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Abstract

A closed set of fluid moment equations including models of kinetic Landau damping is developed which
describes the evolution of collisionless plasmas in the magnetohydrodynamic parameter regime. The model
is fully electromagnetic and describes the dynamics of both compressional and shearvddives, as well
as ion acoustic waves. The model allows for separate parallel and perpendicular presandgs, , and,
unlike previous models such as Chew-Goldberger-Low theory, correctly predicts the instability threshold
for the mirror instability. Both a simple 3+1 moment model and a naweurate 4+2 moment model are
developed, and both could be useful for numerical simulations of astrophysical and fusion plasmas.
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[. Introduction

The dynamics of collisionless plasmas are of great interest both in astrophysics and in laboratory fusion
research. However, such plasmas are often studied using models which implicitly assume high collisionality
and which ignore important kinetic effects such as parallel Landau damping. In particular, models based
on ldeal magnetohydrodynamics (MHD) assume collisional equilibration on a fast time scale and are not
in general applicable to collisionless plasmas. Chew-Goldberger-Low (CGL) thedayxes the high colli-
sionality assumption, but assumes an adiabaticity condition which is rarely met, and neglects parallel Landau
damping, which can be important in the collisionlessregime. Hence results from CGL theory are not always
reliable, as evidenced by the well known factor of six error in the CGL prediction of the stability threshold
for the mirror instability?®> Simplified models such as Ideal MHD and CGL are often employed despite
their limitations because of the ditative insights they provide and the difficulty of working directly with
a kinetic formulation. There are some particle simulations of collisionless MHD phendiriebat, there
are also many fluid MHD simulations which could benefit from being extended into lower collisionality
regimes.

In this paper we will develop a relatively simple description of collisionless plasma dynamics which in-
cludes parallel Landau damping. We wish to construct a model which is valid over a wide parameter regime
and can later be narrowed and simplified for particular cases. As a starting point we will employ Kulsrud’s
formulation of collisionless MHE:®* Kulsrud’s formulation requires solving a kinetic equation for the
perturbed pressurgg andp_, or introducing further assumptions such as adiabaticity to evaluate the pres-
sures. We shall take moments of Kulsrud’s kinetic equation, and close the moment hierarchy with Landau
closures analogous to those derived by Hammett, Perkins and Déflaideneralized to allow anisotropic
pressures and magnetic perturbations. This yields a fairly simple set of moment equations with desirable
nonlinear conservation properties, and a linear response function very similar to the kinetic response of a
collisionless bi-Maxwellian plasma.

We shall refer to the model as Landau MHD, because the model incorporates the effects of parallel
Landau damping, and it is valid within the collisionless MHD regime. It is useful to consider the Landau
MHD model as an extension of CGL theory which incorporates Landau damping, and can incorporate
collisional effects as well.

One of the limitations of the Landau MHD model we present is that it is derived only in the standard
ordering of ideal MHD¢ ~ w /. ~ kp, where the plasma varies on frequency scalesnall compared to
the gyrofrequencyl., and varies on spatial scalégk long compared to the gyroradigs Thus it covers
phenomenon related to compressional and sheareAlivaves and instabilities, ion acoustic waves, and



ion and electron kinetic effects such as Landau damping. However, it does not include drift-waves or other
micro-instabilities (which have been the focus of other Landau-fluid wagkabse they result from finite-
Larmor/gyro radius (FLR) effects which vanish in the usual MHD ordering. Also, though collisional effects

on the ion and electron heat fluxes and on the pressure tensor can be kept in our model, there is no resistive
component to the ideal Ohm’s law. This is because the parallel cUrfent.e,u,, = 0 to lowest order in

the 1 /e expansion of Kulsrud’s collisionless MHD, and collisions would alter the Ohm’s law only at higher
order in thee ~ w/Q ~ kp expansions. Thus the plasma is still an ideal electrical conductor in our model
and the magnetic field lines are frozen into the plasma.

Alternative orderings are possible to bring in FLR or resistive effects. One approach would be to take
fluid moments of the electromagnetic gyrokinetic equatiot, which allowsk, p ~ 1, and work out the
appropriate closures. Another approach, taken by Chang and Calleim effect carries Kulsrud’s expan-
sion to higher order in FLR, by using, p ~ k;/k, ~ A with A? ~ ¢ ~ w/Q.. This “extended-MHD”
ordering orders the compressional Adfviwave out of the equations, but retains the slower SheaeAlfv’
and ion acoustic waves, and includes resistive effects in the Ohm’s law as well as drift-wave instabilities
with moderate:, p ~ ¢'/2. Chang and Callen use an alternative derivation of Landau-fluid closures which
is actually linearly exact (employing the full functions). It reduces to our formulation in the appropriate
limits.!! Their approach advances 3 moments (density, parallel flow, and temperature) for each species with
linear closures for the heat flux and stress tensor, while here we advance up to 6 moments (4 parallel and 2
perpendicular moments) for each species. These six moment equations rettimaldaonlinear effects,
and simplify some of the manipulations of the stress tensor by keeping separatelp, (which is also
essential to study the mirror instability that Kulsrud used to point out problems with the CGL theory). They
can be reduced to simpler systems with fewer moments in various limits. Future work could try to extend
our methods to the electromagnetic gyrokinetic equation or merge with the methods of Chang and Callen
for the extended-MHD ordering.

There are previous authors who have tried some forms of Landau closures in MHD equations. Bonde-
son and Wartf used viscous and pressure-damped models of Landau damping in studying wall stabilization
of external MHD modes in advanced tokamak designs. An important feature of this work was the use of
Lagrangian variables so that thig | operator involved in Landau-fluid closures would (at least linearly)
effectively operate along perturbed magnetic field lines, which Finn and G€rsfiowed was important
to do. However, Bondeson and Ward’s model was a relatively low-order Landau-fluid model and was not
entirely consistent, assuming high collisionality in the derivation of the initial 1-fluid equations and low col-
lisionality elsewhere. Agcent paper by Medvedev and DiaméhHas incorporated Hammett-Perkins type



closures into a set of two fluid equations, used to describe large amplitude shear Affd'magnetosonic

waves in interplanetary plasmas. Medvedev and Diamond’s equations assume isotropic pressure, and are
valid only in a limited parameter regimg & 1). The Landau MHD model presented here should provide

an extension of this previous work, useful for the study of resistive wall stabilization, as well as for general
problems of MHD mode growth and saturation in both laboratory and astrophysical plasmas.

