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Abstract

A closed set of fluid moment equations including models of kinetic Landau damping is developed which

describes the evolution of collisionless plasmas in the magnetohydrodynamic parameter regime. The model

is fully electromagnetic and describes the dynamics of both compressional and shear Alfv´en waves, as well

as ion acoustic waves. The model allows for separate parallel and perpendicular pressurespk andp?, and,

unlike previous models such as Chew-Goldberger-Low theory, correctly predicts the instability threshold

for the mirror instability. Both a simple 3+1 moment model and a moreaccurate 4+2 moment model are

developed, and both could be useful for numerical simulations of astrophysical and fusion plasmas.

PACS numbers: 52.35.Py, 52.65.-y, 52.65.Kj
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I. Introduction

The dynamics of collisionless plasmas are of great interest both in astrophysics and in laboratory fusion

research. However, such plasmas are often studied using models which implicitly assume high collisionality

and which ignore important kinetic effects such as parallel Landau damping. In particular, models based

on Ideal magnetohydrodynamics (MHD) assume collisional equilibration on a fast time scale and are not

in general applicable to collisionless plasmas. Chew-Goldberger-Low (CGL) theory1 relaxes the high colli-

sionality assumption, but assumes an adiabaticity conditionwhich is rarely met, and neglects parallel Landau

damping, which can be important in the collisionless regime. Hence results from CGL theory are not always

reliable, as evidenced by the well known factor of six error in the CGL prediction of the stability threshold

for the mirror instability.2,3 Simplified models such as Ideal MHD and CGL are often employed despite

their limitations because of the qualitative insights they provide and the difficulty of working directly with

a kinetic formulation. There are some particle simulations of collisionless MHD phenomena,4{7 but there

are also many fluid MHD simulations which could benefit from being extended into lower collisionality

regimes.

In this paper we will develop a relatively simple description of collisionless plasma dynamics which in-

cludes parallel Landau damping. We wish to construct a model which is valid over a wide parameter regime

and can later be narrowed and simplified for particular cases. As a starting point we will employ Kulsrud’s

formulation of collisionless MHD.3,8,9 Kulsrud’s formulation requires solving a kinetic equation for the

perturbed pressurespk andp?, or introducing further assumptions such as adiabaticity to evaluate the pres-

sures. We shall take moments of Kulsrud’s kinetic equation, and close the moment hierarchy with Landau

closures analogous to those derived by Hammett, Perkins and Dorland,10{12 generalized to allow anisotropic

pressures and magnetic perturbations. This yields a fairly simple set of moment equations with desirable

nonlinear conservation properties, and a linear response function very similar to the kinetic response of a

collisionless bi-Maxwellian plasma.

We shall refer to the model as Landau MHD, because the model incorporates the effects of parallel

Landau damping, and it is valid within the collisionless MHD regime. It is useful to consider the Landau

MHD model as an extension of CGL theory which incorporates Landau damping, and can incorporate

collisional effects as well.

One of the limitations of the Landau MHD model we present is that it is derived only in the standard

ordering of ideal MHD,� � !=
c � k�, where the plasma varies on frequency scales! small compared to

the gyrofrequency
c, and varies on spatial scales1=k long compared to the gyroradius�. Thus it covers

phenomenon related to compressional and shear Alfv´en waves and instabilities, ion acoustic waves, and
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ion and electron kinetic effects such as Landau damping. However, it does not include drift-waves or other

micro-instabilities (which have been the focus of other Landau-fluid work) because they result from finite-

Larmor/gyro radius (FLR) effects which vanish in the usual MHD ordering. Also, though collisional effects

on the ion and electron heat fluxes and on the pressure tensor can be kept in our model, there is no resistive

component to the ideal Ohm’s law. This is because the parallel current
P

s nsesuks = 0 to lowest order in

the1=e expansion of Kulsrud’s collisionless MHD, and collisions would alter the Ohm’s law only at higher

order in the� � !=
 � k� expansions. Thus the plasma is still an ideal electrical conductor in our model

and the magnetic field lines are frozen into the plasma.

Alternative orderings are possible to bring in FLR or resistive effects. One approach would be to take

fluid moments of the electromagnetic gyrokinetic equation,13,14 which allowsk?� � 1, and work out the

appropriate closures. Another approach, taken by Chang and Callen,15,16 in effect carries Kulsrud’s expan-

sion to higher order in FLR, by usingk?� � kk=k? � � with �2 � � � !=
c. This “extended-MHD”

ordering orders the compressional Alfv´en wave out of the equations, but retains the slower Shear Alfv´en

and ion acoustic waves, and includes resistive effects in the Ohm’s law as well as drift-wave instabilities

with moderatek?� � �1=2. Chang and Callen use an alternative derivation of Landau-fluid closures which

is actually linearly exact (employing the fullZ functions). It reduces to our formulation in the appropriate

limits.11 Their approach advances 3 moments (density, parallel flow, and temperature) for each species with

linear closures for the heat flux and stress tensor, while here we advance up to 6 moments (4 parallel and 2

perpendicular moments) for each species. These six moment equations retain additional nonlinear effects,

and simplify some of the manipulations of the stress tensor by keeping separatep? andpk (which is also

essential to study the mirror instability that Kulsrud used to point out problems with the CGL theory). They

can be reduced to simpler systems with fewer moments in various limits. Future work could try to extend

our methods to the electromagnetic gyrokinetic equation or merge with the methods of Chang and Callen

for the extended-MHD ordering.

There are previous authors who have tried some forms of Landau closures in MHD equations. Bonde-

son and Ward17 used viscous and pressure-damped models of Landau damping in studying wall stabilization

of external MHD modes in advanced tokamak designs. An important feature of this work was the use of

Lagrangian variables so that thejkkj operator involved in Landau-fluid closures would (at least linearly)

effectively operate along perturbed magnetic field lines, which Finn and Gerwin18 showed was important

to do. However, Bondeson and Ward’s model was a relatively low-order Landau-fluid model and was not

entirely consistent, assuming high collisionality in the derivation of the initial 1-fluid equations and low col-

lisionality elsewhere. A recent paper by Medvedev and Diamond19 has incorporated Hammett-Perkins type
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closures into a set of two fluid equations, used to describe large amplitude shear Alfv´en and magnetosonic

waves in interplanetary plasmas. Medvedev and Diamond’s equations assume isotropic pressure, and are

valid only in a limited parameter regime (� � 1). The Landau MHD model presented here should provide

an extension of this previous work, useful for the study of resistive wall stabilization, as well as for general

problems of MHD mode growth and saturation in both laboratory and astrophysical plasmas.

