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The impressive performance achieved in 2002 by the Japanese Earth Simulator computer

(26.58 Tflops, 64.9% of peak) [1] has revived the interest in vector processors. Having been the

flagship of high performance computing for more than two decades, vector computers were grad-

ually replaced, at least in the US, by much cheaper multi-processor super-scalar machines, such as

the IBM SP and the SGI Origin series. Although the theoretical peak performance of the super-

scalar processors rivals their vector counterparts, most codes cannot take advantage of this and

can run only at a few percent of peak performance (< 10%). When properly vectorized, the same

codes can, however, reach over 30 or even 40% of peak performance on a vector processor. Not

all codes can achieve such performance. The purpose of this study is to evaluate the work/reward

ratio involved in vectorizing our particle-in-cell code on the latest parallel vector machines, such

as the CRAY/NEC SX-6, which is the building block of the very large Earth Simulator system in

Japan [2]. This evaluation was carried out on the single node (8 cpus) SX-6 located at the Arctic

Region Supercomputing Center (ARSC). Early performance results are compared to the same tests

performed on the IBM SP Power 3 and Power 4 machines, on which our particle-in-cell code,

GTC, is normally run.

The Gyrokinetic Toroidal Code (GTC) [3] was developed to study the dominant mechanism

for energy transport in fusion devices, namely, plasma microturbulence. Being highly nonlinear,

plasma turbulence is well described by particle codes for which all nonlinearities are naturally

included. GTC solves the gyroaveraged Vlasov-Poisson system of equations (gyrokinetic equa-

tions [4]) using the particle-in-cell (PIC) approach. This method makes use of particles to sample

the distribution function of the plasma system under study. The particles interact with each other

only through a self-consistent field described on a grid such that no binary forces need to be cal-

culated. This saves a great deal of computation, since it scales as N instead of N 2, where N is

the number of particles. Also, the equations of motion to be solved for the particles are simple

ordinary differential equations and can be easily solved with a Runge-Kutta algorithm or similar

method. The main tasks of the PIC method at each time step are as follows: The charge of each

particle is distributed among its nearest grid points according to the current position of that particle;

this is called the scatter operation. The Poisson equation is then solved on the grid to obtain the

electrostatic potential at each point. The force acting on each particle is then calculated from the

potential at the nearest grid points; this is the “gather” operation. Next, the particles are “moved”

by using the equations of motion. These steps are repeated until the end of the simulation.



GTC has been highly optimized for cache-based super-scalar machines such as the IBM SP.

The data structure and loop ordering have been arranged for maximum cache reuse, which is the

most important method of achieving higher performance on this type of processor. In GTC, the

main bottleneck is the charge deposition, or scatter operation, mentioned above, and this is also true

for most particle codes. The classic scatter algorithm consists of a loop over the particles, finding

the nearest grid points surrounding each particle position. A fraction of the particle’s charge is

assigned to the grid points proportionally to their distance from the particle’s position. The charge

fractions are accumulated in a grid array. The scatter algorithm in GTC is more complex since one

is dealing with fast gyrating particles for which motion is described by charged rings being tracked

by their guiding center [5]. This results in a larger number of operations, since several points are

picked on the rings and each of them has its own neighboring grid points.

Initial porting of the GTC code to the SX-6 was straightforward. Without any modifications to

the code, the initial single processor test run was only 19% faster than on the Power3 processor,

which has a peak of 1.5 Gflops compared to the 8 Gflops SX-6 processor. The compiler on the

SX-6 includes very useful analysis tools, allowing a quick identification of the code’s bottlenecks.

Also, a source listing clearly indicates the loops that have not been vectorized and the reasons

why. With these tools in hand, the scatter operation in the charge depositing routine was quickly

identified as the most time consuming part of the code, and was not vectorized because of memory

dependencies.