The organization of this paper is as follows. Section Il summarizes Kulsrud’s collisionless MHD formu-
lation. In Section Ill, a moment hierarchy based on Kulsrud’s kinetic equation is derived and discussed. In
Sections IV and V closures for ‘4+2’ and ‘3+1’ models are derived, following Hammett and Péfkams]
Dorland!? Section VI investigates collisional effects, including the reduction of the model to an appropriate
limit of the Braginskii equations. Section VII discusses practical nonlinear implementation of the closure
terms. In Section VIII, the Landau MHD formulation is applied to analyze the mirror ifgyahnd Section
IX offers concluding remarks.

[I. Collisionless MHD

As a starting point, we employ the collisionless MHD model described by Kufshated on earlier
work by Kruskal and Obermdrand by Rosenbluth and RostoKeThis formulation begins with the Vlasov-
Maxwell system of equations, and asymptotically expangs i, the smallness of the gyroradius relative
to macroscopic scale lengths. This is accomplished by the formal expansion of the distribution function
f, the magnetic field3, and the electric field” in the inverse chargé/e. This is equivalent to taking
all relevant frequencies in the problem to be very small compared to the cyclotron freqenend the
plasma frequency,,,.

In this ordering, the Vlasov equation reduces to a condition on the zeroth order parallel (relative to the
magnetic field) electric field’,, = 0, and the following kinetic equation for the zeroth order distribution
function of each specief, (v, , r, 1):
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wheree, is the charge on speciesB is a unit vector in the magnetic field directidn = B/B, vy =
c(ExB)/B% u=v}/2B,andL = 2 4 (vb +vp)-V.
Combining moments of this kinetic equation with Maxwell’s equations and taking the usual loerAlfv”
speed limitv < ¢? yields Kulsrud's set of collisionless MHD equations:
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wherep is the total mass density = vz + u,b is the fluid velocity, anc is the pressure tensor.

The above set of equations is exact to zeroth order in the expansion parameter, but the kinetic equation
itself, Eq. (1), must be used to evaluateandp, to close the system. Because Eq. (1) is difficult to solve
directly, this system is rarely employed without further simplification.

One such simplification is the introduction of the double adiabatic law (also known as CGLtheory
In the CGL model, Eq. (1) is replaced by two equations of state which detegmiaadp,:

(2) -
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where the total derivative is defined By = 2 + (ub + vg)-V.

These equations of state are equivalent to setting the heat flow @nwozero. This assumption that
both electron and ion heat flow are negligible is strictly valid only when the mode phase velodit) (
is much greater than the electron and ion thermal speeds, a criterion rarely satisfied éor Wdfvés and
never satisfied for sound waves. Furthermore, the simple truncation of the moment hierarchy implied by this
assumption eliminates Landau damping from the problem, leaving the system with no damping at all, which
can lead to unphysical behavior. However, CGL theory is often employed, even when it is invalid, because
of its simple, Lagrangian form. Of course this can lead to incorrect results, as in the well known case of the

mirror instability.



[ll. The Moment Hierarchy

We wish to develop a formulation which maintains much of the simplicity of the CGL model, while
increasing its range of applicability and including models of kinetic Landau damping. This will be ac-
complished by first taking moments of Eg. (1) and, in the next section, closing the hierarchy using Landau
closures analogous to those developed for the electrostatic case by Hammett and'Perkins.

Multiplying Eq. (1) by B and adding Eq. (4) multiplied by, leads to a kinetic equation in phase space
conserving form:

OB+ (1B (b ve)] + % 18 (=623~ ybovn+ 2om )| = BOG), @

The subscript zero oty has been suppressed. All calculations involve only the zeroth order distribution
function in the original expansion ih/e, though a subsidiary ordering will be introduced to derive the
Landau closures.

Note the addition of a collision operator to the right hand side of the kinetic equation to allow for
generalization to regimes where collisions play an important role. Here a simple BGK collision offerator
is employed:

C(f;) ==Y _vie(fi = Fujr) (12)
p

wherev;;, is the effective collision rate of specigswith species:. These collisions causg to relax to a
shifted Maxwellian with the effective temperature of spegiesd the mass velocity of species
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whereT; = (T); + 271.;)/3. The BGK collision operator in this form conserves mass, momentum and

energy.

Defining the velocity space moments as follows,

ng = [ fs d>v nsuy, = [ fsvy d>v
pis = m [ folvy —uy)® v pis=m [ fouBd*v
= m J fo(vy = uy)® v Qs =m [ fopB(vy — uy) d*v
s = m f fs(op =)t dPo g =m [ fopB(y — ) v

riL, = m [ fsp?B? dPv,

Poisson’s equation and Ampere’s law reduce, to lowest ordéydnto the conditions ", nse, = 0 and
> snsesuy, = 0. Specializing to the case of one species/of= 1 ions impliesn = n. = n; and
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uy = wy, = .. The usual definitions for total higher momenis= >, py.. P = > s Prs @) = Y0 414
etc. are employed. Note that, becausg = v, the collision term serves primarily to isotropize the
distribution. Taking integrals of the forridv, du vﬁpk ... of Eg. (11) then leads to the following set of

exact moment equations:
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wherep = n(m. + m;), U =vg + u”B, andy; = v;; + v;e andy, = v + ;.
Using the condition;;, = u_ to solve forE) [as given in Kulsrud’s Eq. (49)], it is straightforward
to show that the first two moment equations, Eqgs. (14) and (15) are equivalent to Eqg. (2), and the parallel

component of Eqg. (3), thatis:

Ou ~ GVE 1 - ~
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A. Conservation Properties

Just as in the electrostatic cd8ethe moment hierarchy has favorable conservation properties. Each
moment equation acts as a conservation relation, provided the hierarchy is closed by approximating the
highest moments, without inserting additional terms such as viscosity.

