
devices, the potential profile between the walls can be
non-symmetric due to geometrical effects or applied volt-
age. Nevertheless, our conclusions on the effects of the
VDFEE and the non-Maxwellian plasma EVDF on the
two-stream instability can be generalized for plasmas
with non-symmetric potential profiles.

It is necessary to point out that the effects considered
here are essentially one-dimensional and may be modified
in cases where the three-dimensional effects, such as the
finite beam width, geometrical expansion in cylindrical or
spherical systems, or non-uniform magnetic field effects,
become important (see e.g., Ref. 31). Electron motion
along the magnetic field line is affected not only by the
electrostatic force, but also by drifts in non-uniform mag-
netic field.32 In addition to the electrostatic instability,
where the wavenumber vector is parallel to the external
magnetic field, two or three-dimensional systems permit
electromagnetic instabilities, where the wavenumber vec-
tor is non-parallel to the magnetic field.12 To investigate
these effects three-dimensional kinetic simulation is nec-
essary.
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