The organization of this paper is as follows. Section II summarizes Kulsrud’s collisionless MHD formu-

lation. In Section III, a moment hierarchy based on Kulsrud’s kinetic equation is derived and discussed. In

Sections IV and V closures for ‘4+2’ and ‘3+1’ models are derived, following Hammett and Perkins,10 and

Dorland.12 Section VI investigates collisional effects, including the reduction of the model to an appropriate

limit of the Braginskii equations. Section VII discusses practical nonlinear implementation of the closure

terms. In Section VIII, the Landau MHD formulation is applied to analyze the mirror instability, and Section

IX offers concluding remarks.

II. Collisionless MHD

As a starting point, we employ the collisionless MHD model described by Kulsrud,3 based on earlier

work by Kruskal and Oberman8 and by Rosenbluth and Rostoker.9 This formulation begins with the Vlasov-

Maxwell system of equations, and asymptotically expands in�c=L, the smallness of the gyroradius relative

to macroscopic scale lengths. This is accomplished by the formal expansion of the distribution function

f , the magnetic fieldB, and the electric fieldE in the inverse charge1=e. This is equivalent to taking

all relevant frequencies in the problem to be very small compared to the cyclotron frequency,
c, and the

plasma frequency,!p.

In this ordering, the Vlasov equation reduces to a condition on the zeroth order parallel (relative to the

magnetic field) electric fieldEk0
= 0, and the following kinetic equation for the zeroth order distribution

function of each speciesf0s(vk; �; r; t):

@f0s
@t

+ (vkb̂+ vE)�rf0s +
�
�b̂�DvE

Dt
� �b̂�rB +

es

ms
Ek

�
@f0s
@vk

= 0; (1)

wherees is the charge on speciess, b̂ is a unit vector in the magnetic field direction̂b = B=B, vE
:
=

c (E�B)=B2, � :
= v2?=2B, and D

Dt

:
= @

@t
+ (vkb̂ + vE)�r.

Combining moments of this kinetic equation with Maxwell’s equations and taking the usual low Alfv´en

speed limitv2A � c2 yields Kulsrud’s set of collisionless MHD equations:
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@�

@t
+r�(�U) = 0; (2)

�

�
@U

@t
+U�rU

�
=

(r�B)�B
4�

�r�P (3)

@B

@t
= r� (U�B) (4)

P = p?I+ (p? � pk)b̂b̂ (5)

p? =
X
s

ms

2

Z
f0sv

2
? d

3v (6)

pk =
X
s

ms

Z
f0s(vk �U�b̂)2 d3v (7)

X
s

es

Z
f0s d

3v = 0 (8)

where� is the total mass density,U = vE + ukb̂ is the fluid velocity, andP is the pressure tensor.

The above set of equations is exact to zeroth order in the expansion parameter, but the kinetic equation

itself, Eq. (1), must be used to evaluatepk andp? to close the system. Because Eq. (1) is difficult to solve

directly, this system is rarely employed without further simplification.

One such simplification is the introduction of the double adiabatic law (also known as CGL theory3,1).

In the CGL model, Eq. (1) is replaced by two equations of state which determinep? andpk:

d

dt

�
p?

�B

�
= 0 (9)

d

dt

 
pkB

2

�3

!
= 0 (10)

where the total derivative is defined byd
dt

:
= @

@t
+ (ukb̂+ vE)�r.

These equations of state are equivalent to setting the heat flow tensorQ to zero. This assumption that

both electron and ion heat flow are negligible is strictly valid only when the mode phase velocity (!=kk)

is much greater than the electron and ion thermal speeds, a criterion rarely satisfied for Alfv´en waves and

never satisfied for sound waves. Furthermore, the simple truncation of the moment hierarchy implied by this

assumption eliminates Landau damping from the problem, leaving the system with no damping at all, which

can lead to unphysical behavior. However, CGL theory is often employed, even when it is invalid, because

of its simple, Lagrangian form. Of course this can lead to incorrect results, as in the well known case of the

mirror instability.
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III. The Moment Hierarchy

We wish to develop a formulation which maintains much of the simplicity of the CGL model, while

increasing its range of applicability and including models of kinetic Landau damping. This will be ac-

complished by first taking moments of Eq. (1) and, in the next section, closing the hierarchy using Landau

closures analogous to those developed for the electrostatic case by Hammett and Perkins.10

Multiplying Eq. (1) byB and adding Eq. (4) multiplied byfs, leads to a kinetic equation in phase space

conserving form:

@

@t
fsB +r�

h
fsB

�
vkb̂+ vE

�i
+

@

@vk

�
fsB

�
�b̂�DvE

Dt
� �b̂�rB +

es

ms
Ek

��
= BC(fs); (11)

The subscript zero onfs has been suppressed. All calculations involve only the zeroth order distribution

function in the original expansion in1=e, though a subsidiary ordering will be introduced to derive the

Landau closures.

Note the addition of a collision operator to the right hand side of the kinetic equation to allow for

generalization to regimes where collisions play an important role. Here a simple BGK collision operator20

is employed:

C(fj) = �
X
k

�jk(fj � FMjk) (12)

where�jk is the effective collision rate of speciesj with speciesk. These collisions causefj to relax to a

shifted Maxwellian with the effective temperature of speciesj and the mass velocity of speciesk,

FMjk =
nj

(2�Tj=mj)3=2
exp

"
�mj(vk � ukk)

2

2Tj
� mj�B

Tj

#
(13)

whereTj = (Tkj + 2T?j)=3. The BGK collision operator in this form conserves mass, momentum and

energy.