Momentum is conserved by any closure which keeps Egs. (2) and (3) and closes for pressure or higher
moments. Combining Egs. (2) and (3) yields:

B? BB
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Similarly, energy is conserved by any closure which uses approximations only for the heat flow moments
q,, andg_ , or higher moments. To demonstrate this, define the kinetic + thermal + magnetic energy density
& =pU?/2+ B*/87 + p, + p;/2. Combining Egs. (2),(3),(4),(16), and (17) yields:

2 (ot ) o] o B ey va @2

whereq = (¢, + q”/2)B. Integrating over volume, we can take the left hand side as the rate of change of
the energy inside a volume, and the right hand side as the flow of energy across the surface. We note that
Kulsrud’s equations (66) and (677fnot employed elsewhere in the paper) appear to be in error.

IV. The 4+2 Model

A closure for the moment hierarchy must now be derived to produce a complete model. In general, a
model which evolves more moments will be more accurate, though more complex and more computation-
ally intensive to implement. A 4+2 moment model, that is a model which evolves four parallel moments
(n, uy, py,s q,) @nd two perpendicular moments, (, ¢, ), will be developed first. The 4+2 model will
truncate the moment hierarchy with Egs. (18) and (19), and will require closurggfoandr .. Simpler
models, such as a 3+1 moment model, can be derived as the low frequency limit of the 4+2 model, following
a procedure developed by Dorlahd.

A closure for the 4+2 model will be derived following the procedure laid out by Hammett and Dor-
land!%:12 This procedure, derived for electrostatic perturbations, must be extended for use with general elec-
tromagnetic perturbations in two dimensions (parallel and perpendicular). The collisionless ease)(
will be considered first, and collisional effects will be investigated in Section VI. The closure should con-
serve mass, momentum, and energy, while providing a linear response which closely matches that expected
from kinetic theory.



A. Linear Response from Kinetic Theory

We first use the guiding center kinetic equation, Eq. (1), to derive the kinetic linear response. We wish
to linearize around a zeroth order distribution which allows the decoupling of electron and ion pressures as
well as the decoupling of parallel and perpendicular pressures that one expects in a collisionless plasma. To
accomplish this we choose a bi-Maxilian distribution with separate equilibrium parallel and perpendicular
temperatureg,, and7’ o,. Since the plasma is collisionless, it is not expected to be exactly Maxwellian,
even for a particular species in a particular direction. However, we wish only to calculate a linear response
which we can approximate with our Landau closure. The linear response thus needs to provide the correct
general form of the linear Landau damping, allowing for independent variation of species pressures, and of
the parallel and perpendicular pressures. Hence the bi-Maxwellian is a convenient choice.

We introduce a subsidiary ordering in which the zeroth order distribution is bi-Maxwellian with no
zeroth order flows or gradient§, = Fiss + fi1s, where:

g
Fys = exp [—
(QT/mS)B/ZTJ_OSTHéﬁz T1os 2T,
The momentsi{ = no+n;, U = U; etc), the magnetic fieldB = B, + B;), and the parallel electric field

s Bopt msv”zl (23)

(E\, = Ey,) are similarly linearized, with the zeroth order part uniform. Note again that this is a subsidiary
ordering. All terms are zeroth order with respect to the initial ordering/in

Eqg. (1) is then linearized and Fourier analyzed to ffind Definingz as the unit vector in the parallel
directionB, = Bz, and defining the wave vectbar= £,z + k.X:

2 .
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Taking moments, keeping in mind thAtl®v = 27 [(Bg + By)dudvy, yields:
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where(, = w/v/2|k.|vy_is the normalized frequency, ai((,) = 1+¢,Z((,) is the electrostatic response
function. The usual plasma dispersion function is defined [fg¢m- 01by 7 (¢) = (1/+/7) [ dt exp(—t*)/(t—

¢), and the thermal velocities are defined tope = /7, /m,s andv; ., = /1 g5/ M.
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Note that it is possible to solve fd¥, using quasineutrality, and to solve 8§ using Eq. (4). However,
we find it most convenient and physically enlightening to leave the response functions in the above form for
matching to the moment model.

B. The 4+2 Landau Closure

We now choose a closure for our 4+2 hierarchy which will closely match the linear response calculated
in the previous section. As noted we require closures for bpth andr; . .. Additional terms such as
viscosity would violate energy conservati8n! and so will not be employed in the 4+2 equations.

The linearized moment equations in the collisionless 0) limit are, omitting the subscript on per-
turbed quantities and defining, = by - V:

on
8u” 1 (pJ_Os — Plo ) V||B1 €s
Ty : ~ S =0 29
5 T nomsvnpns + - By m =0 (29)
Ipy, _
ot T PiosY VE+ Vg, 3P0,V =0, (30)
8pJ-s _
En +2p1os V' VE+ V) qrs +Pros Vi =0, (31)
dqy, 3Plios 3016, 3PuosPros | ViBi
¢ TV~ —nOTSLs 1Pis + { =Tiigs T 371205 T nOTrOLs - nzms Be =~ 0, (32)
Jq s Pros pJ_25 P1osPlos V”Bl
8: + Vire, — —noﬁsvnpns + ("L,LOS — 27,10, — nO%s + nomso Be 0, (33)

The bi-Maxwellian values . = 3pyo,/m0Ms, T, Lo, = PliosPLos/MoMs aNdr | = 2p 1o,/ noms
are easily calculated. Fourier transforming inkot) space, and using the linearized Eq. ), vy =
wB1 /By, yields a simple set of equations for each moment in terms of the other moments and the perturbed
magnetic field.

The system is closed by writing the highest moments (andr ..) as a linear sum of the lower
moments, with coefficients that are in general functionk @ind the equilibrium quantities. Generalized
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linear response functions can then be derived. The closure coefficients are determined by comparison with
linear kinetic theory in the high and low frequency limits.

Guided by previous workd-'? we choose closures with a bi-Maxwellian part and an additional term
which models phase mixing. We first try a simple generalization of the 4+2 closure derived by Dérland
for the electrostatic case, modified for the case of a bi-Maxwellian equilibrium distribution:

ik
P = 307, (2p1, = To,n) + Bymoviy Ty, — V2Dyoy, |’i||l|| 4
kgL,
Pias = Vi Py T VP — v, Toosn — V2D oy, ||’|€|||L %)

The coefficients3, D, andD, are determined by matching the perturbed density and perpendicular
pressure to the kinetic results in the adiabai¢ & 1) and fluid (¢| > 1) limits. It is possible to match
the density response through ordérfor small|¢| and through ordet /¢® for large|(|. Thep, response
can be matched through ordérfor small |¢| and through ordet /¢? for large|¢|. This yieldss, =
(32—-97)/(37 — 8), Dy = 2y/x /(37 — 8),andD, = /7 /2 (the same result as in the earlier electrostatic
derivatiort?).