The challenge with the scatter operation in all PIC codes, and on all types of processor, is the

continuous non-sequential writes to memory. The particle array is being accessed sequentially

with a fixed stride, but each of its elements, representing the position of a particle, corresponds

to a random location in the simulation volume. This signifies that the grid array accumulating

the charges gets written to in a random fashion, resulting in a poor cache reuse on a cache-based

super-scalar processor. This problem gets amplified on a vector processor, since many particles

will end up depositing some charge on the same grid points, thus giving rise to a classic memory

dependence that prevents vectorization. Fundamentally, the requirement for vectorization is that all

the individual operations making up a single vector operation must be independent from each other.

The required number of independent individual operations is equal to the number of elements in the

vector registers, or “vector length”. The simplest method to avoid the intrinsic memory conflicts

of the scatter operation, and achieve vectorization, is to have each element in the vector register

write to its own temporary copy of the charge accumulating array. One needs as many copies as the

number of elements in the vector register, which is 256 for the SX-6. When the loop is completed,

the information in the 256 temporary arrays must be merged into the real charge array. The increase

in memory generated by this method is of at least VLEN*NG, where VLEN is the processor’s

vector length and NG is the number of grid points in the domain. This can be a very large number

considering that GTC uses tens of million of grid points for an average simulation. However, the



Processor Max speed GTC test Efficiency Relative speed

(Gflops) (Mflops) (real/max) (user time)

Power3 1.5 173.6 12% 1

Power4 5.2 304.5 6% 1.9

SX6 8.0 715.7 9% 5.2

Table 1: Single processor performance of GTC test run on IBM SP Power3 and Power4, and on SX-6

vector processor.

increased speed gained by the vectorization of the scatter operation compensates for the use of

the extra memory. This algorithm was included in the GTC code, leading to the vectorization of

the two most compute-intensive loops. Further modifications, mainly adding compiler directives,

helped achieve the vectorization of the second most compute intensive routine in the code.

Table 1 summarizes the results of the single processor test that compares the overall perfor-

mance on the Power3, Power4, and SX-6 processors. One notes from the results that the Power3

processor gives the highest efficiency at 12% of the maximum theoretical speed. The fact that the

Power4 runs GTC only at half the efficiency of the Power3 agrees with the extensive benchmarks

done by the CSM group at the Oak Ridge National Laboratory [6], and which showed that the

memory bandwidth of the Power 4 was not sufficient to keep up with its high-clocked CPU. With

the code modifications made so far, the SX-6 runs the test case at 715.7 Mflops with 96.7% of

vector operation ratio and an average vector length of 180.3 (the ideal being 256). Although this is

only 9% of the maximum 8 Gflops that the vector processor can deliver, the SX-6 already runs 5.2

times faster than the Power3 processor and 2.7 times faster then the Power4.

More can be done to further improve the efficiency of the PIC method on the vector processor.

The modifications that have been performed on GTC, so far, are just the beginning. A deeper

analysis of the charge accumulating loop shows that even though the vector operation ratio is

99.89% with a perfect vector length of 256, the loop runs only at 7% of peak speed. However,

the analysis also shows that a large number of scalar operations are performed in that same loop,

most likely arising from the indirect array indexing characteristic of the random writes done in this

algorithm. By simplifying the array indexing and sorting the particles according to their position,

one might expect to achieve a much better performance on the SX-6. The goal is to reduce, as

much as possible, the number of scalar operations, while maximizing the vector operations.

Thus far, the work/reward ratio of porting the GTC code to the SX-6 computer is good. We

showed that a few small changes plus a more involved but straightforward method involving tempo-



rary arrays already increases the performance by a factor of 5. However, more code modifications

need to be made in order to achieve the high efficiency obtained by other codes on the SX-6 com-

puter. One also needs to study the parallel scaling of the code, which is a very important aspect

since GTC usually runs on up to 1,024 processors.

This work was supported by US DOE Contract no. DE-AC020-76-CH03073 and in part by the

DOE SciDAC Plasma Microturbulence Project.
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