Defining the velocity space moments as follows,

ns =
R
fs d

3v nsuks =
R
fsvk d

3v

pks = m
R
fs(vk � uk)

2 d3v p?s = m
R
fs�B d3v

qks = m
R
fs(vk � uk)

3 d3v q?s = m
R
fs�B(vk � uk) d

3v

rk;ks = m
R
fs(vk � uk)

4 d3v rk;?s = m
R
fs�B(vk � uk)

2 d3v

r?;?s = m
R
fs�

2B2 d3v;

Poisson’s equation and Ampere’s law reduce, to lowest order in1=e, to the conditions
P

s nses = 0 andP
s nsesuks = 0. Specializing to the case of one species ofZ = 1 ions impliesn = ne = ni and
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uk = uki = uke. The usual definitions for total higher momentspk =
P

s pks, p? =
P

s p?s, qk =
P

s qks

etc. are employed. Note that, becauseuki = uke, the collision term serves primarily to isotropize the

distribution. Taking integrals of the form
R
dvk d� v

j
k�

k : : : of Eq. (11) then leads to the following set of

exact moment equations:

@n

@t
+r�(nU) = 0; (14)

@uk

@t
+U�ruk + b̂�

�
@vE

@t
+U�rvE

�
+

1

nms

r�(b̂pks)�
p?s
nms

r�b̂� es

ms

Ek = 0; (15)

@pks
@t

+ r�(Upks) +r�(b̂qks) + 2pksb̂�rU�b̂ (16)

� 2q?sr�b̂ = �2

3
�s(pks � p?s);

@p?s
@t

+ r�(Up?s) +r�(b̂q?s) + p?sr�U� p?sb̂�rU�b̂ (17)

+ q?sr�b̂ = �1

3
�s(p?s � pks);

@qks
@t

+ r�(Uqks) +r�(b̂rk;ks) + 3qksb̂�rU�b̂�
3pks
nms

b̂�rpks (18)

+ 3

 
p?spks
nms

� pk
2
s

nms
� rk;?s

!
r�b̂ = ��sqks;

@q?s
@t

+ r�(Uq?s) +r�(b̂rk;?s) + q?sr�(ukb̂)�
p?s
nms

b̂�rpks (19)

+

 
p?

2
s

nms
� p?spks

nms
� r?;?s + rk;?s

!
r�b̂ = ��sq?s;

where� = n(me +mi),U = vE + ukb̂, and�i = �ii + �ie and�e = �ee + �ei.

Using the conditionuki = uke to solve forEk [as given in Kulsrud’s Eq. (49)], it is straightforward

to show that the first two moment equations, Eqs. (14) and (15) are equivalent to Eq. (2), and the parallel

component of Eq. (3), that is:

@uk

@t
+U�ruk+ b̂�

�
@vE

@t
+U�rvE

�
+

1

�

h
b̂�rpk + (pk � p?)r�b̂

i
= 0: (20)
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A. Conservation Properties

Just as in the electrostatic case,10 the moment hierarchy has favorable conservation properties. Each

moment equation acts as a conservation relation, provided the hierarchy is closed by approximating the

highest moments, without inserting additional terms such as viscosity.

Momentum is conserved by any closure which keeps Eqs. (2) and (3) and closes for pressure or higher

moments. Combining Eqs. (2) and (3) yields:

@(�U)

@t
= �r�

"
�UU+

 
B2

8�
I� BB

4�

!
+P

#
: (21)

Similarly, energy is conserved by any closure which uses approximations only for the heat flow moments

qks andq?s, or higher moments. To demonstrate this, define the kinetic + thermal + magnetic energy density

E = �U2=2 + B2=8� + p? + pk=2. Combining Eqs. (2),(3),(4),(16), and (17) yields:

@E
@t

= �r�
��

1

2
�U2 + p? +

1

2
pk

�
U

�
�r�

�
B� (U�B)

4�

�
�r�(U�P)�r�q (22)

whereq � (q? + qk=2)b̂. Integrating over volume, we can take the left hand side as the rate of change of

the energy inside a volume, and the right hand side as the flow of energy across the surface. We note that

Kulsrud’s equations (66) and (67)3 (not employed elsewhere in the paper) appear to be in error.

IV. The 4+2 Model

A closure for the moment hierarchy must now be derived to produce a complete model. In general, a

model which evolves more moments will be more accurate, though more complex and more computation-

ally intensive to implement. A 4+2 moment model, that is a model which evolves four parallel moments

(n; uk; pks; qks) and two perpendicular moments (p?s; q?s), will be developed first. The 4+2 model will

truncate the moment hierarchy with Eqs. (18) and (19), and will require closures forrk;ks andrk;?s. Simpler

models, such as a 3+1 moment model, can be derived as the low frequency limit of the 4+2 model, following

a procedure developed by Dorland.12

A closure for the 4+2 model will be derived following the procedure laid out by Hammett and Dor-

land.10,12 This procedure, derived for electrostatic perturbations, must be extended for use with general elec-

tromagnetic perturbations in two dimensions (parallel and perpendicular). The collisionless case (� � !)

will be considered first, and collisional effects will be investigated in Section VI. The closure should con-

serve mass, momentum, and energy, while providing a linear response which closely matches that expected

from kinetic theory.
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A. Linear Response from Kinetic Theory

We first use the guiding center kinetic equation, Eq. (1), to derive the kinetic linear response. We wish

to linearize around a zeroth order distribution which allows the decoupling of electron and ion pressures as

well as the decoupling of parallel and perpendicular pressures that one expects in a collisionless plasma. To

accomplish this we choose a bi-Maxwellian distributionwith separate equilibrium parallel and perpendicular

temperaturesTk0s andT?0s. Since the plasma is collisionless, it is not expected to be exactly Maxwellian,

even for a particular species in a particular direction. However, we wish only to calculate a linear response

which we can approximate with our Landau closure. The linear response thus needs to provide the correct

general form of the linear Landau damping, allowing for independent variation of species pressures, and of

the parallel and perpendicular pressures. Hence the bi-Maxwellian is a convenient choice.

We introduce a subsidiary ordering in which the zeroth order distribution is bi-Maxwellian with no

zeroth order flows or gradients,fs = FMs + f1s, where:

FMs =
n0

(2�=ms)3=2T?0sTk
1=2
0s

exp

"
�msB0�

T?0s
� msvk

2

2Tk0s

#
(23)

The moments (n = n0+n1,U = U1 etc.), the magnetic field (B = B0+B1), and the parallel electric field

(Ek = Ek1
) are similarly linearized, with the zeroth order part uniform. Note again that this is a subsidiary

ordering. All terms are zeroth order with respect to the initial ordering in1=e.

Eq. (1) is then linearized and Fourier analyzed to findf1s. Definingẑ as the unit vector in the parallel

directionB0 = B0ẑ, and defining the wave vectork = kzẑ+ kxx̂:

f1s =

 
�v2?