The density response is then:

g

k-Tyo,

s = —

B T

ol m(@)l (36)

whereR 4((;) is a four-pole model of the electrostatic response funcigq):

4 — 2i\/7Cs + (8 — 3m) 2
4 — 6i\/mCs + (16 — 97)C2 + 4i/7C3 + (67 — 16)¢E

The linear kinetic response functions for the 4 parallel moments, p, ., ¢, are all modeled equally well,

Ra(Cs) = 37)

with R4 (¢s) replacingR(¢;) in the expressions for each. The 4+2 density response is compared to linear
kinetic response in Figs. (1) and (2). Note that in the figures, the quasineutrality relationn . has been
used to eliminatdr, from the expressions for the response functions.

In the p, , responseR(¢;) is modeled partially by the four-pole functiddy(¢s) and partially by the
two-pole functionRy (¢;) = 1/(1 — i/7(s — 2¢2), yielding:

2B1p1gs Tios (Ra(Cs)  Ra(Cs)
Bo [1_T||05< > T2 )] )

_ Pios
k=T,

Pis = 65E||R4(Cs) +

As shown in Figs. (3) and (4), the , response is not matched as closely as the parallel moment response
for large(,, but the fit is still quite good.
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Note that we could have chosen a more general form for-the andr . closures, involving all
lower moments and the perturbed magnetic field. However, upon matching the linear kinetic response in the
|| < 1 and|¢| > 1 limits, these general closures will reduce to the closure given here.

The complete 4+2 system of equations is Egs. (2) through (5), plus Egs. (16) through (19) closed by the
inverse Fourier transform of Egs. (34) and (35). The system can be solved numerically in k-space where the
closure functions are more easily evaluated.

V. The 3+1 Model

For many applications, a simpler, less computationally intensive model will prove adequate. The sim-
plest model which evolvegs, andp, involves truncating the hierarchy with Egs. (16) and (17), using closure
approximations for; andg, . We refer to such a model as a ‘3+1 model’ because it evolves 3 parallel mo-
ments ¢, v, p;) and 1 perpendicular moment,(). Note that the CGL model is a 3+1 model which invokes
the simple closureg; = ¢, = 0.

The 3+1 closures can be derived following the procedure laid out in the previous section, by writing
qy andg, as a sum of the lower moments afg, and solving for coefficients by matching with the linear
kinetic density and perpendicular pressure response. However, the 3+1 closures &gy bothy, ; can be
more simply derived as thg — 0 limit of the 4+2 model, following the moment reduction scheme outlined
by Dorland!? Parker and Carati showed how to extend this scheme to an arbitrary number of moments,
and used it to show some similarities to renormalization methods.

Substituting the 4+2 closures into Egs. (32) and (33)kirtspace, and taking the limif;| < 1 yields:

q, = —noy/ vy, 2 (39)
: Vo k|

2 kT, f Leo ) Hulh
O Eing, LI 40
9is 1oy v %y | o 7 et 05 Tyos ) IRyl Bo 0

Note the term proportional t#; in theq, closure. This term is not found in the electrostatic case, where

B; = 0, and it also vanishes for isotropic equilibrium pressures. This term is needed to properly cgnserve
linearly in the presence of magnetic field compression and anisotropic pressure.

Substituting the closures Egs.(39-40) into the 3+1 equations yields the density response:

Bing 1— TJ_OS
Bo Ty,

733(4‘5)] : (41)
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and the perpendicular pressure response:

1P Los 2B1pios Tyios (RS(Cs) Rl((s))
pJ_s sz”OS €5E||R3(C5) —I_ BO [1 2 —I_ 2 9 ( )

whereR3((;) is a three-pole model of the electrostatic response function:

B 2 — i/7(s
Ra(Gs) = 5= 3iy/mCs — 4C2 + 2i/7C3 *

andR(¢;) is a one-pole model dR (¢s), R1(¢s) = 1/(1 — iy/7(s). The 3+1 density angd, responses are
plotted in Figs. (1) through (4). Of course the response functions, particularby fato not fit the kinetic

results as well as for the 4+2 model. However, the qualitative behavior is correct, and the behavior in both
limits ({; <« 1) and ¢ > 1) is accurate.

The complete 3+1 system of equations is Egs. (2) through (5), plus Eqgs. (16) and (17) closed by the
inverse Fourier transform of Egs. (39) and (40). This set is significantly simpler than the 4+2 equations,
while still conserving particles, momentum, and energy, and providing a reasonable model of the linear
kinetic response.

Further moment reduction to 3+0, 2+1, 2+0 and even 1+0 models is possible. These simpler models can
be useful in certain cases where conservation of thermal energy isn’'t important. However, the 3+1 and 4+2
models allow separate evolutiongf andp, , which is often important in describing collisionless modes.

VI. Collisional Effects

The 3+1 and 4+2 Landau fluid collisionless MHD models have been derived for the completely collision-
less case, where the collision rate is very small compared to a typical mode frequegicy ). However, it
is possible to introduce some collisional effects into the models using a collision operator such as the BGK
operator introduced in Section Ill. Itis then possible to examine regimes with a wide rangésdrality,
provided thaty < €., as required by the initial ordering. Tlaecuracy with which déisional effects are
modeled will of course be limited by the accuracy of thigidhcollision operator employed. Furthermore,
the modeling of certain collisional effects, such as momentum transfer and resistive tearing of magnetic field
lines, is hampered by the use of only the lowest order collisionless MHD expansion in inverse charge.

The moment hierarchy previously derived [Egs. (14) through (19)] already includes the collision terms
arising from a simple BGK collision operator. However, the form of the equations is quite different from
the forms normally used in MHD. We will attack this discrepancy by rewriting Egs. (16) through (19), and
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showing that they reduce approximately to Braginskii’s transport equationthe limitw, |k|v;, < v, <
Q. (w is atypical mode frequency, artds a typical wave number).

