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A generalized energy principle for finite-pressure, toroidal magnetohydrodynamic

(MHD) equilibria in general three-dimensional configurations is proposed. The full

set of ideal-MHD constraints is applied only on a discrete set of toroidal magnetic

surfaces (invariant tori), which act as barriers against leakage of magnetic flux, he-

licity and pressure through chaotic field-line transport. It is argued that a necessary

condition for such invariant tori to exist is that they have fixed, irrational rotational

transforms. In the toroidal domains bounded by these surfaces, full Taylor relaxation

is assumed, thus leading to Beltrami fields: ∇×B = λB, where λ is constant within

each domain. Two distinct eigenvalue problems for λ arise in this formulation, de-

pending on whether fluxes and helicity are fixed, or boundary rotational transforms.

These are studied in cylindrical geometry and in a three-dimensional toroidal region

of annular cross section. In the latter case, an application of a residue criterion is

used to determine the threshold for connected chaos.
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I. INTRODUCTION

The first step in theoretical analysis of a toroidally confined plasma typically is to solve

the equilibrium problem ∇p = j×B, where p is the total plasma pressure (which we assume

scalar), B is the magnetic field, and j = ∇ × B is the plasma current density (using units

such that the permeability of free space is unity), all quantities being implicitly functions of

position r. By dotting with B we find B ·∇p = 0. That is, p is constant on a magnetic field

line, transport in this direction being instantaneous on the MHD equilibrium timescale (i.e.

much longer than wave propagation times).

In this paper we work within the general framework of magnetohydrodynamics (MHD),

but we go beyond ideal MHD by supposing that the pointwise constraints of ideal MHD,

such as the frozen-in flux condition, are relaxed over finite regions of the plasma; however, as

in ideal MHD, we assume that the ion gyroradius is negligible compared with relevant scale

lengths, so that the pressure is not necessarily a smooth function of position. The equilibria

we seek must be consistent with ideal MHD, but also with the generalized relaxation model

to be described below.

Toroidal plasmas are intimately connected to the magnetic fields they are embedded in,

and toroidal magnetic field lines can be viewed, in a three-dimensional (3-D) generalized

coordinate space, as orbits obeying 1 1
2
-dimensional Hamiltonian dynamics [1, 2],[3, p. 170].

The 3-D configuration space is regarded as a two-dimensional (2-D) phase space extended

by a “time” coordinate, which we take to be a suitably chosen generalized toroidal angle, ζ.

Thus a theory of 3-D equilibrium must be a marriage of MHD theory and the Hamiltonian

dynamics of magnetic field lines.

For systems with a continuous symmetry, e.g. axisymmetric systems, the time-like sym-

metry coordinate ζ may be chosen so the field-line Hamiltonian is autonomous [4]. Then the

Hamiltonian dynamics is integrable and describable in action-angle coordinates [5, Chap.

10]. The 2-D phase space is foliated by invariant circles, corresponding in 3-space to foli-

ation by nested toroidal magnetic flux surfaces. Each flux surface is characterized by its

rotational transform, ι-, being the field-line average with respect to ζ of the rate of poloidal

rotation, ∂θ/∂ζ, θ being a generalized poloidal angle. (In tokamaks the inverse, q ≡ 1/ ι-

is normally used.) When ι- is rational, the field lines on the magnetic flux surface all close

on themselves and the surface (really a family of periodic orbits) is referred to as a rational
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surface. When ι- is irrational, a single field line ergodically covers the flux surface, and the

surface is referred to as an irrational surface.

The condition B · ∇p = 0 implies that p is constant on each magnetic surface and, as

these smoothly foliate the plasma volume in the integrable case, the pressure profile may be

taken to be a smooth function of position. The equilibrium problem is then well posed—one

solves the Grad–Shafranov equation, a nonlinear elliptic partial-differential-equation (PDE)

for the magnetic flux function.

However for systems without a continuous symmetry, such as the necessarily three-

dimensional stellarator [6], the construction of an equilibrium is much more subtle. The

field-line Hamiltonian now depends on ζ, and such nonautonomous, periodically forced,

Hamiltonian systems generically exhibit partially chaotic behavior (see for example the dy-

namical systems texts by Arrowsmith & Place [7] and Lichtenberg & Lieberman [8], or the

review article by Meiss [9]). This is the first problem we need to face.

Breaking of continuous symmetry destroys the rational surfaces through the formation

of magnetic islands, and the chaotic tangles of the hyperbolic periodic orbits in the island

chains appear to fill finite volumes ergodically. Thus, by virtue of B · ∇p = 0, such volumes

must have constant pressure—plasma confinement is lost within these chaotic regions.

However, the Kolmogorov–Arnol’d–Moser (KAM) theorem (see for example Ref.[7, p.

330] or Ref.[8, p. 174]) shows that a positive measure of invariant tori can survive small

symmetry-breaking perturbations, provided the rotational transform ι- is an irrational num-

ber obeying a Diophantine condition | ι- − n/m| ≥ c|m|−5/2 for some constant c and all

integers m and n. Numerical approaches that complement the KAM theorem, such as

Greene’s residue criterion [10], show that a large measure of invariant tori can survive even

strong symmetry breaking, and careful stellarator design seeks to maximize the volume of

such “good flux surfaces” [11] as these separate the chaotic regions and thus act as barriers

to chaotic transport. We shall assume some irrational magnetic surfaces survive and will

call them KAM surfaces, whether or not the system is close to axisymmetry.

Not all surviving KAM surfaces are equal, in the sense that some are more robust to

chaos than others. The KAM surfaces that are most robust are typically in regions furthest

away from islands and have noble rotational transform [10, 12]. (Noble irrational numbers

are those that have an infinite tail of 1’s in their continued-fraction representation [13].)

How close a given irrational surface is to destruction can be quantified by calculation of
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the residues of its rational convergents [10]: the further the surface is from destruction, the

more quickly the residues of the convergents approach zero [14]. The KAM surfaces that lie

adjacent to connected chaotic regions are called boundary surfaces [12, 15]. These boundary

surfaces are critical, in the sense that they will be destroyed by a small increase in the chaos.