2

ikzB1

B0

+
es

ms
Ek

!
msvk

Tk0s(�i! + ikzvk)
f0s (24)

Taking moments, keeping in mind that
R
d3v = 2�

R
(B0 + B1)d�dvk, yields:

n1s = � in0

kzTk0s
esEkR(�s) +

B1n0

B0

"
1� T?0s

Tk0s
R(�s)

#
(25)

pk1s = � ipk0s
kzTk0s

esEk

h
1 + 2�2sR(�s)

i
+

B1pk0s
B0

"
1� T?0s

Tk0s

�
1 + 2�2sR(�s)

�#
(26)

p?1s = � ip?0s
kzTk0s

esEkR(�s) +
2B1p?0s

B0

"
1� T?0s

Tk0s
R(�s)

#
(27)

where�s = !=
p
2jkzjvtks is the normalized frequency, andR(�s) = 1+�sZ(�s) is the electrostatic response

function. The usual plasma dispersion function is defined [for Im(�) > 0] byZ(�) = (1=
p
�)
R
dt exp(�t2)=(t�

�), and the thermal velocities are defined to bevtks =
q
Tk0s=ms andvt?s =

p
T?0s=ms.
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Note that it is possible to solve forEk using quasineutrality, and to solve forB1 using Eq. (4). However,

we find it most convenient and physically enlightening to leave the response functions in the above form for

matching to the moment model.

B. The 4+2 Landau Closure

We now choose a closure for our 4+2 hierarchy which will closely match the linear response calculated

in the previous section. As noted we require closures for bothrk;ks andrk;?s. Additional terms such as

viscosity would violate energy conservation10,11 and so will not be employed in the 4+2 equations.

The linearized moment equations in the collisionless (� = 0) limit are, omitting the subscript on per-

turbed quantities and definingrk

:
= b̂0 �r:

@n

@t
+ n0r�U = 0; (28)

@uk

@t
+

1

n0ms
rkpks +

(p?0s � pk0s)

n0ms

rkB1

B0

� es

ms
Ek = 0; (29)

@pks
@t

+ pk0sr�vE +rkqks + 3pk0srkuk = 0; (30)

@p?s
@t

+ 2p?0sr�vE +rkq?s + p?0srkuk = 0; (31)

@qks
@t

+rkrk;ks �
3pk0s
n0ms

rkpks +

 
�rk;k0s + 3rk;?0s +

3pk
2
0s

n0ms
� 3pk0sp?0s

n0ms

!
rkB1

B0

= 0; (32)

@q?s
@t

+rkrk;?s �
p?0s
n0ms

rkpks +

 
r?;?0s � 2rk;?0s �

p?
2
0s

n0ms
+

p?0spk0s
n0ms

!
rkB1

B0

= 0; (33)

The bi-Maxwellian valuesrk;k0s = 3pk0s=n0ms, rk;?0s = pk0sp?0s=n0ms andr?;?0s = 2p?0s=n0ms

are easily calculated. Fourier transforming into (k,t) space, and using the linearized Eq. (4),k �vE =

!B1=B0, yields a simple set of equations for each moment in terms of the other moments and the perturbed

magnetic field.

The system is closed by writing the highest moments (rk;ks andrk;?s) as a linear sum of the lower

moments, with coefficients that are in general functions ofk and the equilibrium quantities. Generalized
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linear response functions can then be derived. The closure coefficients are determined by comparison with

linear kinetic theory in the high and low frequency limits.

Guided by previous work,10,12 we choose closures with a bi-Maxwellian part and an additional term

which models phase mixing. We first try a simple generalization of the 4+2 closure derived by Dorland12

for the electrostatic case, modified for the case of a bi-Maxwellian equilibrium distribution:

rk;ks = 3v2tks(2pks � Tk0sn) + �kn0v
2
tks
Tks �

p
2Dkvtks

ikkqks
jkkj (34)

rk;?s = v2t?spks + v2tksp?s � v2tksT?0sn�
p
2D?vtks

ikkq?s
jkkj

(35)

The coefficients�k, Dk, andD? are determined by matching the perturbed density and perpendicular

pressure to the kinetic results in the adiabatic (j�j � 1) and fluid (j�j � 1) limits. It is possible to match

the density response through order�2 for small j�j and through order1=�5 for largej�j. Thep? response

can be matched through order� for small j�j and through order1=�2 for large j�j. This yields�k =

(32� 9�)=(3�� 8),Dk = 2
p
�=(3� � 8), andD? =

p
�=2 (the same result as in the earlier electrostatic

derivation12).

The density response is then:

n1s = � in0

kzTk0s
esEkR4(�s) +

B1n0

B0

"
1� T?0s

Tk0s
R4(�s)

#
(36)

whereR4(�s) is a four-pole model of the electrostatic response functionR(�s):

R4(�s) =
4� 2i

p
��s + (8� 3�)�2s

4� 6i
p
��s + (16� 9�)�2s + 4i

p
��3s + (6� � 16)�4s

: (37)

The linear kinetic response functions for the 4 parallel momentsn; uk; pks; qks are all modeled equally well,

with R4(�s) replacingR(�s) in the expressions for each. The 4+2 density response is compared to linear

kinetic response in Figs. (1) and (2). Note that in the figures, the quasineutrality relationn1i = n1e has been

used to eliminateEk from the expressions for the response functions.

In thep?s response,R(�s) is modeled partially by the four-pole functionR4(�s) and partially by the

two-pole functionR2(�s) = 1=(1� i
p
��s � 2�2s ), yielding:

p?s = � ip?0s
kzTk0s

esEkR4(�s) +
2B1p?0s

B0

"
1� T?0s

Tk0s

�R4(�s)

2
+
R2(�s)

2

�#
(38)

As shown in Figs. (3) and (4), thep?s response is not matched as closely as the parallel moment response

for large�s, but the fit is still quite good.
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Note that we could have chosen a more general form for therk;ks and rk;?s closures, involving all

lower moments and the perturbed magnetic field. However, upon matching the linear kinetic response in the

j�j � 1 andj�j � 1 limits, these general closures will reduce to the closure given here.

The complete 4+2 system of equations is Eqs. (2) through (5), plus Eqs. (16) through (19) closed by the

inverse Fourier transform of Eqs. (34) and (35). The system can be solved numerically in k-space where the

closure functions are more easily evaluated.

V. The 3+1 Model

For many applications, a simpler, less computationally intensive model will prove adequate. The sim-

plest model which evolvespk andp? involves truncating the hierarchy with Eqs. (16) and (17), using closure

approximations forqk andq?. We refer to such a model as a ‘3+1 model’ because it evolves 3 parallel mo-

ments (n, uk, pk) and 1 perpendicular moment (p?). Note that the CGL model is a 3+1 model which invokes

the simple closureqk = q? = 0.

The 3+1 closures can be derived following the procedure laid out in the previous section, by writing

qk andq? as a sum of the lower moments andB1, and solving for coefficients by matching with the linear

kinetic density and perpendicular pressure response. However, the 3+1 closures for bothqks andq?s can be

more simply derived as the�s ! 0 limit of the 4+2 model, following the moment reduction scheme outlined

by Dorland.12 Parker and Carati21 showed how to extend this scheme to an arbitrary number of moments,

and used it to show some similarities to renormalization methods.

