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The physics of high-frequency gyrokinetics in magnetized plasmas is explored, based on the
gyrocenter-gauge kinetic theory in the limit of gyroradius much smaller than the scale length of
the magnetic field. Contrary to low-frequency gyrokinetics, which views each particle as a rigid
charged ring, we found that, from the arbitrary frequency point of view, a particle can be described
by a rubber-band-like structure. A computational algorithm based on this concept has been devel-
oped and its application to the current-driven electrostatic ion cyclotron instability is presented.

PACS numbers: 52.30.Gz, 52.50.Qt, 52.35.Hr

The importance of gyrokinetic theory [1-4] for plas-
mas in a strong magnetic field has been widely appreci-
ated. By removing the high frequency dynamics associ-
ated with fast gyromotion from the original kinetic sys-
tem, the gyrokinetic formalism yields a system of equa-
tions for description of low frequency (w < Q, where Q
is the cyclotron frequency) and long wavelength phenom-
ena in plasmas. However, the physics associated with the
omitted high frequency part may be important. Partic-
ularly, in fusion plasmas, electromagnetic waves in the
radio frequency (rf) range are used for plasma heating
in resonant layers. Some of the approaches utilized for
studying the interaction between rf waves and plasmas
include Fokker-Plank Solvers [5] and Monte Carlo simu-
lation [6]. In this paper we present an alternative com-
putational algorithm, which allows one to study the high
frequency part of the dynamics within the gyrokinetic
framework. One of the immediate advantages of an algo-
rithm based on the gyrokinetic formulation is that it may
be suitable for implementation into existing sophisticated
gyrokinetic codes [7] developed to study low frequency
turbulence phenomena in general geometry. Contrary to
low frequency gyrokinetics, which views each particle as
a rigid charged ring, we will show that, if arbitrary fre-
quency dynamics is being studied, a gyrokinetic particle
needs to be described by a special rubber-band-like struc-
ture.

The high frequency gyrokinetic model we discuss in
this paper is based on the gyrocenter-gauge kinetic the-
ory, developed by Qin et al. [8, 9] in the limit of particle
gyroradius much smaller than the scale length of the am-
bient magnetic field, p/Lp <« 1. The gyrokinetic formal-
ism performs the transformation from the particle coordi-
nate system (x,v) to a new gyrocenter coordinate system
Z = (X,U,f1,€). Here, X and U are the location and
parallel velocity of the particle gyrocenter, i is the mag-
netic moment and £ is the gyrophase angle. f(Z,t) is the
distribution function in the new coordinates, where the
parallel (gyrocenter) and the perpendicular (gyrophase)
dynamics are decoupled.

The parallel dynamics is given by the evolution of
the gyrophase-averaged part of the distribution function

F(Z,t) = (f(Z,t)) according to
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Here, the notation for a gyrophase-averaged quantity is
introduced by (a) = (27)~! [ adf.

For a simple electrostatic system with no magnetic field
inhomogeneities, the perpendicular gyrophase dependent
part of the dynamics (for e®/T < 1) is described by the
generating (gauge) function S(Z,t) according to [8]
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where the following notation is introduced @ = a — (a).
An appropriate adiabatic invariant 7 is obtained by

expansion up to the first order term in the smallness pa-
rameter p/Lp < 1, and is given by
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where y = mv? /2B. The quantity % is an approximation
to the true magnetic moment, which is conserved. The
quantities m and q stand for the particle mass and charge.

Self-consistency is obtained by solving the Poisson
equation (s denotes species)

V2o (@, 1) = —47r2qs/fs(m,'v,t)dv, )

where f(x,v,t) is the distribution function in particle
coordinates. The density on the right hand side is

/ fu(@, v, t)dv = / o(Z 06X — z + p)dZ
= /(1 +0T)F,(Z,4)6(X —x + p)dZ. (5)

In the gyrocenter coordinates a near-identity transfor-
mation T = 1+ 0T divides the particle density into two
parts. The first part is due to the gyrocenter distribution
function F(Z,t). The second part is the contribution due



to the gyrophase dependent part of the distribution func-
tion 6 TF(Z,t) = F(Z, t)QTS(Z t) with
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which describes polarization effects due to gyromotion.
The unit vector b is along the ambient magnetic field.
Low frequency gyrokinetics only solves Eq. (1) along
with an appropriate gyrokinetic Poisson equation [3].
The motion of a particle may be imagined as the mo-
tion of its gyrocenter with a constant uniformly charged
ring attached to it (Fig. 1). The purpose of this ring is to
take FLR effects into account by appropriate averaging
technique via a finite number of points on each ring [10].

FIG. 1: Motion of a particle from the low frequency gyroki-
netic point of view. Particle j has gyrocenter located at X
with parallel velocity U;. Each gyrocenter has a constant
charged ring attached to it. An appropriate gyro-averaging is
performed on a finite number of points on each ring.

