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Renormalization Group Reduction of Non Integrable Hamiltonian

Systems

Stephan I. Tzenov

Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

Abstract

Based on the Renormalization Group method, a reduction of non integrable
multi-dimensional hamiltonian systems has been performed. The evolution equa-
tions for the slowly varying part of the angle-averaged phase space density, and
for the amplitudes of the angular modes have been derived. It has been shown
that these equations are precisely the Renormalization Group equations. As an
application of the approach developed, the modulational diffusion in one-and-a-
half degree of freedom dynamical system has been studied in detail.
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1. Introduction

It is well-known that dynamical systems may exhibit irregular motion in certain regions of
phase space!?. These regions differ in size, from being considerably small, to occupying
large parts of phase space. This depends mostly on the strength of the perturbation, as well
as on the intrinsic characteristics of the system. For comparatively small perturbations the
regularity of the motion is expressed in the existence of adiabatic action invariants. In the
course of nonlinear interaction the action invariants vary within a certain range, prescribed
by the integrals of motion (if such exist). For chaotic systems some (or all) of the integrals of
motion are destroyed, causing specific trajectories to become extremely complicated. These
trajectories look random in their behavior, therefore it is natural to explore the statistical
properties of chaotic dynamical systems.

Much experimental and theoretical evidence®* of nonlinear effects characterizing the dy-
namics of particles in accelerators and storage rings is available at present. An individual
particle propagating in an accelerator experiences growth of amplitude of betatron oscil-
lations in a plane transverse to the particle orbit, whenever a perturbing force acts on it.
This force may be of various origin, for instance high order multipole magnetic field errors,
space charge forces, beam-beam interaction force, power supply ripple or other external and
collective forces. Therefore, the Hamiltonian governing the motion of a beam particle is far
from being integrable, and an irregular behavior of the beam is clearly observed, especially
for a large number of revolutions.

A rich arsenal of analytical methods to study effects of nonlinear behavior of beams
in accelerators and storage rings, ranging from classical perturbation theory*® to Lie alge-
braic approach® ® is available at present. The recently developed Renormalization Group
(RG) method has been successfully applied to both continuous dynamical systems? !
maps'®!3, that are of general interest in the physics of accelerators and beams. The advan-
tage of the RG method is embedded in the fact that it is equally powerful to study finite
dimensional, as well as continuous systems. This makes it particularly useful when applied
to analyze the properties of chaotic dynamical systems in both the stability region and the

and

globally stochastic region in phase space.

The idea to treat the evolution of chaotic dynamical systems in a statistical sense is
not new; many rigorous results related to the statistical properties of such systems can be
found in the book by Arnold and Avez!*. Many of the details concerning the transport
phenomena in the space of adiabatic action invariants only are also well understood?. In
this aspect the results presented here are in a sense re-derivation of previously obtained ones
by means of a different method. What is new however, is the approach followed to obtain
the diffusion properties in action variable space, as well as a new evolution equation for the
angle-dependent part of the phase space density. Furthermore, instead of the widely used
phenomenological method to derive the diffusion coefficient (tensor), the procedure pursued
in the present paper is more consistent one, with a starting point the Liouville’s equation
for the phase space density.

We first employ the Projection Operator method of Zwanzig!® to derive the equations for
the two parts of the phase space density: the averaged over the angle variables part F', and
the remainder ¢ [see Eq. (2.10) in the next Section]. As expected, the two equations are
coupled. Next we extract the relevant long-time scale behavior embedded in the equations



for F' and (G by means of the Renormalization Group (RG) method” . Tt is remarkable, and
at the same time not surprising that the equations governing the long-time scale dynamics
are the Renormalization Group equations (RGEs). These are obtained in Section 4 by
means of renormalizing the perturbative solution to the equations for F' and G [see Egs.
(2.22) and (2.23) of Section 2]. Finally, in Section 5 a one-dimensional example of a chaotic
system exhibiting weak instability (the so-called modulational diffusion) is considered to
demonstrate the approach developed here.