Substituting the 4+2 closures into Eqs. (32) and (33), in (k; t) space, and taking the limitj�sj � 1 yields:

qks = �n0
r

8

�
vtks

ikkTks
jkkj

(39)

q?s = �n0
r

2

�
vtks

ikkT?s

jkkj + n0

r
2

�
vtksT?0s

 
1� T?0s

Tk0s

!
ikkB1

jkkjB0

(40)

Note the term proportional toB1 in theq? closure. This term is not found in the electrostatic case, where

B1 = 0, and it also vanishes for isotropic equilibrium pressures. This term is needed to properly conserve�

linearly in the presence of magnetic field compression and anisotropic pressure.

Substituting the closures Eqs.(39-40) into the 3+1 equations yields the density response:

n1s = � in0

kzTk0s
esEkR3(�s) +

B1n0

B0

"
1� T?0s

Tk0s
R3(�s)

#
; (41)
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and the perpendicular pressure response:

p?s = � ip?0s
kzTk0s

esEkR3(�s) +
2B1p?0s

B0

"
1� T?0s

Tk0s

�R3(�s)

2
+
R1(�s)

2

�#
; (42)

whereR3(�s) is a three-pole model of the electrostatic response function:

R3(�s) =
2� i

p
��s

2� 3i
p
��s � 4�2s + 2i

p
��3s

(43)

andR1(�s) is a one-pole model ofR(�s),R1(�s) = 1=(1� i
p
��s). The 3+1 density andp? responses are

plotted in Figs. (1) through (4). Of course the response functions, particularly forp?, do not fit the kinetic

results as well as for the 4+2 model. However, the qualitative behavior is correct, and the behavior in both

limits (�s � 1) and (�s � 1) is accurate.

The complete 3+1 system of equations is Eqs. (2) through (5), plus Eqs. (16) and (17) closed by the

inverse Fourier transform of Eqs. (39) and (40). This set is significantly simpler than the 4+2 equations,

while still conserving particles, momentum, and energy, and providing a reasonable model of the linear

kinetic response.

Further moment reduction to 3+0, 2+1, 2+0 and even 1+0 models is possible. These simpler models can

be useful in certain cases where conservation of thermal energy isn’t important. However, the 3+1 and 4+2

models allow separate evolution ofpk andp?, which is often important in describing collisionless modes.

VI. Collisional Effects

The 3+1 and 4+2 Landau fluid collisionlessMHD models have been derived for the completely collision-

less case, where the collision rate is very small compared to a typical mode frequency (� � !). However, it

is possible to introduce some collisional effects into the models using a collision operator such as the BGK

operator introduced in Section III. It is then possible to examine regimes with a wide range of collisionality,

provided that� � 
c, as required by the initial ordering. Theaccuracy with which collisional effects are

modeled will of course be limited by the accuracy of the initial collision operator employed. Furthermore,

the modeling of certain collisional effects, such as momentum transfer and resistive tearing of magnetic field

lines, is hampered by the use of only the lowest order collisionless MHD expansion in inverse charge.

The moment hierarchy previously derived [Eqs. (14) through (19)] already includes the collision terms

arising from a simple BGK collision operator. However, the form of the equations is quite different from

the forms normally used in MHD. We will attack this discrepancy by rewriting Eqs. (16) through (19), and

13



showing that they reduce approximately to Braginskii’s transport equations22 in the limit !; jkjvts � �s �

c (! is a typical mode frequency, andk is a typical wave number).

First define an average pressure,ps = (pks + 2p?s)=3, a differential pressure�ps = pks � p?s, and

a heat flowqs = qks=2 + q?s. We can then divide the pressure tensor,Ps, into an isotropic part and an

anisotropic part labeled�s. That isPs = psI+�s = psI+ (��psI + 2�psb̂b̂)=3. Combining Eqs. (16)

through (19) then yields:

dps

dt
+

5

3
psr�U = �2

3
r�(b̂qs)� 2

3
�s : rU (44)

d�ps

dt
+

5

3
�psr�U+�s : rU+ 3psb̂�rU�b̂� psr�U (45)

� 3q?sr�U+r�
h
b̂(qks � q?s)

i
= ��s�ps

@qs

@t
+r�

�
b̂

�
rk;ks
2

+ rk;?s

��
+

3

2
qksb̂�rU�b̂�

3
2
pks + p?s

nms
b̂�rp?s (46)

+q?sr�(ukb̂) +
 
p?

2
s

nms
+

p?spks
2nms

� 3p?
2
s

2nms
� rk;?s

2
� r?;?s

!
r�b̂ = ��sqs

A. The high collisionality limit

In the limit of high collisionality (� � !), the above three equations yield an approximation to the

Braginskii transport equations,22 with the condition� � 
c, as required by the initial ordering.

Formally expanding all moments in the collision time (1=�), it is apparent from Eqs. (16-19) thatqk0s =

q?0s = �p0s = 0. Eq. (45) then reduces, to lowest order, to:

�p1s = �p0s

�s
(3b̂�rU�b̂� r�U)

If �s from the original BGK collision operator is taken to be the reciprocal of Braginskii’s collision time

(�s = 1=�sBrag
), the resulting expression for�s = (��psI + 2�psb̂b̂)=3 matches Braginskii’s result to

within an order unity constant (.96 forZ = 1 ions, and .73 for electrons).

Similarly, a heat flux nearly matching Braginskii’s can be derived in the same limit. To lowest order,

Eq. (46) becomes:

r�
�
b̂

�
rk;k0s
2

+ rk;?0s

��
� 5

2

p0s

n0ms
b̂�rp0s +

�
�rk;?0s

2
� r?;?0s

�
r�b̂ = ��sq1s (47)
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In this collisional limit, ther0 moments will take on their Maxwellian values (rk;k0s = 3p20=msn0; rk;?0s =

p20=msn0; r?;?0s = 2p20=msn0). Substituting yields:

q1s = �5

2

p0

�sms
rkT0s

which matches the Braginskii heat fluxes to within factors of order unity.

To match Braginskii’s results more precisely, one could replace the simple BGK collision operator used

here with a more precise Landau or Fokker-Planck operator. This should allow reproduction of the col-

lisional energy flow between species (Qs) as well as the above heat flow and anisotropic pressure terms.

