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AGENDA

• Low Temperature Plasmas: A diversity of applications

• Economic Context

• Plasmas for Materials Processing

• Microelectronics ($1000/cm2)

• Polymers ($0.05/m2)

• Future Opportunities: Plasma 2010 Decadal Study…and chaos

• Concluding Remarks
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• Electrons transfer power from the "wall plug" to internal modes of
atoms / molecules to "make a product”, very much like combustion.

• The electrons are “hot” (several eV or 10-30,000 K) while the gas
and ions are cool, creating “non-equilibrium” plasmas.
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LOW TEMPERATURE PLASMAS: 
A POWER TRANSFER MEDIA 
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•Displays

•Materials
Processing

COLLISIONAL LOW
TEMPERATURE PLASMAS

• Lighting

• Thrusters

• Spray Coatings
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LOW TEMPERATURE PLASMAS:

PHYSICS, A BUSINESS, A

NATIONAL PRIORITY:

LIGHTING AS A CONTEXT
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FLUORESCENT LIGHTING

• Fluorescent lamps convert
electricity to visible radiation
with an efficiency of nearly 10%.

• Electron impact excitation of Hg
produces UV light, converted to
visible by phosphors.

PPPL_0208

• Ar/Hg = 97/3, a few Torr
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EXCITATION OF Hg ATOM

• The desired states to excite in the Hg atom in a fluorescent
lamp are in the Hg(3P) multiplet.
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• Rate of excitation is convolution of f( ) and cross section ( ).

• Tuning the electric field and Te can maximize fraction of power
expended in exciting Hg(3P) states.
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RATE OF EXCITATION AND POWER DISSIPATION
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• Ar/Hg = 97/3
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CONTEXT: PLASMA LIGHTING

• Annual US electrical power
consumption: 3.5 x 1012 kW-Hr

• Electrical power expended in
lighting: 22% (7.6 x 1011 kW-Hr)

• Fraction of expended in fluorescent
lamps: 9% (3.1 x 1011 kW-Hr)

• The output of 35 1-GWe power
plants excite a single multiplet of
Hg in fluorescent lamps…a shift of
0.1 eV in f( ) corresponds to 3 1-

GWe plants.
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http://www.eia.doe.gov/cneaf/electricity/epa/epates.html

http://antwrp.gsfc.nasa.gov/apod/ap970830.html 

http://www.eere.energy.gov/buildings/info/documents/     

      pdfs/lmc_vol1_final.pdf



PLASMAS FOR MATERIALS

PROCESSING
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PLASMAS FOR MODIFICATION OF SURFACES

• Plasmas are ideal for producing reactive species (radicals, ions) for
modifying surface properties.

• Selective production of fluxes of radicals and ions
• Control of activation energy
• Low material temperatures
• Low environmental impact

• Extremely diverse
industries rely on
plasma modification
of surfaces
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• Low pressure
• Low throughput
•High precision
•Grow expensive

materials
•High tech

•High pressure
•High throughput
• Low precision
•Modify cheap

materials
•Commodity

Web Treatment of Films

$0.05/m2 $1000/cm2

Microelectronics

DIVERSE MATERIALS PROCESSING
INDUSTRIES RELY ON PLASMAS

Iowa State University
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PLASMAS FOR

MICROELECTRONICS FABRICATION
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PLASMAS FOR MICROELECTRONICS FABRICATION

• Plasmas are indispensable for etching, deposition and cleaning.

• Control of critical dimensions at 45 nm node require resolution of
only a few nm.

• Required: Unprecedented control of reactant fluxes from the
plasma onto the wafer:

• Uniformity,  Composition, Distribution of Energies

• http://www.intel.com/technology/silicon
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• Future technology nodes will have feature
sizes where one monolayer deviation will
significantly effect performance.
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ACTIVATION ENERGY: SUB-eV, SUB-DEGREE CONTROL

• Activation energy is largely delivered through ion bombardment.

• Distinguishing between materials will be determined by sub-eV
and sub-degree control of ion energies.

• Intel Fin-FET
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MULTI-FREQUENCY CAPACITIVELY COUPLED PLASMA ETCHER:
APPLIED MATERIALS CENTURA ENABLER

• Plasma etching of dielectric materials for logic contacts and
interconnect – 300 mm wafers at the 45 nm node.

PPPL_0208

• Ref: S. Rauf, AMAT
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POWER CONSUMPTION:
PLASMA REACTORS

PPPL_0208

• Ref: S. Rauf, AMAT,
http://www.national.com

• You’ve got to make money doing
this!...One consideration is simply
power consumption.

• Plasma processing tools have
multiple chambers, pumps, power
supplies, heaters and scrubbers.