2. Projection Operator Method

Single particle dynamics in cyclic accelerators and storage rings is most properly described
by the adiabatic action invariants (Courant-Snyder invariants'®!7) and the canonically con-
jugate to them angle variables. However, to be more general we consider here a dynamical
system with N degrees of freedom, governed by the Hamiltonian written in action-angle
variables (J, a) as

H(a, J;0) = Ho(J) + ¢V(a, J; 0), (2.1)

where 6 is the independent azimuthal variable (widely used in accelerator physics), playing
the role of time and J and a are N-dimensional vectors

J:(Jl,JQ,...,JN), a:(Oél,Oég,...,OéN). (22)

Moreover Hy(J) is the integrable part of the Hamiltonian, € is a formal small parameter,
while V(a, J;0) is the perturbation periodic in the angle variables

Vi, J;0) = 3 Viu(J;0) exp (im - ), (2.3)

where 3" denotes exclusion of the harmonic m = (0,0,...,0) from the above sum. The
Hamilton’s equations of motion are

day ov djy 9V
T wor(J) + éa—Jk, FTEE —ﬁa—aka (2.4)
where
OH
wor(J) = 6J§' (2.5)

In what follows (in particular in Section 4) we assume that the nonlinearity coefficients

2H.
M) = aJka?f,

(2.6)

are small and can be neglected. The Liouville’s equation governing the evolution of the
phase space density P(a, J;0) can be written as

%P(a, J;0) = [Lo + eL.(0)| P(a, J;0). (2.7)



Here the operators Lo and L, are given by the expressions

R P o av 0 av
= ()= .= - v
Lo wor( )aakv L Oay 0J;,  0Jy Doy,

(2.8)

where summation over repeated indices is implied. Next we define the projection operator
onto the subspace of action variables by the following integral:

Pr(J:0) = (Qi)N/dal.../daNf(a,J; ). (2.9)

where f(a, J;0) is a generic function of its arguments. Let us introduce also the functions
F=7PP, G=(1-P)P=CP, (P =F+G). (2.10)
From Eq. (2.7) with the obvious relations

PLy = LoP =0, PLP =0 (2.11)

in hand it is straightforward to obtain the equations

OF . o [0V

_— = v ey _ _— 5 212
o5 = PLG = MP( o G) (2.12)
—aaj = LoG + CL,G + €L, F. (2.13)

Our goal in the subsequent exposition is to analyze Eqs. (2.12) and (2.13) using the
RG method. It will prove efficient to eliminate the dependence on the angle variables in ¢
and V' by noting that the eigenfunctions of the operator Lo form a complete set, so that
every function periodic in the angle variables can be expanded in this basis. Using Dirac’s
“bra-ket” notation we write

1 1

|n) = Wexp (in-a), (n| = W

exp (—im - a). (2.14)

The projection operator P can be represented in the form?!®

P = Po = |0)(0]. (2.15)

One can also define a set of projection operators P according to the expression!®

P, = |n)(n|. (2.16)
It is easy to check the completeness relation

D Pu=1, (2.17)
from which and from Eq. (2.15) it follows that
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=Y In)(n]. (2.18)
n#0

Decomposing the quantities F', G and V' in the basis (2.14) as

F = F(J;6)0), (2.19)

Gla, J;0) ZG (J;0)|m), (2.20)
m#0

Vi, J;0) = 3 Vi (J;0)|n), (2.21)
n#0

from Eqs. (2.12) and (2.13) we obtain

or .
50 = zc—ajk (Z ne VoG- n), (2.22)
0G, , e 0G 0 oF

50 —ingworGa + ZG%: lnkVn_m FY my—— o (Ve Gm) | + teng Vi, "o (2.23)

A similar harmonic expansion of the Liouville’s equation has been used by Zaslavsky!?
who derived a master kinetic equation for the one dimensional nonlinear oscillator. Equa-
tions (2.22) and (2.23) comprise the starting point for the Renormalization Group analysis
outlined in Section 4. We are primarily interested in the long-time evolution of the original
system governed by certain amplitude equations. These will turn out to be precisely the RG
equations.