A popular approach to solving the equilibrium problem in nonaxisymmetric systems,

embodied in the VMEC code [16], is to ignore the above comments about the genericity of

field-line chaos and to proceed on the assumption that, even in nonaxisymmetric systems,

the plasma volume is foliated with toroidal magnetic surfaces. Although this approach

works remarkably well as a practical approximation, there are inherent problems at rational

surfaces and careful convergence studies prove not to be possible [17]. This is the second

problem with nonaxisymmetric equilibria: pressure gradients are inconsistent with rational

surfaces due to a singularity in the resonant component of the parallel current [18, 19].

However, pressure gradients are allowed at the irrational, and therefore nonresonant,

KAM surfaces. This, and the fact that rationals are dense on the real line, requires us to

give up the usual smoothness assumption for the pressure profile. Such a conclusion was

reached by Grad [20], who concluded that only equilibria with “pathological nonsmooth

pressure gradients” can be found.

At every level of detail, the field is a mix of ergodic field lines and periodic orbits, in-

terspersed with KAM surfaces and cantori. One cannot hope to resolve the exact intricate

structure of the field with finite numerical resolution, and must choose a model that approxi-

mates reality. For the ultimate success of any algorithm, the model must be mathematically

self-consistent, with both the framework of MHD and with the chaotic structure of the

magnetic field.

Two numerical approaches to calculating nonaxisymmetric equilibria that go beyond the

VMEC assumption of foliation by magnetic surfaces have previously been developed—PIES

[21] and HINT [22]. These codes are both based on iterative procedures that may not lead

to a unique answer if convergence studies, including mesh refinement, are done. At any

rate, these codes are very numerically intensive and careful convergence studies are difficult.

Thus we believe there is a need for a new approach in which there is a reasonably sound

mathematical basis for believing that a unique solution exists, with a payoff in computational

efficiency.

Our approach, described in Sec. II, is based on a generalization of the Kruskal–Kulsrud



5

[23] variational principle for MHD equilibria to incorporate partial Taylor relaxation [24, 25].

Regarding the pressure profile, all we require is that the volume integral of p exist, so p can

be a discontinuous function of position. Thus, the variational approach provides a weak form

of the ideal MHD equilibrium equation, allowing sheet currents to flow at a set of suitably

chosen toroidal interfaces, where the pressure is discontinuous. By basing the method on a

variational principle it is hoped that convergence to a unique equilibrium may be provable,

though we do not attempt this here.

We have in mind a multiple-interface, sharp-boundary model. The pressure profile is

piecewise-constant, with pressure jumps at a discrete set of selected KAM surfaces, which

we call KAM barriers (These ideal MHD barriers are not necessarily related to the transport

barriers observed in experiments, and are related to, but distinct from, the cantorus transport

barriers discussed by Misguich et al. [26, 27].) This model is motivated by the realization

that constant-pressure regions will be produced by chaotic field lines associated with unstable

periodic orbits, and by setting ∇p = 0 across the island regions the model eliminates the

problematic singularity in the pressure-driven parallel currents. The model does not require

a family of continuously nested flux surfaces: the only flux surfaces required are those whose

existence is provided by the KAM theorem and its extensions.

In the context of constructing a general-purpose global equilibrium code, the pressure

jumps would be chosen to approximate some desired profile. The closer to integrable the

magnetic field is, the more KAM surfaces exist, the more pressure jumps may be used,

and the smaller they may be made—little physical generality is really lost by giving up

differentiability of the pressure profile.

A similar discontinuous pressure model is considered by Bruno and Laurence [28], who

showed analytically that this model allows solutions to the ideal equilibrium equations for

sufficiently simple, but nonaxisymmetric, toroidal geometry. An earlier treatment of ideal

MHD equilibria, in 3-D geometry, where a sharp boundary separates a uniform pressure

plasma from a vacuum, is described by Berk et al. [29]. Kaiser and Salat [30] showed

that sharp-boundary equilibria, with sufficiently irrational rotational transform, exist for

configurations with small deviations from axisymmetry, and Kaiser [31] showed that for

every rational-rotational-transform boundary, an arbitrarily weak deformation exists such

that the equilibrium is destroyed. Relaxed plasma-vacuum systems are also considered by

Spies and co-workers [32–34].
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The analytical results demonstrating existence of sharp-boundary equilibria are a strong

motivation to pursue this model further. The analytical results are however restricted to

small deviations from axisymmetry. The need to treat strongly nonaxisymmetric systems

dictates that we must be prepared to treat the problem numerically, and this paper is a

preliminary scoping study of a new approach to doing this.

We have not yet implemented the above ideas numerically to obtain a global equilibrium

code, but this article discusses a number of relevant questions for such a model. First, a

generalized, relaxed energy principle that incorporates elements of ideal MHD, partial Taylor

relaxation and chaotic Hamiltonian theory is sketched, Sec. II. By setting the first variation

of the energy to zero, this model implies that the magnetic field in a subregion i, where the

pressure is flat, obeys ∇×B = λiB, i.e. it is a Beltrami field.

However, the variational principle as it stands does not constrain the rotational transforms

at the boundaries of the subdomains to be fixed. As the preceeding discussion suggests this

would be highly desirable, the nature of the boundary value problem posed by solving the

Beltrami equation within a toroidal domain with rotational transform/s specified on the

boundary/ies is examined in cylindrical geometry, Sec. III, where the field is given by Bessel

functions.

To extend this to 3-D, a numerical method for constructing Beltrami fields in generally-

shaped toroidal regions of annular cross section is presented in Sec. IV. As an illustration, the

method is applied, Sec. V, to a nonaxisymmetric system with a perturbed outer boundary.

Such fields are, in general, partially chaotic; so an analysis of the chaotic field based on the

residue criterion [10] is also presented.

This analysis allows the degree of chaos to be quantified, and suggests which KAM sur-

faces exist for a given level of perturbation. Such KAM surfaces could be used as additional

interfaces to further subdivide the region, and some comments on this are given in Sec. VI.

The multiple interface problem with a stepped pressure profile in arbitrary three-dimensional

geometry is, however, left for future work.
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II. PARTIAL TAYLOR RELAXATION

Our proposed generalization of the Kruskal–Kulsrud [23] variational principle is similar

to that of Bhattacharjee & Dewar [35], who extremize the total free energy

F = W −
∑

i

λiKi −
∑

i

µiMi −
∑

i

TiSi, (1)

where the total energy W is defined by

W ≡
∫

V

dτ

[

B2

2
+

p

γ − 1

]

, (2)

with V being the plasma volume (assuming, for simplicity, the plasma to be confined by a

perfectly conducting shell) and dτ a volume element. Also, γ is the ratio of specific heats,

the plasma equation of state being assumed to be that of an ideal gas. The other quantities

in Eq. (1) are defined below.