In the arbitrary frequency regime, Egs. (1) and (2) for
the gyrocenter and gyrophase dynamics need to be solved
together with the Poisson Eq. (4) and the constraint on
the magnetic moment Eq. (3). This system constitutes
our model for slab geometry in the electrostatic limit.
The gyrocenter dynamics described by Eq. (1) is easily
simulated by a gyrocenter pusher [10], which advances
each particle’s gyrocenter location and parallel velocity.
Particularly, for particle j we have
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where (E;) is gyrophase-averaged electric field at the par-
ticle location. If 0 f-simulation [11] is used, then each
particle will also have a gyrocenter weight w; associated
with it. Particularly, if F = Fy + 6 f, then w; = 6 f/F|;
and

0y = (1—wj)(;< )b
+ o (E)) )lnFo (9)

The gyrophase dependent part of the dynamics de-
scribed by the equation for the generating function
Eq. (2) may be simulated by a gyrophase pusher, which
solves for functions gt(Z,t) and g¢(Z,t), where

gt = Qv5, 9e = @55- (10)

The dynamical equations for these quantities are
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FIG. 2: Motion of a particle from the arbitrary frequency
gyrokinetic point of view. Particle j has its gyrocenter located
at X; with parallel velocity U;. Each gyrocenter has a rubber
band structure attached to it, which is changing with time in
a plane perpendicular to the magnetic field. An appropriate
gyrophase-averaging is performed on a finite number of points
(p = 4 in this figure) with different £, on each rubber band.
These points have different sizes to represent the amount of
gyrophase weight attached to them.

In the arbitrary frequency case, the motion of a particle
from the gyrokinetic point of view is more complicated
than in the low frequency regime. As time goes on, each
particle j’s gyrocenter is moving according to Eqs. (7)—
(9). Also each gyrocenter has a rubber band kind of entity
attached to it, whose form (the dependence of gyroradius
versus gyrophase) is determined by the rotation with the

cyclotron frequency & = €, together with conservation of
the magnetic moment Eq. (3), which takes the following
form

ﬁj (Z) Tgc ULJQ(é, ) + 9¢ (7]', t)a (11)
2 ~
9e(Zj,t) = —Qq—mEj CARE (12)

This rubber band structure is quickly changing with time
in a plane perpendicular to the magnetic field and is dif-
ferent for each particle. Each of these rubber bands has
a gyrophase weight function gr(Z;,t), which is evolving



according to

2
— q = 0 q ~ =~ o
Z' —- —\ = - — . e
gr(Z;,t) (ch ’ L]6ﬁj+m ’ b6 j
9 5 xp. 2

In real simulations, only a finite number of points on
each rubber band are followed (Fig. 2). For a particular
particle j, we use index [ to enumerate simulation points
(with the same X ; and U}, but different £,’s) on its rub-
ber band. Then the dynamics of point [ are determined
by 7i;(§;) = const and quantity gr(Z;(¢;),1)-

The simulation is done self-consistently by calculating
the Poisson equation

V(2,0 = ~4r Y 0, Y 2;” 3 (14)
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where on the right hand side the first term is the per-
turbed gyrocenter density, while the second term is due
to the gyrophase part of the dynamics. The last sum
represents the summation over p points on each rubber
band to approximate an appropriate gyrophase integra-
tion. The accuracy of this approximation is determined
by the resolution of the gyrophase subspace by the total
number of points on all rubber bands [12]. In conven-
tional low frequency gyrokinetics, the evolution of the
rubber bands together with the gyrophase weight func-
tion is not present explicitly, but instead is contained in
the polarization density term on the left hand side of the
gyrokinetic Poisson equation [3].

Our ultimate interest is to study the interactions of
rf waves with magnetized plasmas in realistic situations.
Our model can easily be generalized to describe electro-
magnetic systems and arbitrary geometry configurations
[8]. In the limit of small gyroradius p/Lp < 1, this
approach is equivalent to integration of the Lorentz force
equations along particle orbits. But as opposed to the lat-
ter approach, the present algorithm is suitable for imple-
mentation into existing low frequency gyrokinetic codes.
Also, separation of motions gives one more flexibility for
algorithm manipulation and optimization, which will be
discussed in future publications [12].

For the simple electrostatic case we study in this paper,
the only new physics introduced by the high frequency
gyrophase dependent part of the dynamics is cyclotron
waves. In this paper we apply the algorithm described
above only to ions, with electrons being treated drift-
kinetically. We use the example of the ion cyclotron
instability [13] to illustrate mechanisms introduced by
high frequency gyrophase dynamics into the gyrokinetic
formalism. In this case the electrons have a shifted
Maxwellian distribution with parallel drift vg. 7# 0. Some

of the cyclotron harmonics are subject to inverse electron
Landau damping. We performed two-dimensional simu-
lation of the cyclotron instability with the HFGK code for
wpi/Q; = 10.0, k) = 0.1k1, v4e = vie and equal electron
and ion temperatures. The system has a 16 x 16 grid with
one ion gyroradius being the size of two grid cells. Fig. 3
shows the time dependence of the k; p; = 0.8 mode from
the HFGK code with 4 - 10% gyrocenters (and p = 1).