3. Renormalization Group Reduction of Hamilton’s Equations

Let us consider the solution to the Hamilton’s equations of motion (2.4) for a small pertur-
bation parameter ¢. It is natural to introduce the naive perturbation expansion

ozk—ozgg)—l—eoz;g)—l—gozf)—l—---, Jk:J,go)—l—ej,gl)—l—ezj,g)—l—---. (3.1)
The lowest order perturbation equations have the trivial solution:
Oéggo) == wokﬁ + Pk, J,go) == Ak, (32)

where Ap and ¢} are constant amplitude and phase, respectively. We write the first order
perturbation equations as

dalM v dJ v
o= A+ DAL’ 0= 9" (33)
k

Assuming that the modes V,,(J; 8) are periodic in 6, we can expand them in a Fourier series
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Z V(5 1) exp (ipvn ). (3.4)

H=—00
If the original system (2.1) is far from primary resonances of the form:

nggR)wok + uvp =0 (3.5)

we can solve the first order perturbation equations (3.3), yielding the result:

ex M Wos + V)0 .
@Z Z’Ykl Ymy Vi (1) p [if 05+ f10/m) ]exp (1msps)

(M sos + f11m)’

. m S—I_ m(g .
iy Pl e Ut £ ), (5.6
mpu k

MsWos + HVin,

1) _ _Z/kavm( exp [i(mwos + (1m)0]

MsPs ), 3.7
et L e (i) (3.7

The second order perturbation equations have the form:

dozgf) (2) 1 67k1 (1) 82\/ 1 82\/ 1
cor JO ¢ T ymym e 2 T (M 3.8
d6 Vkl( ) l +28A5 l s —I_aAkaA[ l —I_aAkaa;O)al ’ ( )
dJ]£2) 82 (1) 82‘/ (1)
— = - ————;". 3.9
" 90994, T 9990 (3.9)
The solution to Eq. (3.9) reads as
0V
Jéz) =27R(0 Z kaml | a%(l )| R(v; mswos + pivm)
m>0 u
0
+ 27R(0) Z /kamlms’Yls(A)|Vm(M)|2 %%(73 a)
m>0 p a=myrwor+4lm
+ oscillating terms, (3.10)
where
dR
= _ 3.11
a0 (3.11)
x )
mR(z; y) = el lim R(z; y) = d(y). (3.12)

Here —i7 is a small imaginary quantity, which has been added ad hoc in the denominators
of the expressions (3.6) and (3.7) for the purpose of regularization. The limit v — 0 will be
taken in the final result. Note that the formal procedure used here is equivalent to utilizing
the well-known Plemelj formula.



As expected, in the second order perturbation solution (3.10) the first and the second
terms are secular, because R(#) = 6. To remove these secularities we follow the general
prescription of the RG method®!°, Let us also note that an alternative formulation of
the RG method in terms of invariant manifolds and classical theory of envelopes!!
First, we select the slowly varying part of the perturbation solution governing the long-time
evolution of the system. Up to second order in the perturbation parameter € it consists of

exists.

the constant zero order term A, and the second order secular terms. Next, we introduce
the intermediate time 7, and in order to absorb the difference 7 = 6 — (6 — 7) we make
the new renormalized amplitude Ag(7) dependent on 7. Since the long-time solution thus
constructed should not depend on 7 its derivative with respect to = must be equal to zero.

This also holds for 7 = 0, so that finally

d A6 IV (A; )|
(fg( ) = ZWGQgO/;mka%AIM%(V; Mswos + [1Vm,)
0
+ 27é? Z /kamlms’yls(AﬂVm(A; M)|2 a—?R(’y; a) ) (3.13)
m>0 un a a=mMrwWor+1lVm,

Equation (3.13) is known as the Renormalization Group equation (RGE). It describes the
slow long-time evolution of the action variables.