The minimization is subject to only a subset of the full set of ideal MHD continuum

constraints assumed by Kruskal and Kulsrud. In particular, the constraint set includes a

finite number of moments Ki ≡ K[wi], of A · B (A being a single-valued vector potential

for B) with respect to weight functions wi(r) such that B ·∇wi = 0 everywhere, so that any

moment

K[wi] ≡
1

2

∫

V

dτ wiA ·B (3)

is invariant under ideal-MHD Eulerian variations δA = ξ×B+∇δχ, where ξ is an arbitrary

infinitesimal fluid displacement (such variations satisfying the frozen-in flux condition). The

arbitrary function δχ is to allow infinitesimal gauge transformations. We assume such gauge

functions χ to be single-valued functions of r, so that they do not affect loop integrals of

A (which are physical fluxes). Then the contribution of χ to K[wi] vanishes by Gauss’

theorem and the assumption that B is tangential to the boundary of V . That is, K[wi] is

gauge-invariant as it stands and does not need the loop-integral corrections sometimes used

[33].

For wi = 1, K is the magnetic helicity. Thus the Bhattacharjee–Dewar variational

principle is a generalization of the variational principles of Woltjer [36] and Taylor [24]

for force-free equilibria.

Likewise, Mi ≡ M [ui] and Si ≡ S[vi] are moments of the mass density ρ and entropy

density ln(p/ργ)ρ/(γ− 1) with respect to weight functions ui and vi chosen such that M [ui]
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and S[vi] are conserved under ideal variations δρ = −∇ · (ρξ), δp = −γp∇ · ξ − ξ · ∇p.
(As the mass is irrelevant for the equilibrium problem, it is possible to combine these two

constraints into one [23] but it is clearer physically to keep them as separate constraints.)

In solving the resulting Euler–Lagrange equations, the Lagrange multipliers λi, µi and Ti

are, in principle, to be determined from the constraints: the moments chosen to be conserved

should have fixed values. The method thus gives more control over profiles than allowed

by Taylor’s original relaxation idea (which was really suitable only for modeling strongly

turbulent reversed-field pinches), but gives up the detailed control allowed by the original

Kruskal–Kulsrud approach. By making the constraints a subset of the ideal-MHD invariants,

the space of allowed variations is larger than that allowed by ideal MHD but includes it as a

subspace. Thus the extremizing solutions of F are automatically ideal-MHD equilibria [23],

and minimization of F provides a sufficient condition forW to be minimal under ideal-MHD

variations. (This approach is analogous to the Energy-Casimir method [37, p. 511], often

called Arnold’s method.)

Bhattacharjee and Dewar [35] assume the magnetic field to be integrable, so that V is

foliated by magnetic surfaces. They then take the weight functions to be smooth (polyno-

mial) functions of the poloidal and toroidal flux functions, Ψp and Ψt. As discussed in Sec. I,

the assumption that magnetic surfaces smoothly foliate the volume is not appropriate for

nonaxisymmetric systems, so the smooth weight functions of Ref. 35 are not appropriate

to the 3-D equilibrium problem. Instead we propose to extremize a free energy F given

by Eq. (1), but to use unit hat-function weights with support confined to regions bounded

by invariant tori of the magnetic field, which we shall call flux barriers Si. This replaces

the constant-global-helicity constraint of the original Taylor relaxation theory with multiple

constraints of constant helicity in the local subregions, Vi, bounded by the surfaces Si−1 and

Si.

Our picture of the flux barriers is that they are arbitrarily thin shells of ideal plasma,

which the magnetic field cannot penetrate. This picture also implies the constraint that the

magnetic field be tangential to the boundaries of the Vi,

B · n = 0 on Si, (4)

where the unit vector n is normal to Si. This is a Lagrangian constraint in that, if the

flux barrier is deformed, it applies on the modified surface. In the context of infinitesimal
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variations we distinguish Eulerian (fixed spatial position) variations δ from Lagrangian vari-

ations ∆ ≡ δ+ξ ·∇, where ξ(r) is an infinitesimal displacement field that carries Si from its

original to its varied shape. Then the most general Eulerian variations in A that preserve

∆(n ·B) = 0 as a Lagrangian invariant are

δA = ξ ×B + δan +∇δχ on Si, (5)

where δa is an arbitrary function that allows nonideal variations and δχ is an arbitrary

gauge term. This constraint leaves loop integrals of A as Lagrangian invariants—magnetic

fluxes are conserved—and also conserves the helicities Ki within the subregions between the

flux barriers.

The Euler–Lagrange equations resulting from extremizing the functional F , with weight

functions ui = vi = wi = 1 in each subdomain Vi give [see Eqs. (96) and (97) of Ref. [35]]

∇pi = 0 and the Beltrami equations

∇×B = λiB. (6)

Varying the boundaries Si [ξ 6= 0 in Eq. (5)] gives another Euler–Lagrange equation, the

continuity of the total pressure across each flux barrier:

[[p+
1

2
B2]] = 0, (7)

where [[·]] denotes a jump. Pressure jumps (and rotational transform jumps) are allowed at

the interfaces, [[p]] = −[[ 1
2
B2]], and thus a nontrivial pressure profile can be constructed by

connecting together multiple subregions with different pressure.

If we imagine the flux barriers broadened into finite-width shells of ideal plasma, retaining

the full set of ideal-MHD constraints, we might argue that rotational transforms ι- on the

boundaries of these barriers (or throughout the shells, if they have zero magnetic shear)

are “frozen in”, and cannot change even if the shape of Si is varied. While this is true

within the ideal plasma shell, the excitation of skin currents at the boundaries to exclude

flux penetration from the relaxation regions means that the rotational transforms at the

boundaries of the relaxation regions, just outside the ideal shells, are not necessarily fixed

during arbitrary variations of the Si.