• Typical power is 25 kW/module, up to
100 kW for a multi-station platform.

• Plasma generation is 25-50% of
power (other is pumps, heaters…).

• A few hundred such tools in a
modern fab (plus cleanroom HVAC..)
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PLASMA TOOLS  A LARGE FRACTION OF TOTAL

PPPL_0208

• Typical energy usage: 1
kW-hr/cm2 of wafer

• Large fab: 30,000  300-
mm wafer starts/month

• 250 MkwH/year

• About 30-50 MW (ave)/fab

• About 1/3 of power is
expended in process
tools, most of them
plasma tools.

• http://ateam.lbl.gov/cleanroom/Fact

• Hu and Chuah, Energy 28, 895 (2003)

• Electricity Usage
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TYPICAL PLASMA ETCHING REACTOR

• Hitachi XT ECR

PPPL_0208
http://www.hitachi-hta.com



• Technological plasmas have vastly different timescales that must
be addressed in models.
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CHALLENGES TO MODELING: VERY MULTI-SCALE

• Integrating timestep
(numerical stability): t

•Dynamic timescale
(phenomena evolution): T

• Plasma transport:

• Dielectric relaxation
t = /   1 ps – 10 ns

• T = ns - ms

• Surface chemistry:

• t = μs,  T = 10 s

PPPL_0208
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HYBRID MODELING
TECHNIQUES

• Hybrid models resolve
multi-physics over
multi-scales.

• Compartmentalize
physical processes
into modules having
minimum of overlap.

• Time slice on physics
times-scales.

PPPL_0208
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MODELING PLATFORMS: HPEM, nonPDPSIM, MCFPM

• Examples will be discussed from hybrid modeling platforms.

• HPEM (Hybrid Plasma Equipment Model)

•More mature, more sophisticated physics
•Lower pressures (sub-mTorr to 10s Torr)
•Structured rectilinear meshes, generally semi-implicit

• nonPDPSIM

•Higher pressures (10s mTorr to multi-atmosphere)
•Less mature but improving physics
•Unstructured meshes, fully implicit

• MCFPM (Monte Carlo Feature Profile Model)

•Evolution of surface features
•nm-to-atomic scale
•Plasma and surface chemistry, charging
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CONTROLLING ACTIVATION ENERGY

FOR ETCHING:

NON-SINUSOIDAL WAVEFORMS
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FLUOROCARBON PLASMA ETCHING OF Si/SiO2

• In fluorocarbon plasma etching of Si/SiO2  CFx radicals produce a
polymer passivation layer which regulates activation energy.

• SiO2 consumes the polymer in etching; thicker layers on Si result
in slower etch rates, and the ability to achieve selectivity.

PPPL_0208
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ACHIEVING HIGH SELECTIVITY

Ref: S.-B. Wang and A.E. Wendt, J. Vac. Sci. Technol. A, 19,
2425 (2001)

• High selectivity achieved
by controlling the ion
energy distribution to
wafer.

• Sinusoidal bias: Broad
IEAD does not
discriminate thresholds.

• Tailored bias: Produce a
narrow IEAD which may
discriminate between
threshold energies.

Sinusoidal Bias

PPPL_0208
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NON-SINUSOIDAL BIAS WAVEFORMS

• Ions cross the sheath quickly compared to the rf period and
arrive at wafer with nearly the instantaneous sheath voltage.

• By controlling the sheath potential with non-sinusoidal
waveforms, one can control the IED.

PPPL_0208
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DEMONSTRATION SYSTEM: ICP, Ar/C4F8 

• Investigate scalings using non-
sinusoidal waveforms.

• ICP with rf bias.

• Ar/C4F8 = 75/25, 100 sccm
• 15 mTorr, 500 W
• 200 Vp-p, 5 MHz

• The “  = 10% Bias Waveform

PPPL_0208
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IEDs:  DURATION OF POSITIVE SPIKE

• Custom bias produces
constant sheath potential
resulting in narrow IED.

• As  increases, IEDs broaden

in energy and bias becomes
less positive.

• 15 mTorr, 500 W, 5 MHz,
200 Vp-p, Ar/C4F8 = 75/25, 100
sccm

Vdc:-73  -12    13    42    46   56   64    75

PPPL_0208
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ETCH PROFILES vs  (POSITIVE EXCURSION) 

• While keeping voltage
constant, etch profile can
be controlled by varying .

• Small values of  produce

an etch stop by promoting
polymerization as does
sinusoidal bias.

• Increasing  recoups

critical dimension.