One may proceed further with solving Eq. (3.8). Its solution will contain secular terms
as well, which can be removed exactly in the same manner as done for Eq. (3.9). As a result
we obtain a RGE for the phase variable ¢

dx(0) — o — €2 Z’ " 0| Vin(A; )|
dé Ok 0 7 MsWos + (Wi 0AL0A;

Lo Z /Z mim, 0

AA)Van (43 )] 3.14
m>0 p (mSWOS +/~LVm)2 aAk {71 ( )| ( M)| } ( )

It is worthwhile to mention that the RG equations (3.13) and (3.14) are decoupled in the
case when the system is far from a primary resonance of the form (3.5). This however does
not hold in the resonance case, for which the first order RG equations comprise a coupled
Hamiltonian system

deoy (0 0 m g,
('9;0( ) = wo + 2¢ (ZR): a—Aka(R) (A; — SVR %) cosm!P . P, (3.15)
mii) >0
dAg(6 (R g,
() =2 > mECR)Vm(R) A; S 0 ) inm(B) P. (3.16)
do m(B) >0 VR

In writing Eqgs. (3.15) and (3.16) for simplicity we have assumed that the arguments of the
Fourier amplitudes of the non integrable part of the Hamiltonian (2.3) are equal to zero.
Equations (3.15) and (3.16) are the Hamilton’s equations of motion for an isolated reso-
nance system, which have been obtained previously in the framework of the canonical pertur-
bation theory®”. The RG equations (3.13) and (3.14) govern the long-time scale evolution of
the amplitude-phase variables (A, ¢) due to the nonlinear interaction between perturbation
modes Vj,(A; u). Similar equations can be derived by means of the multiple-scale method®.
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4. Renormalization Group Reduction of Liouville’s Equation

We consider the solution of Eqs. (2.22) and (2.23) for small € by means of the RG method.
For that purpose we perform again the naive perturbation expansion

F:F(O)+6F(1)—|—62F(2)—|—"', Gn:Gg?)—l—cGS)—I—GQGSf)—I—---, (4‘1)

and substitute it into Eqs. (2.22) and (2.23). The lowest order perturbation equations have
the obvious solution

FO = Fy(J), GO = Wi (J) exp (—ingword). (4.2)

n

The first order perturbation equations read as:

oFW ) [ ) ]
= N VaW_hn exp (1njwef) |, 4.3
90 g2 P (iniwoif) (4.3)
oG\ . . oF,
aé‘ — —mkwokGS) + mkVna—JZ
o oW, 0 ,
—I-Z%: lnkVn_m o — my aJk(Vn_me)] exp (—imuwo8). (4.4)

We again assume that the modes V,,(J;8) are periodic in 6, so that they can be expanded
in a Fourier series (3.4). If the original system (2.1) exhibits primary resonances of the form
(3.5) in the case when wpy does not depend on the action variables, we can solve the first
order perturbation equations (4.3) and (4.4). The result is as follows:

TL;R)CUO[
Viw | — W_,»
k VR

k
n(R) aJ
I 0 exp [i(nwor + pm)0]
+ Vn W—n ” 4.5

2 g Vil W) S (45)
Ggll) = Gy exp (—ingworb), (4.6)
where

. 8F0 n(R)wol

n — 0)o 7 Y| — l

g ZR( ) nn(R) 1k ajkv ( VR

VR

(R) W
+iR(0) > H{nkVnm) (—nl wm) anjn(R)
R) k



_Q%_4¢M)jl

+nyg

%Z’V (1) exp [i(niwor + pn 0]
of " nwol + (W,

+Z/Z/{nkv aaWJm - mk%[‘/n_m(/~t)v1/m]}eXp Ullne = oo + prnzml} g )