However, modeling momentum exchange terms is problematic because the initial formal expansion in1=e

used to derive the collisionless MHD equations impliesuki = uke. The effects of resistive momentum

exchange thus require going to higher order in the ideal MHD ordering, or using an alternative ordering

procedure.

B. Collisionally modified 3+1 closure

Collisional effects have not been considered in the derivation of the Landau closures themselves. In

principle, it is possible to rederive the linear kinetic response functions with collision terms, and choose

Landau closures which match this collisional linear response. However, a simpler procedure appears to be

adequate.

This alternate approach,23,24 is to derive a collisionless closure for a many moment model (here the 4+2

model), and then reduce the number of moments by taking the low frequency limit of the highest moment

equations, with the collisional terms included. This will incorporate some collisional effects into the lower

moment closure (here it will include the collisional effects described by theqk andq? equations into the 3+1

model). The modified 3+1 closures resulting from this procedure are:

qks = �8n0v2tks
ikkTks

(
p
8�jkkjvtks + (3� � 8)�s)

(48)

q?s = � n0v
2
tks
ikkT?s

(
q

�
2
jkkjvtks + �s)

+

 
1� T?0s

Tk0s

!
n0v

2
tks
T?0sikkB1

B0(
q

�
2
jkkjvtks + �s)

(49)

These closures allow a smooth transition from the collisionless regime where Landau damping is impor-

tant, to the collisional regime where Landau damping vanishes.

Hence some collisional effects can be included within the Landau collisionless MHD model, and the

model can be extended for use in the marginally collisional regime (� � !) as well as the collisionless
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regime (� � !). However, the accurate modeling of some collisional effects, particularly those associated

with momentum exchange, is made difficult by the use of the collisionless MHD ordering. A model based

on Braginskii or resistive MHD is more appropriate for use in the highly collisional regime (� � !).

VII. Nonlinear Implementation of the Closure Terms

The closures for both the 4+2 and 3+1 models employ terms containingjkkj=kk. Numerical evaluation

of these terms ink-space is straightforward for electrostatic problems (such as ITG/drift-wave turbulence),

since only a simple Fourier transform along the equilibrium magnetic field direction is required. But as

pointed out by Finn and Gerwin,18 Landau damping must be evaluated along perturbed field lines, i.e. Lan-

dau damping involves particles mixing due to their free-streaming along the total (equilibrium + fluctuating)

magnetic field, and sokk involves Fourier transforms along these perturbed magnetic field lines. Concep-

tually, a parallel heat flux is driven by a parallel temperature gradient:qk / rkTk = b̂ � rTk. Linearizing

this yieldsqk1 / b̂0 � rTk1 + b̂1 � rTk0. We see that considering only the Fourier transform ofrTk1 in

the b̂0 direction would not be sufficient even linearly. In fact, in the ideal MHD limit where the magnetic

field is frozen into the fluid, if the temperature is initially uniform along a magnetic field line it will always

remain uniform along a field line if the plasma motion is incompressible, so that the perpendicular gradient

term will exactly cancel the parallel gradient term:qk1 / b̂0 � rTk1 + b̂1 � rTk0 = 0. To account for this,

Bondeson and Ward17 employed Lagrangian variables and applied a Landau damping model only to the

component of the temperature fluctuations driven by compression. Alternatively, one could use the higher-

order 4+2 moment equations which involvejkkj operating on a higher moment likeqk. Upon linearizing

rkqk = b̂0 �rqk1+ b̂1 �rqk0, we often have only to consider the first term sinceqk0 is zero for many types

of equilibria.

However, the situation is more complicated for nonlinear electromagnetic calculations. Then the nonlin-

ear term̂b1 �rTk1 can not formally be neglected compared tob̂0 �rTk1. To be rigorous, the transformation

between thek-space closure and its real space equivalent must be made along the perturbed field lines. One

way to do this would be with a Lagrangian coordinate system which moved with the magnetic field and had

one coordinate aligned with the magnetic field. Then the standard fast Fourier transform (FFT) algorithm

along this coordinate could be used to evaluate thejkkj closures. Alternatively, if the simulation uses a fixed

Eulerian grid, then at every time step wherejkkjTk is to be evaluated, one would need to mapTk from the

simulation grid to a field-line-following coordinate system, carry out the FFT, and then map the result back

to the simulation grid.

One can avoid FFT’s by working directly with the real-space form of the the closures. This is somewhat
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more expensive computationally, since it involves convolutions in one direction [O(N4) operations, where

N is the number of grid points in each direction] rather than the faster FFT algorithm [O(N3 logN) oper-

ations]. But because the convolutions are done in only one direction instead of a 3-D convolution [O(N6)

operations], this may be acceptable.

For example, the real-space form of the collisionless 3+1 moment closure forqk, Eq. (39), is the convo-

lution10

qks(z) = �n0
�
2

�

� 3

2

vtks

Z
1

0

dz0
Tks(z + z0)� Tks(z � z0)

z0
; (50)

where the integration is performed along the perturbed field line. Evaluation of this integral (or its discrete

analogue) in principle requires evaluation of the parallel temperature fluctuation at an infinite number of

points along the field. In practice the integral can be cut off at a reasonable parallel correlation length.23

Truncating the integral atz0 = L means that the Landau damping is applied primarily to modes withkk >

1=L, while modes withkk � 1=L will experience relatively little damping due to the Landau resonances.

This approximation is probably adequate in cases where the Landau-damping is only important for the

high-kk component of the fluctuation spectrum, and convergence can be tested by varyingL.

When collisions are important, the collisional form of theqk closure, Eq. (48), should be used. The real

space form of this closure is then,

qks = �n0
�
2

�

�3

2

vtks

Z
1

0

dẑ0g(ẑ0)
�
Tks(ẑ + ẑ0)� Tks(ẑ � ẑ0)

�
(51)

g(ẑ) =

Z
1

0

dk̂
k̂

k̂ + 1
sin(k̂ẑ)

wherek̂ :
= kLk andẑ :

= z=Lk have been normalized to the parallel collisional mean free path

Lk
:
=

p
8�

3� � 8

vtks
�s

:

For smallẑ Eq. (51) behaves just as Eq. (50), but for largeẑ, g(ẑ) falls off rapidly, as1=ẑ3, and the closure

integral may be quite accurately truncated after a few mean free paths.

Eq. (50) includes nonlinear magnetic effects if the integral is evaluated along perturbed magnetic field

lines, but it still assumes that density and temperature vary weakly along a field line so that constant equilib-

rium values ofn0 andvt can be used. There are various possible extensions of this closure which could be

proposed to model cases with stronger parallel nonlinearities (for example, see Sec. 3.4 of Smith’s thesis25).