• 15 mTorr, 500 W, Ar/C4F8 =
75/25, 100 sccm

PPPL_0208
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ETCH PROFILES 
vs VOLTAGE 

• With  constant and varying

voltage, etching proceeds with
nearly mono-energetic ions.

• Transition between “selective”
and “fast” is unambiguous.

• Low voltage: Slow rates with
high selectivity.

• High voltage: High rates with
no selectivity.

• 15 mTorr, 500 W, Ar/C4F8 =
75/25, 100 sccm

PPPL_0208
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ETCH DEPTH 
vs VOLTAGE 

• Approaching the Si/SiO2 interface
with > 200 V bias compromises
selectivity.

• Energy/wafer (plasma, pumps,
heaters)

1000 V Bias:
240 kJ (fast-no selectivity)

200 V Bias:
700 kJ (selective, energy intensive)

• 15 mTorr, 500 W, Ar/C4F8 = 75/25, 100
sccm

PPPL_0208

Plasma

225 kJ

Plasma

120 kJ
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ETCHING RECIPES

• Etching usually occurs in 2 phases:

• Main-etch: Fast but non-selective
• Over-etch: Selective; Low bias

• Gas mixture is often changed to
distinguish main and over-etch…slow
due to gas exchange times.

• Custom tailored voltage waveform

• Controlling physical component
• Change amplitude – immediate

control

PPPL_0208
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ETCHING PROFILES – RECIPE

ANIMATION SLIDE-GIF

200 V
(Slow, selective)

1500 V
(Fast, non-selective)

1500/200 V
(Fast, selective)

  MASK

SiO2

Si

T=1.0 T=0.35 T=0.65
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ETCHING RECIPES: 1500 V MAIN ETCH

• Etching proceeds rapidly with
a 1500 V main etch.

• After 4.5 s, the voltage is
reduced to maintain
selectivity.

• “Soft landing”

• Energy/wafer (plasma only) for
selective etches

200 V (cw) Bias: 700 kJ
1500V / 200 V Bias: 370 kJ

• 15 mTorr, 500 W, Ar/C4F8 =
75/25, 100 sccm

PPPL_0208

Plasma

130 kJ
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HIGH ASPECT RATIO CONTACT (HARC) ETCHING

• Very Challenging…

• Twisting or curvature of features is
randomly observed.

• Features are so small that random
fluctuations of fluxes of radicals,
ions and electrons produces
variations.

• Charging of features by electrons
and ions produce random fields
that deviate paths.

• Processes for HARC etching with aspect ratios > 50-100 are being
developed for capacitors and through wafer vias.

PPPL_0208
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DUAL FREQUENCY CCP Ar/C4F8/O2 : CHARGING

PPPL_0208

• High energy ions are
required for rapid
etching.

• Electrons and ions
deposit charge in the
trench, producing E-
fields that affect
trajectories.

• Randomness of
charging leads to erratic
paths.

• 10 mTorr, Ar/C4F8/O2 =
80/15/5, 10/40 MHz, 500 W.
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SiO2 / Si HARC ETCH: EFFECTS OF CHARGING

• Etch rate higher with
increasing power.

• Without charging:

• Generally straight
profiles.

• With charging:

• Ion trajectories
perturbed.

• Overcome with voltage.

• Some evidence of
randomness due to small
contact area.

• 10 mTorr, Ar/C4F8/O2 =
80/15/5, 10/ 40 MHz, 500 W.

PPPL_0208

• Without Charging • With Charging
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SiO2/Si HARC ETCH: RANDOMNESS OF CHARGING?

• 6 Trenches receiving
“same” fluxes.

• Stochastic nature of
fluxes produces random
twisting.

• Similar behavior
observed experimentally.

• Effect is amplified by
finite size of particles
and mesh.

• 10 mTorr, Ar/C4F8/O2 =
80/15/5, 300 sccm, LF 4
kW, HF 500 W.

PPPL_0208
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IS THERE A FIX? DC-AUGMENTED RF

PPPL_0208

• Single (or dual) frequency CCP…with negative dc bias on
opposing electrode.

• DC ion current produces dc e-beam current incident onto wafer.

• Can dc e-beam be mono-energetic and narrow enough in angle
to penetrate deep into features and neutralize positive charge?
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10 MHz LOWER, DC UPPER: [e] DENSITY, DC CURRENT

• Electron density 3 x 1010

cm-3.

• Dc voltage on upper
electrode requires dc
current path to ground.

• LF electrode blocking
capacitor and insulators
require dc current
returned to side wall.

PPPL_0208

• Dc current peaks near outer edge of electrode.