Thus our variational principle does not constrain rotational transforms at the boundaries

(as is further discussed in the next section). However, as was argued in Sec. I on the basis of
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KAM theory, which is lent support by the result of Kaiser [31, Theorem 1], we believe it to

be necessary for these ι- to be irrational numbers in order for the invariant tori Si to exist.

That is, we need to identify the flux barriers with KAM barriers. In the present variational

formulation at least, the selection of suitable irrational ι- must be imposed after the variation

of F , as a further optimization step. As part of this process we need to consider the solution

of Eq. (6) in each region Vi under the dual homogeneous boundary conditions Eq. (4), and

prescribed boundary rotational transforms. As discussed further in Sec. III, this provides

an eigenvalue equation for λi that is distinct from the eigenvalue problem implied by flux

and helicity conservation.

III. EIGENVALUE PROBLEMS IN A CYLINDER

In this section we examine the problem of solving Eq. (6) in an annular toroidal subdomain

Vi under the condition of tangential B at the boundary, plus other appropriate boundary or

other conditions. We use a geometry sufficiently simple that the magnetic field is integrable

and existence and uniqueness can be examined by explicit construction rather than rigorous

formal proof—a circular cylinder, with periodic boundary conditions to make it topologically

toroidal. Note, taking the curl of Eq. (6), that we are dealing with a wave equation, ∇2B+

λ2B = 0.

Consider the conditions implied by the variational principle proposed in the previous

section, imagining that F is first extremized with respect to variations interior to the sub-

domain Vi [giving Eq. (6)], then with respect to deformations of the inner and outer flux

barriers Si−1 and Si, respectively. Equation (5) implies that the appropriate conditions

under which to solve Eq. (6) are fixed toroidal and poloidal fluxes, Ψt and Ψp, plus fixed

helicity Ki. Because Eq. (6) is linear, the overall magnitude of the magnetic field is ar-

bitrary. Thus, without loss of generality, we can reduce the number of conditions to two

by normalizing with respect to Ψt, so the pair of homogeneous conditions that need to be

specified is (Ψp/Ψt, Ki/Ψ
t 2). This can only be satisfied for special values of λi—it is an

eigenvalue problem.

As argued previously, we also wish to specify the rotational transforms, ι-i−1 and ι-i,

on the inner and outer bounding surfaces of Vi. These boundary condition do not specify

the strength of the magnetic field, forming a pair of homogeneous boundary conditions,
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thus also posing an eigenvalue problem. Are these two eigenvalue problems equivalent or

different? After deriving expressions for the rotational transform, and the fluxes and helicity,

we conclude that these problems are distinct.

There are at least three other such eigenvalue problems in the Beltrami equation litera-

ture, defined by different homogeneous boundary conditions—Kress [38, Theorem 2] poses

the problem of orthogonality, in terms of an inner product defined as a boundary integral,

to all Neumann fields allowed in the complementary domain; Kress [39, Eqs. (3.35–6)] poses

an eigenvalue problem for a scalar field with vanishing Dirichlet boundary condition; and

Kress [40, Theorem 2.5] shows there exists a countable set of eigenvalues, accumulating only

at infinity, in the case of requiring zero toroidal flux. The two problems posed above are

presumably distinct from any of these.

The equilibrium of single-interface plasma-vacuum cylindrical systems has been solved by

Lortz and Spies [41] (for zero pressure) and Kaiser and Uecker [42] (for nonzero pressure).

Recently, Hole et al. [43] extended the analysis to multiple-interface configurations, and

studied the stability of such configurations [44].

In cylindrical coordinates (r, θ, z), solutions for the magnetic field B =

{Br(r), Bθ(r), Bz(r)} between two interfaces in the plasma can be written











Br

Bθ

Bζ











=











0

sgn(λi)[kiJ1(|λi|r) + diY1(|λi|r)]
kiJ0(|λi|r) + diY0(|λi|r)











, (8)

where ki, di ∈ R, and J0, J1 and Y0, Y1 are Bessel functions of the first kind of order 0, 1,

and second kind of order 0, 1, respectively. The coefficients ki and di, which are constant in

the subvolume Vi are solved using the interface condition [[p + 1
2
B2]] = 0 and an auxiliary

constraint such as the rotational transform at either interface. The cylinder is assumed to

be axially periodic with length L.

In the cylinder, the rotational transform at radius r is

ι- =
L

2πr

Bθ(r)

Bz(r)
. (9)

Consider a plasma region with Lagrange multiplier λ2 bounded by two cylindrical interfaces,

r1 and r2, with r1 < r2. Also, let us assume that the rotational transform immediately

outside the inner interface r1 is prescribed, with value ι-1. Substituting for the field Eq. (8)
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gives the expression

ι-1 = sgn(λ2)
L

2πr1

J1(|λ2|r1) + (d2/k2)Y1(|λ2|r1)
J0(|λ2|r1) + (d2/k2)Y0(|λ2|r1)

(10)

which can be solved for the ratio d2/k2, giving

d2

k2

=
J0(|λ2|r1)− sgn(λ2)L

2πr1 ι-1
J1(|λ2|r1)

−Y0(|λ2|r1) + sgn(λ2)L
2πr1 ι-1

Y1(|λ2|r1)
(11)

Substituting Eq. (11) into Eq. (9) evaluated at interface r2 gives an expression for ι-2,

the rotational transform immediately inside the outer interface, as a function of L, r1, r2, ι-1

and λ2, which can in principle be inverted to give λ2 as a function of ι-2 (but not a unique

function as we shall now see).

Figure 1 shows the eigenvalues, λ2, as a function of ι-2, for r1 = 0.5, r2 = 1 and ι-1 = 0.5.

For any given ι-2, solutions are multivalued—the solution is not unique unless the solution

branch is specified. The solution branch with the lowest λ2, the “fundamental”, corresponds

to a continuous ι- profile between r1 and r2. Branches corresponding to higher “overtones”

are separated by poles in the rotational transform profile, where the axial field passes through

zero. The n-th overtone passes n times through ι- = ∞, in each instance generating a field

reversal. Figure 2 shows the ι- profile as a function of radius between the two interfaces for

the fundamental and first two λ2 > 0 overtones. The fundamental varies continuously, while

the first and second overtones have field reversals at r = 0.60, and r = 0.55 and r = 0.80,

respectively. Overtones with λ2 < 0 have opposite shear to those with λ2 > 0.