)
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FIG. 3: Dependence of In &4, vs. tQ; for the k) p; = 0.8 mode
from the HFGK code with 4 - 10° gyrocenters. Each particle’s
rubber band is approximated by one point, p = 1.
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FIG. 4: Ion perpendicular distribution function (on a loga-
rithmic scale) at tQ; = 330. The dotted line is the initial
Maxwellian distribution function. The solid line is from the
HFGK code, while the dashed line is from a Lorentz-force code.

The code gives a linear growth rate for the cyclotron
instability which is consistent with analytical predictions
from an appropriate dispersion relation [13]. The first
harmonic of the k) p; = 0.8 mode is the most unstable
one in the linear regime. While it saturates at t{2; = 80,
the second harmonic continues to grow until ¢£2; ~ 140
and thus prevails in the nonlinear regime. The saturation
of the cyclotron instability is due to quasilinear flatten-
ing of the electron parallel velocity distribution, which
quenches the free energy for the instability.

Fig. 4 shows the ion perpendicular distribution func-
tions (on a logarithmic scale) at the end of the simula-
tions corresponding to the HFGK code (solid line) and a



Lorentz-force code (dashed line) with 4 - 10° particles.
The initial Maxwellian distribution function is given by
the dotted line. Both codes show the development of a
non-Maxwellian tail, which indicates that the energy is
deposited into ion perpendicular motion. This is a non-
linear heating mechanism due to a random walk process
in velocity space a gyrating particle goes through in the
presence of many randomly phased waves in the system.
In our algorithm the dynamics of perpendicular heating
is mostly described by evolution of the rubber band struc-
tures [12]. On average, the ions are heated by the electric
field. In these simple simulations, we do not have den-
sity and magnetic field inhomogeneities, which produce
uniform in space ion perpendicular heating. In realistic
simulations, the heating would occur mostly in cyclotron
resonance layers.
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FIG. 5: Time dependence of changes in ion perpendicular
kinetic energy £1;, electron parallel kinetic energy & and
total energy Eiotai- These quantities are normalized to the
ion temperature. Solid lines are from the HFGK code, while
dashed lines are from the Lorentz-force code.

Fig. 5 shows the time dependences of changes in ion
perpendicular kinetic energy £ ;, electron parallel kinetic
energy & |, and total energy &;o¢01- The total energy in-
cludes electron parallel kinetic energy, both ion parallel
and perpendicular kinetic energy, and electrostatic en-
ergy contributions. In the HFGK code, the quantities &),
and £ ; are found from

&) = 5 2 T5(0), (15)
L) = S D 0h,(E ). (16)
i o1

The solid lines are from the HFGK code, while the dashed
lines are from the Lorentz-force code. The total energy
Etotal 18 not precisely conserved in both codes, because
the §f calculation needs a sufficiently large number of
particles and modes to be able to more accurately de-
scribe quasilinear flattening of the electron parallel dis-
tribution function. Since an arbitrary number of points
on each rubber band may be used, the HFGK simulation

is more flexible from the phase space resolution point
of view than the more straightforward Lorentz force ap-
proach. Further results will be reported elsewhere [12].

The nonlinear ion perpendicular heating we observed
is described in the present algorithm via first principles
based physics of the interaction between the cyclotron
waves and the particle’s gyrophase dynamics. Like the
Lorentz-force approach, our algorithm does not make as-
sumptions about the quasilinear nature of the dynamics
and does not need to introduce an rf-induced random
walk model to describe the diffusion in velocity space.

In summary, a high frequency gyrokinetic particle-in-
cell algorithm was developed, which allows one to sim-
ulate arbitrary frequency and wavelength physics for
p/Lp < 1 and e®/T « 1. This approach is based
on the gyrocenter-gauge kinetic theory, which trans-
forms the original Vlasov equation to a system of de-
coupled equations for the gyrocenter and gyrophase dy-
namics. We found that arbitrary frequency gyrokinetics
describes each particle as a complicated, quickly chang-
ing rubber-band-like structure. The algorithm allows a
self-consistent simulation of the interaction between rf
waves and plasma, based on first principle physics. The
approach is suitable for implementation into global gy-
rokinetic codes to study the nonlinear rf heating dynam-
ics resulting in non-Maxwellian tails in distribution func-
tions. This approach also allows us to study the effects
that turbulence, driven by low frequency drift-like mi-
croinstabilities, may have on the heating dynamics.
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