First define an average pressuse,= (p, + 2p.,)/3, a differential pressurép, = p;, — p.,, and
a heat flowg, = ¢,,/2 + ¢.,. We can then divide the pressure tendy, into an isotropic part and an
anisotropic part labeleH. ThatisP, = p,I + IL, = p,I+ (—ép,I + 25p,bb)/3. Combining Egs. (16)
through (19) then yields:

dp, 5 2 o 2
29 VU= —2V.(bg,) — =M. : VU 44
o T3P 5V (bas) — 2 (44)
déps 5 . .

- 3¢.,,V-U+ V- {B(qus - qu)} = —Vs0p;

8 s ~ [T 3 ~ N 3 + sT
aqt v [b (% + r”vLs)] * §€7||sb‘VU‘b - Mb'vhs (46)
nm;
A Pis | PisPy 3puy  Tia >
4.V (uyb) + + = - — =2 =711, | Vb= g
nm,  2nms;  2nmg 2 s

A. The high collisionality limit

In the limit of high collisionality ¢ > w), the above three equations yield an approximation to the
Braginskii transport equatiort$,with the conditionv < ., as required by the initial ordering.

Formally expanding all moments in the collision tim¢/¢), it is apparent from Eqgs. (16-19) that,, =
G10s = 0pys = 0. EQ. (45) then reduces, to lowest order, to:

Spy, = L2 (3b-VU-b - V.U)

S

If s from the original BGK collision operator is taken to be the reciprocal of Braginskii’'s collision time
(vs = 1/7-SBmg), the resulting expression fdls = (—dpsI + 25p513]3)/3 matches Braginskii’s result to
within an order unity constant (.96 faf = 1 ions, and .73 for electrons).

Similarly, a heat flux nearly matching Braginskii’s can be derived in the same limit. To lowest order,
Eq. (46) becomes:

/T 5 PN r o
V- [b (% + 7‘||,J_05)] oo b-Vpos + <_M - rJ_,J_OS) Vb= —vsq; (47)

2 NgMs 2
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In this collisional limit, ther, moments will take on their Maxwellian values,(,, = 3p3/msno, ry o, =
p3/msno, Tilgs = 2p3/msng). Substituting yields:

_ _é Po
qis 2 Vet

V||/T05

which matches the Braginskii heat fluxes to within factors of order unity.

To match Braginskii’'s results more precisely, one could replace the simple BGK collision operator used
here with a more precise Landau or Fokker-Planck operator. This should allow reproduction of the col-
lisional energy flow between specie3d,( as well as the above heat flow and anisotropic pressure terms.
However, modeling momentum exchange terms is problematic becauséigldaonmal expansion irl /e
used to derive the collisionless MHD equations impligs = u,,. The effects of resistive momentum
exchange thus require going to higher order in the ideal MHD ordering, or using an alternative ordering
procedure.

B. Collisionally modified 3+1 closure

Collisional effects have not been considered in the derivation of the Landau closures themselves. In
principle, it is possible to rederive the linear kinetic response functions with collision terms, and choose
Landau closures which match this collisional linear response. However, a simpler procedure appears to be
adequate.

This alternate approach;?* is to derive a collisionless closure for a many moment model (here the 4+2
model), and then reduce the number of moments by taking the low frequency limit of the highest moment
equations, with the collisional terms included. This will incorporate some collisional effects into the lower
moment closure (here it will include the collisional effects described by thedq, equationsinto the 3+1
model). The modified 3+1 closures resulting from this procedure are:

’ " (V8x[ky vy, + (37 — 8)ws)
nov?llqikllTLs Tyios n0U752||QTL05ik||B1
qQis = — = - + - T WL (49)
(/5 kloa, +v2) i0s ) Boly/5Ikylva, +vs)

These closures allow a smooth transition from the collisionless regime where Landau damping is impor-
tant, to the collisional regime where Landau damping vanishes.

Hence some collisional effects can be included within the Landau collisionless MHD model, and the
model can be extended for use in the marginally collisional regime- (w) as well as the collisionless
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regime ¢ < w). However, the accurate modeling of somdlismnal effects, particularly those associated
with momentum exchange, is made difficult by the use of the collisionless MHD ordering. A model based
on Braginskii or resistive MHD is more appropriate for use in the highly collisional regime ().

VII. Nonlinear Implementation of the Closure Terms

The closures for both the 4+2 and 3+1 models employ terms contdi)jjid,. Numerical evaluation
of these terms irk-space is straightforward for electrostatic problems (such as ITG/drift-wave turbulence),
since only a simple Fourier transform along the equilibrium magnetic field direction is required. But as
pointed out by Finn and Gerwitf,Landau damping must be evaluated along perturbed field lines, i.e. Lan-
dau damping involves particles mixing due to their free-streaming along the total (equilibrium + fluctuating)
magnetic field, and sk, involves Fourier transforms along these perturbed magnetic field lines. Concep-
tually, a parallel heat flux is driven by a parallel temperature gradignk V7, = b - V7). Linearizing
this yieldsg,, by - V1, + b - V1), We see that considering only the Fourier transfornvaf; in
the b, direction would not be sufficient even linearly. In fact, in the ideal MHD limit where the magnetic
field is frozen into the fluid, if the temperature is initially uniform along a magnetic field line it will always
remain uniform along a field line if the plasma motion is incompressible, so that the perpendicular gradient
term will exactly cancel the parallel gradient terqy; o« by - VT, + by - V1), = 0. To account for this,
Bondeson and Watd employed Lagrangian variables and applied a Landau damping model only to the
component of the temperature fluctuations driven by compression. Alternatively, one could use the higher-
order 4+2 moment equations which involjVg| operating on a higher moment likg. Upon linearizing
Vi = bo- Vg, + b - Vg4, We often have only to consider the first term sipggis zero for many types
of equilibria.

However, the situation is more complicated for nonlinear electromagnetic calculations. Then the nonlin-
ear termb - V1), can not formally be neglected compared3tp V1),. To be rigorous, the transformation
between thé&-space closure and its real space equivalent must be made along the perturbed field lines. One
way to do this would be with a Lagrangian coordinate system which moved with the magnetic field and had
one coordinate aligned with the magnetic field. Then the standard fast Fourier transform (FFT) algorithm
along this coordinate could be used to evaluatéifeclosures. Alternatively, if the simulation uses a fixed
Eulerian grid, then at every time step whé¢ke|T), is to be evaluated, one would need to nigdrom the
simulation grid to a field-line-following coordinate system, carry out the FFT, and then map the result back
to the simulation grid.