The eigenvalue spacing, ∆λ2, for common values of ι-2 in the cylindrical case is also

of interest, as it provides a useful guide for solution searches in more complicated geome-

try. Figure 3 is a contour plot of the eigenvalue spacing between the lowest two λ2 > 0

eigenvalues as a function ι-1 and interface separation ∆r = r2 − r1. As the interfaces

separation decreases, the eigenvalue spacing increases, and the Lagrange multiplier must

increase to supply the shear required to match any difference in rotational transform: this

increases the fundamental and the spacing between overtones. For large interface separa-

tion, the eigenvalue spacing increases weakly with decreasing ι-1. For ι-1 ¿ 1, Eq. (11) gives

d2/k2 ≈ −J1(|λ2|r1)/Y1(|λ2|r1), and so ι-2 À 1. Consequently, both the fundamental and

∆λ2 must increase to match the change in ι-. Finally, we also note that the spacing is not

identical between higher overtones, due to the nonuniform spacing of zeros of the Bessel

functions.
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The poloidal and toroidal flux in the region between r1 and r2 is given by

Ψt
2 =

∫ r2

r1

Bz(r)rdθdr

=
2π

|λ2|
[k2rJ1(r|λ2|) + d2rY1(r|λ2|)]r2r1 , (12)

Ψp
2 =

∫ r2

r1

Bθ(r)Ldr

=
−L
λ2

[k2J0(r|λ2|) + d2Y0(r|λ2|)]r2r1 . (13)

while the helicity is

K2 = Lπ

∫ r2

r1

λ−1
2 B2dr (14)

=
Lπ

2λ2

{

k2
2r

2
[

J0(r|λ2|)2 + 2J1(r|λ2|)2

− J0(r|λ2|)J2(r|λ2|)] + d2
2r

2
[

Y0(r|λ2|)2

+ 2Y1(r|λ2|)2 − Y0(r|λ2|)Y2(r|λ2|)
]

+
2d2k2r

2

√
π



G2,1
2,4



r|λ2|,
1

2

∣

∣

∣

∣

∣

∣

1
2
,−1

2

0, 0,−1,−1
2





+ G2,2
3,5



r|λ2|,
1

2

∣

∣

∣

∣

∣

∣

0, 1
2
,−1

2

0, 1,−1,−1,− 1
2















r2

r1

(15)

where G is a generalized form of the Meijer G function [45].

Comparing Eqs. (12–15) with Eqs. (8–11) we see there can be no simple connection

between the two eigenvalue problems (prescribed normalized helicity and flux, or prescribed

rotational transforms). Note that for calculating the helicity we needed an expression for the

vector potential A. The most general form of the vector potential is A = B/λ2 +∇χ [the

curl of this giving the Beltrami equation, Eq. (6)], the gauge function χ in general including

secular terms cpθ+ctζ, with the constants cp, ct chosen to adjust the boundary loop integrals

of A to their prescribed values. However, as we calculated K2 simply to illustrate that the

helicity bears no simple relation to the rotational transform, in Eq. (15) χ was taken to be

zero.

In the cylindrical case, the simple geometry allows an analytic solution for the Beltrami

field in each region. In arbitrary 3-D geometry the solution must be found numerically, and

a method for doing this is described in the following section.
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IV. GENERAL 3-D SOLUTION

We now consider a single annular region bounded by two interfaces Si and Si+1, whose

geometry is assumed given. The pressure is constant in this region, with pressure jumps δpi,

δpi+1 at the interfaces. We seek the field that satisfies ∇×B = λB for a given constant λ.

We obtain the solution by casting this equation, really a system of three PDEs, as a system

of ordinary-differential-equations (ODEs) for the covariant components of the magnetic field.

We now set up a curvilinear coordinate system in the domain such that r = x(s, θ, ζ),

r being the position vector r = rr̂ + zẑ, where r̂ and ẑ are unit vectors in the r and z

directions of an underlying cylindrical coordinate system. We take the inner and outer

interfaces, Si : r = xi(θ, ζ), and Si+1 : r = xi+1(θ, ζ), to coincide with level surfaces of the

coordinate s, where xj = Rj(θ, ζ)r̂ + Zj(θ, ζ)ẑ, with j = i or i + 1. We take θ and ζ to

be, respectively, poloidal and toroidal angle coordinates that may be chosen arbitrarily on

the interfaces Si and Si+1. Then, provided the domain is not too contorted, the coordinate

system may be extended into the domain by linear interpolation: x = sxi+1 + (1− s)xi.

Other than on the bounding interfaces, no assumption is made that the level surfaces of s

correspond to magnetic surfaces.

By writing the magnetic field in covariant form,

B = Bs∇s+Bθ∇θ +Bζ∇ζ, (16)

the components of the equation ∇× B = λB are manipulated to isolate the partial radial

derivatives of Bθ and Bζ :

∂sBθ = ∂θBs + λ
√
g
(

gsζBs + gθζBθ + gζζBζ

)

, (17)

∂sBζ = ∂ζBs − λ
√
g
(

gsθBs + gθθBθ + gζθBζ

)

, (18)

where the “raising” metric elements are gij = ∇ui · ∇uj for (u1, u2, u3) = (s, θ, ζ), and the

notation ∂uf represents the partial derivative of f with respect to the coordinate u.

We obtain equations determining Bs ≡ B · ∇s, the component of the field normal to the

coordinate surface, and Bs in terms of Bθ, Bζ :

Bs =
∂θBζ − ∂ζBθ

λ
√
g

, (19)

and

Bs =
Bs − gsθBθ − gsζBζ

gss
. (20)



15

The toroidal geometry suggests a Fourier representation. For stellarator-symmetric con-

figurations [46], each interface is written

R =
∑

m,n

Rm,n cos(mθ − nζ), (21)

Z =
∑

m,n

Zm,n sin(mθ − nζ). (22)

We adopt a VMEC-like convention, where for the m = 0 Fourier harmonics, n varies from

0 to N , and for m = 1 to M , n varies from −N to N . This gives a total of Nmn =

(N + 1) + M(2N + 1) harmonics. For odd functions, the (m,n) = (0, 0) harmonic is

irrelevant, giving Nnm − 1 relevant harmonics.