(n; — my)wor + (Win—m

In the above expressions " denotes summation over all primary resonances (3.5). To obtain
the desired RG equations we proceed in the same way as in the previous Section. The first
order RG equations are

0F, . " (R) 0
— = — J: J 4,
50 @ﬁnz(];) ny ajk[vn(R)( sur)W_m (J)], (4.8)
oW, . dFy
= ies SOy (T

96 = [Onmtmmns (J; i)

. " 8Wn_n(R) (R) 0
+ie npVoaw (I pr)——F—— — (g —ny, " ) 5 [Vaw (T pr) W _pw (J)] ¢ 4.9

8 b P ) Vo (W (D09
where

nggR)ka
fp=— . (4.10)
VR

Equations (4.8) and (4.9) describe the resonant mode coupling when strong primary reso-
nances are present in the original system.

Let us now assume that the original system is far from resonances. Solving the second
order perturbation equation for F(?) and G{2)

IF® 9

oG oF® / oG G,
; Zm i (1)
= = inkVa T +z§m lnkVn_m TRy (Vn_me)], (4.12)
we obtain

F& = 27R(0 ai Z S e[V (A )|28F0

(v nswos + )\l/n)] + oscillating terms,  (4.13)
n>0 A



G® = F, exp (—inswosh), (4.14)

n

where

V() 0

Fum ROy

1

(ns - ms)WOS + Up—m

HR(OYS

0? . 0 2 OW,,
Vo) (VW) + s (Va0 P22
—min i V. ( )i(v* ( )W) + oscillating terms (4.15)
KT | g e H & : '

and the functions R(#) and R(x; y) are given by Eqgs. (3.11) and (3.12), respectively. It is
now straightforward to write the second order Renormalization Group equations. They are:

oF, aF

6—(90 — Il &] lz annlﬂ/ 2 -0 (v; nswos + )\l/n)], (4.16)
n>0 X\

OWn _ Vi (1) 0

= VX)W,
00 ' nknl; Nswos + [l 8Jk8J1[ n (1) W]

1

(ns - ms)WOS + Up—m

{—rwm\/n_m(/ut)i (Vyf_m(/l)

+i? Y
moopu

2 0 zawn
9 & /.
i lvn_m(ﬂ)a—ﬁ (vn_m(,,b)wn)] } (4.17)

The RG equation (4.16) is a Fokker-Planck equation describing the diffusion of the
adiabatic action invariant. It has been derived previously by many authors (see e.g. the
book by Lichtenberg and Lieberman? and the references therein). It is important to note that
our derivation does not require the initial assumption concerning the fast stochastization
of the angle variable. The fact that the latter is indeed a stochastic variable is clearly
visible from the second RG equation (4.17), governing the slow amplitude evolution of the
angle-dependent part of the phase space density. Nevertheless it looks complicated, its most
important feature is that equations for the amplitudes of different modes are decoupled. In
the case of isolated nonlinear resonance Eq. (4.17) acquires a very simple form as will be
shown in the next Section.
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5. Modulational Diffusion

As an example to demonstrate the theory developed in previous sections, we consider the
simplest example of one-and-a-half degree of freedom dynamical system exhibiting chaotic
motion

Ho(J) =X+ Hs(J), Via,J;80) = V(J)cos(a+ Esinvd). (5.1)

The Hamiltonian (5.1), written in resonant canonical variables describes an isolated nonlin-
ear resonance of one-dimensional betatron motion of particles in an accelerator with mod-
ulated resonant phase (or modulated linear betatron tune). The modulation may come
from various sources: ripple in the power supply of quadrupole magnets, synchro-betatron
coupling or ground motion. The resonance detuning A defines the distance from the reso-
nance, = is the amplitude of modulation of the linear betatron tune and v is the modulation
frequency, where £ = =Z/v.