The relative advantages or accuracy of various possibilities has not yet been studied, but one reasonable
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nonlinear model is

qks(z) = �
�
2

�

� 3

2

Z
1

0

dz0
n(z + z0)(Tk

3=2
s

(z + z0)� Tk
3=2
s0 )� n(z � z0)(Tk

3=2
s

(z � z0)� Tk
3=2
s0 )

m
1=2
s z0

; (52)

This has the physically reasonable property of weighting the convolution integral by the density, so that parti-

cles streaming from low density regions contribute less to the heat flux. This model (or some variant thereof)

might be useful to model the heat flux on field lines which intersect solid materials (where the plasma density

goes to zero), such as in the edge of fusion devices. A possible choice forTk0 is
R
dz n(z)Tk(z)=

R
dz n(z).

VIII. An Example: The Mirror Instab ility

To demonstrate the usefulness of our model, and the fundamental importance of kinetic effects in simple

collisionless MHD problems, we will investigate the magnetic mirror instability. Kulsrud3 cites this example

to demonstrate the use of his guiding-center kinetic theory and to expose the limitations of simple fluid the-

ories such as CGL.1 We will show here that our Landau fluid models recover the exact instability threshold

for the mirror mode, and provide a good model of the mode’s linear growth rate above the threshold.

Consider a strongly-magnetized, homogeneous plasma consisting of electrons and singly charged ions.

Take the magnetic field to be uniform in theẑ direction,B0 = B0ẑ. The equilibrium distribution is taken to

be an anisotropic bi-Maxwellian with unequal parallel and perpendicular temperatures. For simplicity, take

the electron and ion temperatures to be equal in each direction,Tk0i = Tk0e = Tk0 andT?0i = T?0e = T?0.

Define thêx direction by writing the wave vectork = kxx̂+kz ẑ, and define a ‘plasma displacement’ vector

� byU = �i!�.
Linearizing and Fourier transforming Eqs. (2) through (5) then yields the following equations of motion:

��0!2�x = �ikxp? + k2z(pk0 � p?0)�x � (k2x + k2z)(B
2
0=4�)�x (53)

��0!2�z = �ikzpk + kxkz(pk0 � p?0)�x (54)

where the subscript on the perturbed pressures is again suppressed. Expressions for the perturbed pressures

pk andp? are needed to close this system and solve for the instability growth rate. We will close the system

in four different ways: first with linear kinetic theory, then using CGL theory, then with the 3+1 Landau

MHD model, and finally with the 4+2 Landau MHD model, in order to compare the instability thresholds

and linear growth rates determined by each.
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To calculate a kinetic result, we proceed exactly as in Eqs. (24) through (27). Using quasineutrality to

solve forEk, and using Eq. (4) forB1 = �ikx�xB0, yields:

eEk = kxkz�xT?0
R(�i)�R(�e)

R(�i) +R(�e)
(55)

This leads to the following expressions for the perturbed pressures:

p? = 2ikx�xp?0

"
T?0

Tk0

�R(�i) +R(�e)

4
+

R(�i)R(�e)

R(�i) +R(�e)

�
� 1

#
(56)

pk = ikx�xpk0

"
T?0

Tk0

 
1 +

2R(�i)R(�e)(�
2
i + �2e )

R(�i) +R(�e)

!
� 1

#
(57)

Substituting forp? in Eq. (53) leads to the dispersion relation:

�2i + �2e = 2
k2x
k2z

 
�T?

2
0

Tk
2
0

Ak(�) +
T?0

Tk0
+

B2
0

8�pk0

!
+

 
T?0

Tk0
� 1 +

B2
0

4�pk0

!
(58)

where the functionAk(�) is defined byAk(�) = fR(�i)
2+6R(�i)R(�e)+R(�e)

2g=f4(R(�i)+R(�e))g.
For parallel propagation (jkzj � jkxj), the above reduces to the dispersion relation for the ‘firehose’ in-

stability, and the kinetic effects drop out within our ordering (note that a different ordering can be used to

analyze these much smaller kinetic effects for limited parameter regimes- see Medvedev and Diamond19).

All of the models considered will reproduce the firehose linear growth rate exactly. In the opposite limit

(jkxj � jkzj), the dispersion relation becomes:

�2i + �2e = 2
k2x
k2z

 
�T?

2
0

Tk
2
0

Ak(�) +
T?0

Tk0
+

B2
0

8�pk0

!
(59)

This relation has an infinite number of roots, due to the presence of plasma Z-functions. The magnetic

mirror instability is the root for which the real part of the frequency goes to zero. Taking the limit� ! 0,

leads to the instability criterion for the mirror mode,p?
2

0

pk
0

> p?0 +
B2

0

8� . The linear mirror growth rate versus

the degree of anisotropyT?0=Tk0 is plotted in Fig. (5) for a fixed mass ratio at fixed total plasma beta,

� = ((2=3)p?0 + (1=3)pk0)=(B
2
0=8�).

Chew-Goldberger-Low1 theory can also be used to investigate the mirror instability. CGL’s simple

truncation of the moment hierarchy withqk = q? = 0 leads to the following linearized expressions for the

two perturbed pressures:

pk = �ipk0(kx�x + 3kz�z) (60)

p? = �ip?0(2kx�x + kz�z) (61)
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Plugging these into the equations of motion leads to the following dispersion relation:

�2i + �2e = 2
k2x
k2z

 
�T?

2
0

Tk
2
0

1

6� 2(�2i + �2e )
+

T?0

Tk0
+

B2
0

8�pk0

!
+

 
T?0

Tk0
� 1 +

B2
0

4�pk0

!
(62)

In the jkzj � jkxj limit, CGL theory correctly predicts the instability threshold for the firehose instability.

However, in the opposite limitjkxj � jkzj, CGL’s description of the mirror mode is drastically in error.

CGL predicts the mirror mode goes unstable forp?
2

0

6pk0
> p?0 +

B2

0

8�
, a factor of 6 error from kinetic theory,

as noted by Kulsrud.3 The linear growth rate is plotted in Fig. (5).