One can avoid FFT’s by working directly with the real-space form of the the closures. This is somewhat

16



more expensive computationally, since it involves convolutions in one direcfloN ) operations, where
N is the number of grid points in each direction] rather than the faster FFT algori#ini{log V') oper-
ations]. But because the convolutions are done in only one direction instead of a 3-D convaltiéh) [
operations], this may be acceptable.

For example, the real-space form of the collisionless 3+1 moment closuyg f6q. (39), is the convo-

0.(2) = —o (%) 3 o /Ooo 4o Tz 4 2) = Ty (= = 2) 7 (50)

Z/

lution!®

where the integration is performed along the perturbed field line. Evaluation of this integral (or its discrete
analogue) in principle requires evaluation of the parallel temperature fluctuation at an infinite number of
points along the field. In practice the integral can be cut off at a reasonable parallel correlatiorfiength.
Truncating the integral at' = L means that the Landau damping is applied primarily to modeshyith
1/L, while modes with;, < 1/L will experience relatively little damping due to the Landau resonances.
This approximation is probably adequate in cases where the Landau-damping is only important for the
high-k, component of the fluctuation spectrum, and convergence can be tested by Varying

When collisions are important, the collisional form of heclosure, Eq. (48), should be used. The real
space form of this closure is then,

Gy = —"0o (;) ’ vy, /OOO dZ'g(2) [Ty, (2 + 2") = T, (2 = 2)] (51)

[CN k N
) = dk = sin(k2
9(2) = | di e sin(ke)

wherek = kL, and: = z/L, have been normalized to the parallel collisional mean free path

Vv 871 %

=37 _% v,

For small? Eq. (51) behaves just as Eq. (50), but for latge(#) falls off rapidly, as1 /3, and the closure
integral may be quite accurately truncated after a few mean free paths.

Eqg. (50) includes nonlinear magnetic effects if the integral is evaluated along perturbed magnetic field
lines, but it still assumes that density and temperature vary weakly along a field line so that constant equilib-
rium values ofng andv; can be used. There are various possible extensions of this closure which could be
proposed to model cases with stronger parallel nonlinearities (for example, see Sec. 3.4 of Smitk3.thesis
The relative advantages or accuracy of various pd#gb has not yet been studied, but one reasonable
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nonlinear model is

Q5(2) = — (2) : /OOO PGS NP2z + ) = T =z = T2 (= = 2) = TP

1/2
i ms/ o

This has the physically reasonable property of weighting the convolution integral by the density, so that parti-
cles streaming from low density regions contribute less to the heat flux. This model (or some variant thereof)
might be useful to model the heat flux on field lines which intersect solid materials (where the plasma density
goes to zero), such as in the edge of fusion devices. A possible choifg,fisr [ dzn(z)1)(z)/ [ dzn(z).

VIIl.  An Example: The Mirror Instab ility

To demonstrate the usefulness of our model, and the fundamental importance of kinetic effects in simple
collisionless MHD problems, we will investigate the magnetic mirror instability. Kufécités this example
to demonstrate the use of his guiding-center kinetic theory and to expose the limitations of simple fluid the-
ories such as CGLWe will show here that our Landau fluid models recover the exact instability threshold
for the mirror mode, and provide a good model of the mode’s linear growth rate above the threshold.
Consider a strongly-magnetized, homogeneous plasma consisting of electrons and singly charged ions.
Take the magnetic field to be uniform in thelirection,Bo = ByZ. The equilibrium distributionis taken to
be an anisotropic bi-Maxwellian with unequal parallel and perpendicular temperatures. For simplicity, take
the electron and ion temperatures to be equal in each dire@tjgns= 1) ,. = 1), and?' o, = T g. = T'1p.
Define thex direction by writing the wave vectd& = k,x + k.Zz, and define a ‘plasma displacement’ vector
Eby U = —wé.

Linearizing and Fourier transforming Egs. (2) through (5) then yields the following equations of motion:
_Powzfx = —ikyp, + k? (Puo - PLo)fx - (k?g + k?)(33/47r)€x (53)

—P0W25z = —ikzpn + kxkz(Puo - PLo)fx (54)

where the subscript on the perturbed pressures is again suppressed. Expressions for the perturbed pressures
p; andp, are needed to close this system and solve for the instability growth rate. We will close the system

in four different ways: first with linear kinetic theory, then using CGL theory, then with the 3+1 Landau

MHD model, and finally with the 4+2 Landau MHD model, in order to compare the instability thresholds

and linear growth rates determined by each.
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To calculate a kinetic result, we proceed exactly as in Egs. (24) through (27). Using quadiyeatra
solve for £, and using Eq. (4) foB, = —ik,&, Bo, yields:

_ R(G) = R(<)
el = kxszmem (55)

This leads to the following expressions for the perturbed pressures:

Tio (R(Q)JrR(Ce) . _RIGRE) )_1]

(56)

1L — kl’ P L
Pu = 2ikalePro lTuo 1 R+ R

Dy = ikxfxpllo [%T(? (1 T QR(,}%ES)(%),}(QCEC:; Ce)) - 1] (57)

Substituting forp, in Eg. (53) leads to the dispersion relation:

k2 ([ T.3 T B? T B?
e o (Tag e B (Jons ) 8)
where the functiopd (¢) is defined byA (¢) = {R(¢;)? + 6R(CIR(Ce) + R(C)?H/{4(R(C) +R(C)) }-

For parallel propagationX.| > |k.|), the above reduces to the dispersion relation for the ‘firehose’ in-
stability, and the kinetic effects drop out within our ordering (note that a different ordering can be used to
analyze these much smaller kinetic effects for limited parameter regimes- see Medvedev and Biamond
All of the models considered will reproduce the firehose linear growth rate exactly. In the opposite limit
(k2| > |k.]), the dispersion relation becomes:

K2 [ T2 Tio B2
G+¢=22= (— O AR(Q) 4+ =22 + 2 (59)
k2\ Ty Tyo  87py

This relation has an infinite number of roots, due to the presence of plasma Z-functions. The magnetic
mirror instability is the root for which the real part of the frequency goes to zero. Taking thelimit0,
leads to the instability criterion for the mirror mod;g—:lil-,:g >Pig+ g—ﬁ. The linear mirror growth rate versus
the degree of anisotrog¥, /1), is plotted in Fig. (5) for a fixed mass ratio at fixed total plasma beta,
B =((2/3)pso+ (1/3)pyo)/(BG/87).
Chew-Goldberger-LoWwtheory can also be used to investigate the mirror instability. CGL's simple
truncation of the moment hierarchy with = ¢, = 0 leads to the following linearized expressions for the
two perturbed pressures:

pi = —ipyo(kals + 3k:E2) (60)

PL = _ipJ_o(Qkxgx + szz) (61)
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Plugging these into the equations of motion leads to the following dispersion relation:
k2 [ T 1 Two B Ty B3
Cf—l-@:?—x(————l-——l- + -1+ (62)
B2\ Tya6-2(¢+¢) Ty, Sapy Ty 4mpyg
In the|k.| > |k.| limit, CGL theory correctly predicts the instability threshold for the firehose instability.