The covariant components of the field are written

Bθ =
∑

m,n

Bθ,m,n(s) cos(mθ − nζ), (23)

Bζ =
∑

m,n

Bζ,m,n(s) cos(mθ − nζ), (24)

with Bs being determined by Eq. (20). To be consistent with the Fourier representation, in

solving for Bs from Eq. (20) the right side is Fourier decomposed (on a poloidal, toroidal

grid with resolution Nj, Nk), with the terms outside the range determined by N,M being

truncated. We are thus left with Nmn − 1 harmonics for the odd function Bs.

Within the Fourier representation the angular derivatives are trivial. The partial radial

derivatives of the Bθ, Bζ become total radial derivatives for the Fourier harmonics

d

ds
Bθ,m,n = −mBs,m,n (25)

+ λ
[√

g
(

gsζBs + gθζBθ + gζζBζ

)]

m,n
,

d

ds
Bζ,m,n = nBs,m,n (26)

− λ
[√

g
(

gsθBs + gθθBθ + gζθBζ

)]

m,n
.

These equations can be integrated radially from the inner interface to the outer interface:

all that is required is to provide an initial condition.

We must obtain initial values for the Bθ,m,n, Bζ,m,n such that (i) the field is tangential

to the inner interface, and (ii) the field as obtained by integrating the system of ODEs is

tangential to the outer interface. The first condition can be satisfied by construction, and

the second condition can be determined iteratively.
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The boundary condition at each interface is that B · n = 0, where n is normal to the

interface. By virtue of the coordinate construction, n = ∇s/|∇s| at each interface, so this

condition is Bs = 0. Thus, by Eq. (19),

∂θBζ − ∂ζBθ = 0. (27)

This can be satisfied by construction :

Bθ = ∂θf,Bζ = ∂ζf (28)

for any function f(θ, ζ). The most general form for f , consistent with toroidal periodicity

and stellarator symmetry, is

f = Iθ −Gζ +
∑

m,n

fmn sin(mθ − nζ). (29)

The quantities I,G are directly determined by the toroidal and poloidal currents and, to-

gether with the description of the boundary, complete the specification of the mathematical

problem. The rotational transform on the inner surface is determined by the ratio I/G, and

the magnitude of the shear is related to λ. The function f , with Nmn−1 degrees of freedom,

determines the tangential field at the inner interface. It is this freedom in the tangential

field that allows one to construct a field that is also tangential to the outer interface, as

described below.

Beginning with an initial guess for f , the system of ODEs can be integrated radially to

obtain the solution within the domain. At the inner interface, Bs = 0 by construction; but,

generally Bs will not remain zero as the integration proceeds, and the condition that the

field be tangential to the outer interface will not be satisfied.

Within the Fourier representation, there are Nmn − 1 constraints: each of the Fourier

harmonics of Bs, as given by Eq. (27), must be zero at s = 1. There exist as many

constraints as degrees of freedom, and the solution may be determined iteratively. We have

implemented a multidimensional Newton method and this approach allows Beltrami fields

to be constructed in an annulus of arbitrary geometry.

The system of ODEs is integrated from s = 0 with an initial guess for fm,n, typically

fm,n = 0, using a Runge-Kutta algorithm (the NAG routine D02BJF). The derivatives of the

“error-vector”, Bs
m,n, at s = 1, with respect to the independent variables fm,n, are calculated

(in parallel) using finite-differences. In all the cases considered in the following section, the
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solution was obtained in 2–3 Newton iterations, to an error with magnitude ∼ 10−13. The

cpu requirements are modest; for example, for M = 7, N = 2, the ODE integration took

∼ 0.2 cpu seconds using a dual-core, AMD Opteron processor, model 175, with 1MB cache,

running at 2.2GHz with a 64 bit kernel.

The covariant Fourier harmonics of the field are saved at equally spaced radial intervals

(with an arbitrarily fine radial mesh, Ni), and are then interpolated radially using cubic

splines to give a continuous numerical representation of the field. An exactly divergence-

free, to machine error, representation of the Beltrami field is achieved by calculating the

field as the curl of the vector potential: B = ∇× (B/λ).

A measure of the error in the solution is provided by the root mean square error quantities,

|δṡ| =
√

∑

i,j,k(ṡgij − ṡ∇×)2/NiNjNk, and |δθ̇| =
√

∑

i,j,k(θ̇gij − θ̇∇×)2/NiNjNk, which are

given as functions of the Fourier resolution, Fig. 4, for the configuration to be described in

the following section. Here, ṡ = Bs/Bζ and θ̇ = Bθ/Bζ , and ṡgij, θ̇gij are calculated from

“raising”, and ṡ∇×, θ̇∇× are calculated from the curl of the covariant components of the field.

The sum i, j, k is over the radial, poloidal and toroidal grid points. It is ṡ and θ̇ which are

required for the field line following analysis presented in the following section.

V. FIELD-LINE CHAOS

For illustration, we consider a large-aspect-ratio, near-axisymmetric configuration. The

outer interface is a perturbation to a circular-cross-section, axisymmetric boundary of ma-

jor radius R0, minor radius r1: R = R0 + r1 cos(θ) and Z = r1 sin(θ), where R0 = 10.0.

Nontrivial solutions are obtained by imposing helical perturbations in the minor radius

r1 = r1,0 − δ cos(2θ − ζ)/2− δ cos(3θ − ζ)/3, where r1,0 = 0.10 with the single perturba-

tion parameter, δ, to be varied. The inner interface is chosen to be axisymmetric:

R = R0 + r0,0 cos(θ) and Z = r0,0 sin(θ), where r0,0 = 0.05.

The boundary rotational transforms are controlled by the two degrees of freedom: the

pitch-parameter, λ, and the ratio I/G. As far as the construction of a Beltrami field between

two arbitrary interfaces is concerned, any selection of λ and I/Gmay be considered; however,

we are primarily concerned with the case where the rotational-transforms on the inner, ι-1,

and outer, ι-2, interfaces are constrained. There is sufficient freedom to achieve this, and a

wide range of transform profiles are possible, as illustrated in Fig. 5 for the integrable case.
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Taking the domain to be a subregion of the multi-interface system described in Secs. I

and II, we take the rotational transforms at each interface to be the noble irrationals ι-1 =

0.177998 . . . and ι-2 = 0.5607086 . . . A simple numerical search determines the required pitch-

parameter, λ = 0.1376537, and current ratio, I/G = 0.44502× 10−5 (for the integrable case

δ = 0.0). The rotational-transform profile thus obtained is shown as the dotted line in Fig. 5.