The 3+1 Landau MHD model does markedly better in modeling the mirror mode. The 3+1 dispersion

relation is derived using quasineutrality and Eq. (41) to solve forEk, and usingB1 = �ikx�xB0 to find:

eEk = kxkz�xT?0
R3(�i)�R3(�e)

R3(�i) +R3(�e)
(63)

Plugging this into the 3+1 model expressions for the perturbed pressures worked out in Section IV.B, and

summing the 2 species pressures yields:

p? = 2ikx�xp?0

"
T?0

Tk0

�R1(�i) +R1(�e)

4
+

R3(�i)R3(�e)

R3(�i) +R3(�e)

�
� 1

#
(64)

pk = ikx�xpk0

"
T?0

Tk0

 
1 +

2R3(�i)R3(�e)(�
2
i + �2e )

R3(�i) +R3(�e)

!
� 1

#
(65)

Substituting these results into the equations of motion leads to the following dispersion relation:

�2i + �2e = 2
k2x
k2z

 
�T?

2
0

Tk
2
0

A3(�) +
T?0

Tk0
+

B2
0

8�pk0

!
+

 
T?0

Tk0
� 1 +

B2
0

4�pk0

!
(66)

whereA3(�) � (R1(�i)+R1(�e))=4+R3(�i)R3(�e)=(R3(�i)+R3(�e)). As expected, the 3+1 results are

identical to the kinetic results, except that the electrostatic response functionR(�s) is replaced everywhere

by either a three-pole or a one-pole model (R3(�s) or R1(�s)). In the limit jkzj � jkxj, the 3+1 model

recovers the linear kinetic firehose dispersion relation. Taking the opposite limitjkxj � jkzj, leads to

the mirror mode dispersion relation. Again the small frequency limit (� ! 0), is taken to investigate the

mirror mode. Unlike CGL, the 3+1 model recovers the correct stability threshold for the mirror instability

(p?
2

0

pk0
> p?0+

B2

0

8�
). The mirror mode linear growth rate predicted by the 3+1 model is compared to the other

models in Fig. (5).

The 4+2 model provides a yet more accurate model of the linear mirror mode growth rate. The cal-

culation of the dispersion relation is completely analogous to that for the 3+1 model, and all of the results

are identical to those given in the previous paragraph, with the simple substitutionsR3(�s) ! R4(�s) and

R1(�s) ! R2(�s). Again the instability threshold for the mirror mode matches the kinetic result exactly,

and the linear growth rates are compared in Fig. (5).
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IX. Discussion

A fluid description of plasma dynamics in the collisionless MHD regime, including models of kinetic

effects such as phase mixing and Landau damping, has been developed. This ‘Landau MHD’ model is based

on Kulsrud’s formulation of collisionless MHD,3,8,9 and it is enhanced through the use of Landau closures

analogous to those developed by Hammett and Perkins.10 The model is a significant improvement over

previous models, such as CGL theory,1 because it includes accurate models of linear kinetic effects, while

maintaining desirable nonlinear conservation properties and a fairly simple form in k-space. The model

describes all waves which appear within the collisionless MHD ordering, including shear and compressional

Alfv én waves, as well as ion acoustic waves. The effects of collisions have also been considered, through

the use of a simple BGK collision operator. It has been shown that, in the high collisionality limit (! �
� � 
c), the model reproduces Braginskii’s stress tensor and thermal conductivities approximately.

Both a 3+1 moment Landau MHD model and a more accurate but more cumbersome 4+2 moment model

have been developed. Both have been derived for fairly general conditions, making no assumptions about

adiabaticity or plasma beta, and including models of both ion and electron Landau damping. Collisional

effects have been included in the moment equations through the use of a BGK collision operator, and a

collisionally modified version of the 3+1 closure has been derived. One species ofZ = 1 ions is assumed,

but the generalization to multiple ion species is possible. The model can be easily reduced toaccount for

further restrictions on adiabaticity,e.g. by replacing the full electron moment hierarchy with a simple adia-

batic electron response when appropriate. Additional simplifications are easily made for isotropic pressures

(Tk0 = T?0), or electrostatic perturbations (B1 = 0) etc. For nearly incompressible modes, a different

ordering which eliminates the compressional Alfv´en time scale is possible, as outlined by Medvedev and

Diamond.19

Some of the limitations of our model are imposed by the use of a general collisionless MHD ordering

together with a gyroaveraged kinetic equation. This ordering eliminates all finite Larmor radius (FLR)

effects (k?� ! 0), including the curvature andrB drifts. To bring FLR effects into the problem, it is

necessary to introduce an additional ordering which removes the compressional Alfv´en time scale.

Another complication is the evaluation of thejkkj=kk terms found in the Landau closures. As pointed

out by Finn and Gerwin,18 the Landau damping must be evaluated along perturbed field lines. Hence, for

nonlinear calculations, transforming the closure to real space requires an integral along the perturbed field

line. The numerical evaluation of these nonlinear closures may be burdensome in some cases, as discussed

in Section VII.

It is anticipated that the model will be useful for nonlinear numerical simulations. Some of the caveats
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involved in using Landau closures in nonlinear simulations have been extensively discussed in the gyrofluid

literature,11,12,23,24,26{30 but these caveats are an area of ongoing research. There are some regimes where

certain nonlinear kinetic effects are not well modeled by Landau-fluid closures.30 But we generally be-

lieve12,24,27,28 these closures will be adequate for stronger turbulence regimes where rapid decorrelation is

occurring and the velocity space details of the distribution function are not critically important.

It is hoped that the model will prove useful for simulating both laboratory and astrophysical plasmas in

the collisionless MHD regime. The model should be able to predict the onset and structure of instabilities,

as well as the heat and particle transport caused by the instabilities.
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2jkkjvT ki). The 3+1 and 4+2 moment Landau MHD models are

compared with linear kinetic theory. Predictions of CGL theory and Ideal MHD theory are
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2 The imaginary part of the normalized linear density response (n1=ikx�xn0), versus real nor-
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2jkkjvT ki ). The 3+1 and 4+2 moment Landau MHD models
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versus real normalized frequency (�i = !=
p
2jkkjvT ki). The 3+1 and 4+2 moment Landau

MHD models are compared with kinetic theory. Predictions of CGL theory and Ideal MHD
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4 The imaginary part of the normalized linear total perpendicular pressure response (p?1=ikx�xp?0),
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2jkkjvT ki). The 3+1 and 4+2 moment Landau

MHD models are compared with kinetic theory. Both CGL theory and Ideal MHD theory
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5 Linear growth rate of the mirror instability (k2? � k2k ) as predicted by kinetic theory,

3+1 and 4+2 Landau MHD models, and CGL theory (Ideal MHD cannot predict the mir-

ror growth rate as it posits an isotropic pressure). The normalized growth rate (�i =
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p
2jkkjvT ki) is plotted versus the temperature anisotropy (T?0=Tk0) at constant

� = f(2=3)p?0 + (1=3)pk0g=(B2
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