However, in the opposite limitt,;| > |k.|, CGL's description of the mirror mode is drastically in error.
CGL predicts the mirror mode goes unstablefglr% > pio+ g—f, a factor of 6 error from kinetic theory,
as noted by Kulsrud.The linear growth rate is plotted in Fig. (5).

The 3+1 Landau MHD model does markedly better in modeling the mirror mode. The 3+1 dispersion
relation is derived using quasineutrality and Eq. (41) to solveifgrand using3; = —ik,&, By to find:

Rs(Gi) — Ra(Ce)
R3(¢) + Ra(Ce)
Plugging this into the 3+1 model expressions for the perturbed pressures worked out in Section I1V.B, and

€E|| = kxkzngJ_O (63)

summing the 2 species pressures yields:

. TJ_O (Rl (Cz) + 7zl (Ce) R3(CZ)R3(C6) )
= 20k, &, _=° + -1 64
PL 1 f Pro [Tllo 4 RS(Cz) + RS(Ce) ( )
. TJ_O 2733 (CZ)RS (Ce) (Cz + Ce2)
= ik &, 1+ ! —1 65
b Pl [Tllo ( R3(G) + Ra(Ce) (69)
Substituting these results into the equations of motion leads to the following dispersion relation:
k2 T2 T B3 Tyg B3
=22 (——OA O+ =—+—2-]+ — 14— (66)
AN Tyo — 87pyg Ty Ampyg

whereAs(¢) = (R1(¢i)+R1(¢e))/44+R3(¢i)Rs(Ce)/(Ra(G) +Ra(C.)). As expected, the 3+1 results are
identical to the kinetic results, except that the electrostatic response fufitionis replaced everywhere

by either a three-pole or a one-pole modgk((,) or R1(¢s)). In the limit|k.| > |k,|, the 3+1 model
recovers the linear kinetic firehose dispersion relation. Taking the opposite|tiphit> |£.|, leads to

the mirror mode dispersion relation. Again the small frequency lihit{ 0), is taken to investigate the
mirror mode. Unlike CGL, the 3+1 model recovers the correct stability threshold for the mirror instability
(% >piot+ g—f). The mirror mode linear growth rate predicted by the 3+1 model is compared to the other
models in Fig. (5).

The 4+2 model provides a yet more accurate model of the linear mirror mode growth rate. The cal-
culation of the dispersion relation is completely analogous to that for the 3+1 model, and all of the results
are identical to those given in the previous paragraph, with the simple substit®ioQg — R4(¢;) and
R1(¢s) — R2(¢s). Again the instability threshold for the mirror mode matches the kinetic result exactly,
and the linear growth rates are compared in Fig. (5).
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IX. Discussion

A fluid description of plasma dynamics in the collisionless MHD regime, including models of kinetic
effects such as phase mixing and Landau damping, has been developed. This ‘Landau MHD’ model is based
on Kulsrud’s formulation of collisionless MHP®¥ and it is enhanced through the use of Landau closures
analogous to those developed by Hammett and PetkirBhe model is a significant improvement over
previous models, such as CGL thedrgecause it includes accurate models of linear kinetic effects, while
maintaining desirable nonlinear conservation properties and a fairly simple form in k-space. The model
describes all waves which appear within the collisionless MHD ordering, including shear and compressional
Alfv'en waves, as well as ion acoustic waves. The effects of collisions have also been considered, through
the use of a simple BGK collision operator. It has been shown that, in the high collisionalitydimadt (

v < 2.), the model reproduces Braginskii’s stress tensor and thermal conductivities approximately.

Both a 3+1 moment Landau MHD model and a more accurate but more cumbersome 4+2 moment model
have been developed. Both have been derived for fairly general conditions, making no assumptions about
adiabaticity or plasma beta, and including models of both ion and electron Landau damping. Collisional
effects have been included in the moment equations through the use of a BGK collision operator, and a
collisionally modified version of the 3+1 closure has been derived. One species-of ions is assumed,
but the generalization to multiple ion species is possible. The model can be easily redaceduot for
further restrictions on adiabaticitg,g. by replacing the full electron moment hierarchy with a simple adia-
batic electron response when appropriate. Additional simplifications are easily made for isotropic pressures
(I, = T.o), or electrostatic perturbationB¢ = 0) etc For nearly incompressible modes, a different
ordering which eliminates the compressional Alfvtime scale is possible, as outlined by Medvedev and
Diamond!®

Some of the limitations of our model are imposed by the use of a general collisionless MHD ordering
together with a gyroaveraged kinetic equation. This ordering eliminates all finite Larmor radius (FLR)
effects ¢.p — 0), including the curvature an¥ B drifts. To bring FLR effects into the problem, it is
necessary to introduce an additional ordering which removes the compressioread e scale.

Another complication is the evaluation of thig |/ %, terms found in the Landau closures. As pointed
out by Finn and Gerwint? the Landau damping must be evaluated along perturbed field lines. Hence, for
nonlinear calculations, transforming the closure to real space requires an integral along the perturbed field
line. The numerical evaluation of these nonlinear closures may be burdensome in some cases, as discussed
in Section VII.

It is anticipated that the model will be useful for nonlinear numerical simulations. Some of the caveats
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involved in using Landau closures in nonlinear simulations have been extensively discussed in the gyrofluid
literature!1:12:23:24,26-30 1t these caveats are an area of ongoing research. There are some regimes where
certain nonlinear kinetic effects are not well modeled by Landau-fluid clostir&ut we generally be-
lieve'2:24:27:28 these closures will be adequate for stronger turbulence regimes where rapid decorrelation is
occurring and the velocity space details of the distribution function are not critically important.