Note that the ι- = 1
3
, 1

2
rational surfaces are present within this annular domain.

In the context of the (Hamiltonian) magnetic field, δ represents a chaos-inducing pertur-

bation. For δ = 0.0, the system is toroidally symmetric and admits an integrable solution for

the magnetic field; that is, the magnetic field lines lie on a continuous set of nested toroidal

surfaces. For nonzero δ, the helical perturbations result in primary magnetic islands at the

ι- = 1
3
, 1

2
rational surfaces. Additional, secondary islands will form at the ι- = 2

5
, 3

8
, 3

7
, . . .

rational surfaces, but if δ is small then these islands are small and some irrational surfaces

between the ι- = 1
3
, 1

2
rational surfaces will be present. Such a case is shown in Fig. 6, for

δ = 0.0015. If δ is sufficiently large, the unstable manifolds associated with the ι- = 1
3
, 1

2

islands will overlap and produce a region of connected chaotic field, as is shown in Fig. 7,

for δ = 0.0030.

Note that, at fixed λ and I/G, the rotational-transform at the outer interface, ι-2, varies

slightly with δ (less than 5× 10−4 for δ = 0.0030, which corresponds to about a 0.2–0.3 cm

deformation in the 10 cm minor radius).

Poincaré plots provided a simple graphical illustration of the degree of field-line chaos;

however, more sophisticated approaches that are both more numerically efficient and give

detailed information regarding the existence (or otherwise) of KAM surfaces are available,

namely Greene’s residue criterion [10, 14] and its extensions [12, 15]. These approaches have

been applied to magnetic field-line chaos in an earlier publication [47], and here only brief,

intuitive remarks regarding the application of the residue criterion will be given.

The residue, R, is defined on the periodic orbits R = R(p, q), where ι- = p/q. In essence,

it provides an indication of the size of the associated island chain (more precisely, it is

related to the stability of an island chain, as determined by the eigenvalues of the tangent

map [10]). A given irrational, KAM surface may be approximated arbitrarily closely by

high order periodic orbits, and if the high-order island chains overlap then any enclosed

KAM surfaces will be destroyed. Thus, by calculating the residue for a sequence of periodic

orbits that successively better approximate a given irrational (such a sequence is provided by
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truncations of the continued-fraction representation [13]), the existence of the KAM surface

may be determined. If the residues approach zero, the KAM surface exists; if the residues

become large, the KAM surface has been destroyed; and if the residues approach 0.25, the

KAM surface is on the edge of destruction.

Here, a variant [12, 15] of the residue criterion is employed that may be more suitable from

an algorithmic perspective. In the context of inserting additional interfaces, a necessary step

toward the construction of a multiple-interface global-equilibrium code with an arbitrarily-

fine stepped-pressure profile, the first question that arises is: do any KAM surfaces exist in a

given region ? Consider a pair of rationals, (p1, q1) and (p2, q2), that are neighboring, |p1q2−
p2q1| = 1. If the residues of these rational orbits are large compared to 0.25, say R(p1, q1) +

R(p2, q2) > 0.50, then it is likely that all KAM surfaces in the region ι- ∈ [p1/q1, p2/q2] are

destroyed. If, however, R(p1, q1) +R(p2, q2) < 0.50, then there is a chance that at least one

KAM surface exists. This method is reminiscent of the island overlap criterion [48]; however,

the “width” of an island with a chaotic separatrix is not so easily determined, whereas the

residue is an easily calculated numerical quantity. The initial interval [p1/q1, p2/q2] may be

subdivided using the mediant, (p1 + p2, q1 + q2) (and in such a manner the Farey tree of

rationals is constructed [9]), and by testing the successive subintervals, an accurate method

for identifying which KAM surfaces exist is enabled.

This method is applied to the case at hand, Fig. 8. For a given perturbation δ, and

beginning with (p1, q1) = (1, 3) and (p2, q2) = (1, 2), the residues for periodic orbits up to the

14-th level of the Farey tree are constructed (with the exception that if R(pi, qi)+R(pj, qj) >

1.00 then this region of field is deemed strongly chaotic and no attempt to further subdivide

the interval is pursued). Periodic orbits, and the residues, are located by field-line tracing

[47] (for locating periodic orbits in strongly chaotic regions, such as those that approximate

the “broken-KAM” surfaces, i.e. the cantori, it is however preferable to use Lagrangian

variational integration methods [49]).

For the case of stellarator-symmetric geometries [46], such as that considered here, all the

required periodic orbits lie in symmetry lines [50]. A symmetry line in this case is given by

the line {(θ, ζ) : θ = 0, ζ = 0}. This enables various numerical simplifications; for example,

the in principle two dimensional search for periodic orbits becomes a much simpler one

dimensional search along the symmetry line (see for example Refs. 47, 49 and the references

therein).
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If R(pi, qi)+R(pj, qj) > 0.5, where (pi, qi), (pj, qj) refer to adjacent rationals of the 14-th

Farey level, a gray horizontal line is plotted between ι- = pi/qi and ι- = pj/qj, at vertical

level δ. Thus the gray area in Fig. 8, which is essentially the critical function [51], indicates

regions of connected chaos.

Also shown in Fig. 8 are some low order rationals and the extent of the adjacent Farey

intervals: for example, the interval adjacent to the 1/2 rational is [15/31, 1/2], and this

determines the resolution, in terms of the rotational-transform, of the figure. The width of

each Farey interval is determined by its “path” down the Farey tree, and alternating paths

both produce smaller intervals and bound noble irrationals. The minimum Farey interval,

at the 14-th level, is [987/2584, 610/1597].

Note that the white areas in Fig. 8 do not necessarily indicate regions foliated with

magnetic flux surfaces, merely that at least one KAM surface is likely to exist. The most

robust KAM surface in a given region is typically that with the most irrational transform

[12, 15], though this ultimately depends on the perturbation spectrum imposed. Having thus

identified the most likely candidates, the KAM surfaces can then be numerically determined

[47].