The modulation of the resonant phase (or the unperturbed tune) causes a weak instabil-
ity induced by modulational layers. This phenomenon, usually referred to as modulational
diffusion has been studied extensively by many authors?**! (see also the book by Lichten-
berg and Lieberman? and the references therein). Without loss of generality we consider £
positive. Since

a, ol
wo = A+ FVE Vi(Jip) = QV(J)ju(f)a (5.2)

where 7,(z) is the Bessel function of order n, the RG equation (3.13) for the amplitude A
can be rewritten as
}. (5.3)

dA w97,

— = —1 = A) T —y(A)VHA) =

oo { V()78 (9] ~1(2(4)

Here the square brackets [z] encountered in the index of the Bessel function imply integer

0A

part of z. Moreover, in deriving the expression for Vi(.J; ) in Eq. (5.2) use has been made
of the identity

expligsinz) == Y T(lal esplinssen(q), (5.4)

and finally, the limit v — 0 in Eq. (3.13) has been taken. For small value of ¢ utilizing the
approximate expression for the derivative of Bessel functions with respect to the order we

obtain
= gt ©] 2@ (5 (59

Let us now turn to the RG equations (4.16) and (4.17). They can be rewritten in the
form:

dFy met 0 [VQ(J)j[aTo](f) %]7 (56)

00~ 2w 0J
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1 oW, B iTen d (VdV) Ten d ( dV)‘ (5.7)

W, 80 — 2usin (nwo/y)jfw%(f)ﬁ dJ Qv ‘7[“70](5)5 dJ

Equation (5.7) suggests that the amplitudes W), of the angular modes (&, exhibit exponential
growth with an increment

et d dV
I' = 5 [%0](5)5(\/5) (5.8)

Equation (5.6) is a Fokker-Planck equation for the angle-independent part of the phase space
density with a diffusion coefficient

D(J) = TV T 6) (5.9)

In Figures 1-3 the reduced diffusion coefficient

—_—

= 2=
D(R)< _) SR —— ) | A
/ v Te2V2(J) () (5.10)

has been plotted as a function of the ratio between the amplitude and the frequency of
the modulation. Three typical regimes corresponding to different values of A/= used as a
control parameter have been chosen. In the first one depicted in Figure 1 we have taken
the resonance detuning twice as large as the amplitude of the modulation (A = 2Z). In this
case there is no crossing of the main resonance described by the Hamiltonian (5.1) and the
diffusion coefficient decreases very rapidly after reaching its maximum value at £ = 0.25.
The cases of periodic resonance crossings for A = = and A = =/2 are shown in Figure 2 and
Figure 3, respectively.

6. Concluding Remarks

In the present paper we apply the Renormalization Group method to the reduction of non
integrable multi-dimensional Hamiltonian systems. The notion of reduction is used here in
the sense of slow, long-time behavior, that survives appropriate averaging and /or factorizing
of rapidly oscillating contributions to the dynamics of the system. It has been shown that
the origin of the long-time relaxation effects in nonlinear dynamical system is the resonant
nonlinear interaction between perturbation modes, which causes the values of the adiabatic
action invariants to diffuse away from any given region in phase space.

As a result of the investigation performed we have derived evolution equations for the
slowly varying part of the angle-averaged phase space density, and for the amplitudes of
the angular modes. It has been shown that these equations are the Renormalization Group
equations.

The case of a one-dimensional isolated nonlinear resonance with a resonant phase (or
linear unperturbed tune) subjected to periodic modulation has been studied in detail. The
coefficient of modulational diffusion, as well as the exponential growth increment of the
amplitudes of angular modes have been obtained in explicit form.
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Fig. 1. Reduced diffusion coefficient DU as a function of the ratio & = Z/v for A = 2Z.
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Fig. 2. Reduced diffusion coefficient D) as a function of the ratio £ = Z/v for A = E.
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Fig. 3. Reduced diffusion coefficient DU as a function of the ratio ¢ = Z/v for A = £/2..
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