It is hoped that the model will prove useful for simulating both laboratory and astrophysical plasmas in
the collisionless MHD regime. The model should be able to predict the onset and structure of instabilities,
as well as the heat and particle transport caused by the instabilities.

X. Acknowledgments

We would like to thank Drs. Mike Beer, Stephen Smith, and Nathan Mattor for useful discussions about
Landau closures. We would like to acknowledge supportfrom the U.S. Department of Energy under Contract
No. DE-AC02-76CHO03073. P.B.S. acknowledges the support of the National Science Foundation through
the NSF Graduate Fellowship Program. This work was also supported in part by the Numerical Tokamak
Turbulence Project, part of the DoE High Performance Computing and Communications Initiative.

22



References

!G. F. Chew, M. L. Goldberger, and F. E. Low, Proc. Roy. Sk&i236, 112 (1956).

R. M. Kulsrud, inProceedings of the International School of Physics Enrico Fermi, Course XXV, Advanced
Plasma Theoryedited by M. N. Rosenbluth (North Holland, Varenna, Italy, 1962).

JR. M. Kulsrud, inHandbook of Plasma Physicsdited by M. N. Rosenbluth and R. Z. Sagdeev (North
Holland, New York, 1983).

4J. N. Leboeuf, T. Tajima, and J. M. Dawson, J. Comp. PB§s379 (1979).

°R. D. Sydora and J. Raeder,@ometary and Solar Plasma Physieslited by B. Buti (World Scientific
Publishing Co., Teaneck, New Jersey, 1988), pp. 310-364.

6G. Y. Fu and W. Park, Phys. Rev. LeTt, 1594 (1995).

"H. Naitou, K. Tsuda, W. W. Lee, and R. D. Sydora, Phys. Plasind57 (1995).
8M. D. Kruskal and C. R. Oberman, Phys. Fluij275 (1958).

9M. N. Rosenbluth and N. Rostoker, Phys. FIU&i®3 (1958).

19G. Hammett and F. Perkins, Phys. Rev. Lé#,3019 (1990).

G, Hammett, W. Dorland, and F. Perkins, Phys. Fluidg B052 (1992).
12\W. Dorland, Ph.D. thesis, Princeton University, 1993.

13T, S. Hahm, W. W. Lee, and A. Brizard, Phys. Fluiis 1940 (1988).
A, Brizard, Phys. Fluids B}, 1213 (1992).

157, Chang and J. D. Callen, Phys. Fluid$R1167 (1992).
167, Chang and J. D. Callen, Phys. FluidgtB1182 (1992).
17A. Bondeson and D. Ward, Phys. Rev. LeTR, 2709 (1994).
183, Finn and R. Gerwin, Phys. Plasn&2469 (1996).

19M. Medvedev and P. Diamond, Phys. Plasr8a863 (1995).

23



20E, Gross and M. Krook, Phys. Re€02 593 (1956).
215, E. Parker and D. Carati, Phys. Rev. L8, 441 (1995).

223, 1. Braginskii, inReviews of Plasma Physjoadited by M. A. Leontovich (Consultants Bureau, New
York, 1965), Vol. 1, pp. 205-311.

23M. A. Beer, Ph.D. thesis, Princeton University, 1995.
24M. A. Beer and G. W. Hammett, Phys. Plasn3ag046 (1996).
253, A. Smith, Ph.D. thesis, Princeton University, 1997.
26C. L. Hedrick and J.-N. Leboeuf, Phys. FluidstB3915 (1992).

27G. W. Hammett, M. A. Beer, W. Dorland, S. C. Cowley, and S. A. Smith, Plasma Phys. Controlled Fusion
35,973 (1993).

283, E. Parker, W. Dorland, R. A. Santoro, M. A. Beer, Q. P. Liu, W. W. Lee, and G. W. Hammett, Phys.
Plasmad, 1461 (1994).

29J. Krommes and G. Hu, Phys. Plasmag8211 (1994).

N, Mattor, Phys. Fluids Bl, 3952 (1992).

24



List of Figures

1  The real part of the normalized linear density responséif..£..no), versus real normal-
ized frequency; = w/v/2|ky|vr,). The 3+1 and 4+2 moment Landau MHD models are
compared with linear kinetic theory. Predictions of CGL theory and Ideal MHD theory are
also shown. Parameters chosendre- 1,7, o/1), = 1, Tio; = Tioe, To; = Tjjo.» @N

mi/me =40, L Lo e

2  Theimaginary part of the normalized linear density respomsg@k..£no), versus real nor-
malized frequency({ = w/v/2|ky|vry,). The 3+1 and 4+2 moment Landau MHD models
are compared with linear kinetic theory. Both CGL theory and Ideal MHD theory predict
zero imaginary density response. Parameters are identical to those in Fig..(1).. . . . .

3  Thereal part of the normalized linear total perpendicular pressure respons&(.,.p. o),
versus real normalized frequency & w/v/2|k|vry.). The 3+1 and 4+2 moment Landau
MHD models are compared with kinetic theory. Predictions of CGL theory and Ideal MHD
theory are also shown. Note the significant variation in ggatesponse between the 3+1
model and the kinetic model, even for largeParameters are identical to those in Fig. (1). .

4  Theimaginary part of the normalized linear total perpendicular pressure respongg(£.p. o),
versus real normalized frequency & w/v/2|k|vr).). The 3+1 and 4+2 moment Landau
MHD models are compared with kinetic theory. Both CGL theory and Ideal MHD theory
predict no imaginary pressure response. Parameters are identical to those in Fig..(1).

5 Linear growth rate of the mirror instabilityef > kﬁ) as predicted by kinetic theory,
3+1 and 4+2 Landau MHD models, and CGL theory (Ideal MHD cannot predict the mir-
ror growth rate as it posits an isotropic pressure). The normalized growth(fate (
Im(w)/\2|ky|vr),) is plotted versus the temperature anisotropy,('T},) at constant
B =1(2/3)po + (1/3)py,}/(B§/87). The parameters chosen dfe= 1, T o; = T,

T”O’L = T||06, ﬁ = 1 and\/mi/me = 40 ...........................
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