A Collaborative National Center for Fusion & Plasma Research

Daren P Stotler

Principal Research Physicist, Science Focus Group Head, Plasma-B

Dr. Daren Stotler is a Principal Research Physicist in the Theory Department primarily interested in the interaction between plasmas and their material surroundings. In an experiment or reactor, those interactions result in the release of atoms and molecules into the plasma. These electrically neutral particles can freely cross the magnetic field lines of the experiment, perhaps resulting in a deterioration of its performance. Dr. Stotler has worked with Dr. Charles Karney to develop the DEGAS 2 neutral gas code to study how the plasma-material interactions and the resulting particles affect current experiments and predict their impact on future devices.

Dr. Stotler has exploited the flexibility and parallelization capability designed into DEGAS 2 to simulate in detail neutral particle transport in experiments carried out on the National Spherical Torus Experiment (NSTX) at PPPL and Alcator C-Mod tokamak at MIT. This work includes detailed three-dimensional DEGAS 2 simulations of NSTX Gas Puff Imaging turbulence visualization experiments that match the experimental observations to within the estimated errors. Most recently Dr. Stotler has been participating in the Edge Physics Simulation [EPSI; C. S. Chang (PPPL), P.I.] and preceding Center for Plasma Edge Simulation collaborations funded by DoE's Scientific Discovery through Advanced Computing program. Stotler's responsibility in these projects has been the development of comprehensive neutral particle transport routines based on DEGAS 2 that can be integrated into the projects' kinetic plasma simulation codes. At the heart of all of these efforts is a keen interest in code verification and validation ("V&V"), the testing of code results against known solutions and testing of the model represented by the code against experimental data, respectively.

Dr. Stotler also has significant experience with simulating the plasma response of the plasma to these neutral particles using codes such as B2 and UEDGE (provided by Dr. T.R. Rognlien of LLNL). Prior to working on the plasma-material interaction problem, Dr. Stotler studied transport and confinement of the main (core) plasma, particularly with regard to reactor design. In addition to contributing to the development of the BALDUR predictive transport code, he wrote three global (i.e., considering the plasma to be uniform) analysis codes, including the ASPECT code.

The relatively simple formalism underlying these global analysis codes led Dr. Stotler to write two Virtual Tokamak applets as part of the Internet Plasma Physics eXperience (IPPEX) science education effort. The original, steady state Virtual Tokamak has proven to be a very effective tool for communicating the physics of fusion reactors to students of all ages and has even been translated into other languages. Dr. Stotler also has significant involvement in the New Jersey Regional Science Bowl and New Jersey State Science Olympiad contests for high school students.

Dr. Stotler's publication record contains more than 120 papers in refereed journals or conference proceedings. He received his Ph.D. in Applied Physics from the University of Texas at Austin in 1986. He received a B.A. summa cum laude from Rice University in 1981 with a double major in physics and materials science. He was a member of the Phi Beta Kappa (nominated in the fall of 1980), Sigma Pi Sigma, and Tau Beta Pi honor societies. Named a Max Roy scholar, he was awarded academic scholarships by the Brown Engineering Development Committee, the Champlin Petroleum Corporation, and the Beta Sigma Phi sorority.


DEGAS 2 http://w3.pppl.gov/degas2
EPSI http://epsi.pppl.gov/home
Virtual Tokamak http://ippex.pppl.gov/tokamak/default.htm


U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000