VI. DISCUSSION

How to extend this construction of the Beltrami field in a single volume to a multiple-

interface global equilibrium code remains the topic of ongoing investigation. We have already

shown that reasonably realistic tokamak equilibria can be constructed within the cylindrical

approximation [43]. Further extension requires a number of issues to be resolved, and some

speculation on these issues is given in the following.

One issue that needs to be considered is whether the rotational transform should be al-

lowed to jump across a KAM barrier surface: whether it is one double-sided KAM surface

or two single-sided KAM surfaces back-to-back. Rotational discontinuities are allowed in

ideal MHD and are observed in the solar wind [52]. They imply the existence of current

sheets, but so do any surfaces with pressure jumps—this is not an argument against rota-

tional transform jumps. A preliminary investigation of this has already been performed in

cylindrical geometry [44], where a single interface Si, with a jump in ι-, is modelled by two

interfaces, with no ι- jump, in the limit that the two interfaces approach each other.
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The single interface model described above can be extended to a multiple interface model

by including additional interfaces, chosen, before establishing a pressure difference, to coin-

cide with the existing KAM surfaces. Consider inserting an additional flux barrier between

the two originally prescribed interfaces Si−1 and Si. For example, let this additional inter-

face, denoted by Si−1/2 be inserted between the ι- = 1
3
, 1

2
island chains, which for the sake

of argument are assumed not to overlap, so that at least one surviving KAM surface exists

in this region. Let Vi−1/2 be the volume enclosed by, and including, the interfaces Si−1 and

Si−1/2.

With no further work, such a KAM surface may already be considered as an additional

flux barrier—a trivial interface with no pressure jump. However, when a pressure jump

δpi−1/2, is introduced at the Si−1/2 interface, by increasing the entropy in the new subregion

Vi−1/2, the flux barrier will have to move to resolve the unbalanced forces across the interface

[or, equivalently, to minimize the free energy F , Eq. (1)]. This will in general alter the

rotational transforms at the boundaries of the subdomains Vi−1/2 and Vi, but we have shown

in this paper that they can be returned to their initial values by adjusting (at the expense of

conservation of helicity and poloidal flux) the eigenvalues λi−1/2 and λi, thus restoring the

flux barrier to a KAM barrier. The consequent changes in B will mean that force balance

is again violated, and thus the process must be repeated iteratively until both force balance

and the irrational transform requirements are simultaneously satisfied (to within specified

tolerances).

Presumably, for a good plasma confinement configuration and a sufficiently small pressure

jump δpi+1/2, the iteration will converge. However, at some threshold value, one surmises

that the KAM barrier will lose its smoothness in a similar fractal manner to the known

behavior of critical KAM surfaces [12], and beyond this point it will no longer be possible

to find a solution. In future work, we will consider these issues in more detail, in particular

examining further whether the number theory requirements on the rotational transforms

can be built into a variational principle.

The present paper has used a simple, straightforward approach to solving the Beltrami

equation in an arbitrary toroidal region, which will provide a benchmark with which to

compare more sophisticated approaches. Two other approaches spring naturally to mind:

Galerkin methods exploiting the variational nature of the problem (cf. VMEC [16]) and

mesh-free boundary integral/Green’s function methods [38, 39, 53–55] exploiting the linear-
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ity of the Beltrami equation. Which numerical treatment is ultimately most suitable for

solving this local, single-interface problem, must however be understood in context of the

overall efficiency and robustness of a numerical code that addresses the global, multiple-

interface problem.

A further issue to be examined is resolving the sheet current singularities at our zero-

width flux barriers by thickening them into thin shells of plasma described by ideal MHD,

in which ∇p is finite (except in the limit as the width goes to zero). A KAM barrier can be

modeled by assuming there is no magnetic shear within the shell, so the irrational rotational

transform remains constant across it. Then we can adjust the λ’s in the neighboring regions

until the boundary rotational transforms in the adjacent Beltrami fields match that in the

ideal region. With no resonant regions in the shell, a self-consistent equilibrium based on

continuously nested magnetic surfaces should be straightforward to construct, and could be

tested for interchange (Mercier) and ballooning stability in a similar spirit to the approach

of Hegna and Nakajima [56] (although the vanishing of the magnetic shear in the ballooning

equation means there are no secular terms, the quasi-periodicity of the coefficients in the

ballooning equation can lead to Anderson localization [57]).

A finite-width barrier with a rotational transform jump across it is more problemati-

cal as it necessarily has magnetic shear and thus will contain rational surfaces where the

problems referred to in Sec. I will occur. An approach to resolving the issue of whether

rotational-transform jumps are allowed in 3-D is to construct such a finite-width barrier as a

multi-interface Beltrami equilibrium in microcosm. A beginning at this approach has been

attempted in Ref. 44.
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FIG. 1: Eigenvalues λ2 for cylindrical plasma as a function of ι-2, with r1 = 0.5, r2 = 1 and ι-1 = 0.5
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FIG. 3: Contour plot of spacing between lowest eigenvalues ∆λ2 as a function of interface separation

∆r = r2 − r1 and ι-1. The contour labels display the value of ∆λ.
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FIG. 4: Fourier convergence error: (a) |δṡ|, and (b) |δθ̇|, for the configuration with δ = 0.0015.
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FIG. 5: Rotational transform pofiles for (λ, I/G)=(−0.01, 2.0×10−5), (0.20, 2.0×10−5), (0.05, 0.1×

10−5), (0.20, 0.1×10−5) (solid), and (0.1376537, 0.44502×10−5) (dotted) in the integrable case δ =

0. The rotational transform on the inner surface is ι- = 0.80, 0.04 for I/G = 2.0× 10−5, 0.1× 10−5,

and the greater the value of λ, the greater the shear.
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FIG. 6: Poincaré plot of Beltrami field : perturbation of outer boundary δ = 0.0015, with Fourier

resolution M = 7, N = 2. In the upper half plot is shown the coordinates.
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FIG. 7: Poincaré plot of Beltrami field : perturbation of outer boundary δ = 0.0030, with Fourier

resolution M = 7, N = 2. In the upper half plot is shown the coordinates.
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FIG. 8: Critical function for the family of Beltrami fields parametrized by the 3-D perturbation

parameter δ, with Fourier resolution M = 7, N = 2, showing some low order rationals and their

adjacent Farey intervals, to level 14. The gray areas indicate regions of connected chaos.
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