• Ar, 40 mTorr, LF: 10 MHz, 300 W, 440V/dc=-250V
• DC: 200 W, -470 V
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10 MHz LOWER, DC UPPER: POLYMERIZATION

• Polymerizing gas
mixtures deposit
insulating films on
inside surfaces of
reactor.

• Dc current must return
to ground through
polymer layers.

• Voltage drop increases
across polymer layer to
push through current.

PPPL_0208

• Ar, 40 mTorr, LF: 10 MHz, 300 W, 440V/dc=-250V
• DC: 200 W, -470 V
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10 MHz LOWER, DC UPPER:  PLASMA POTENTIAL

PPPL_0208

• LF electrode passes rf current.  DC electrode passes combination of
rf and dc current with small modulation of sheath potential.

• Ar, 40 mTorr, LF: 10 MHz, 300 W, 440V/dc=-250V
• DC: 200 W, -470 V
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10 MHz LOWER, DC UPPER:  [e], ION ENERGY DISTRIBUTIONS 

PPPL_0208

• Ion energy distribution to wafer is
many degrees, 150 eV in width.

• Electron energy distributions
onto wafer is narrower in angle
and broader in energy.

• Reflects instantaneous potential
difference between electrodes.

• Ar, 40 mTorr, LF: 10 MHz, 300 W,
440V/dc=-250V; DC: 200 W, -470
V
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400 W DC:  [e], ION
ENERGY DISTRIBUTIONS 

PPPL_0208

• Increasing dc power extends range of electron energies incident on the
wafer while also perturbing IEAD.

• Thicker sheath produces non-planar components that lead to angularly
asymmetric electron fluxes.

• Ar, 40 mTorr, 10 MHz, 300 W,
396V/dc=-224V; DC: 400 W, -755 V
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ANOTHER HARC CHALLENGE: MICRO-TRENCHING

• As aspect ratio increases, more
reflection of ions off side walls.

• Micro-trenching due to specular
reflection.

• SiO2 remains when underlying Si
is exposed….over-etching is
required.

• How do you maintain critical
dimension?

• Ar/C4F8 = 75/25, 100 sccm, ICP,
15 mTorr, 500 W, 100 V at 5 MHz

Aspect Ratio = 1:10

Si

Mask

SiO2

ANIMATION SLIDE-GIF
PPPL_0208
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NON-SELECTIVE SINUSOIDAL BIAS

• Over-etch is used to clear out
the remaining SiO2.

• Conventional etching using a
sinusoidal waveform does not
have enough selectivity.

• Atomic layer resolution is
required.

• Ar/C4F8 = 75/25, 100 sccm, ICP,
15 mTorr, 500 W, 100 V at 5 MHz

Aspect Ratio = 1:10

ANIMATION SLIDE-GIF
PPPL_0208
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PLASMA ATOMIC LAYER ETCHING

• In Plasma Atomic Layer Etching (PALE), etching occurs monolayer
by monolayer in a cyclic, self-limiting process.

• Top monolayer is passivated in non-etching plasma in first step.

• Second step removes top layer (self-limiting)

• Extreme control of energies to prevent erosion of the under-layer.

PPPL_0208
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Ar/c-C4F8 TAILORED BIAS PALE: IEADs

• PALE of SiO2 using ICP Ar/C4F8 with
variable non-sinusoidal bias.

• Step 1
• Vp-p = 50 V
• Passivate single layer with SiO2CxFy

• Low ion energies to reduce etching.

• Step 2
• Vp-p = 100 V
• Etch/Sputter SiO2CxFy layer.
• Above threshold ion energies.

• Narrow IEADs discriminate between
threshold energies.

• Ar/C4F8 = 75/25, 100 sccm, 15 mTorr, 500 W

PPPL_0208
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TAILORED BIAS PALE: EXTENDED OVER-ETCH

• PALE is used for over-etch.

• Extreme selectivity of PALE
enables removal of SiO2

without damage to underlying
Si.

• 15 cycles of PALE over-etch
clears the feature.

• More energy intensive per layer
than conventional etching.

• Future technology nodes will
be challenged to maintain lower
J/cm2 of wafer.

• 15 cycles of PALE

ANIMATION SLIDE-GIF
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EQUIPMENT DESIGN  MATTERS:

CONTROLLING SHAPES OF IEADS FOR

PLASMA ION IMPLANTATION
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CMOS: COMPLEMENTARY METAL OXIDE SEMICONDUCTOR

• Highly doped n-type source and drain produced by ion
implantation.

• n-type channel created in p-type substrate by “inversion” of
substrate with bias on gate.

• To achieve small channel dimensions ion implantation to make
source and drain must be shallow.

IONS

PPPL_0208
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ION IMPLANTATION

• Beam-line ion
implantation (100s keV)
techniques are used for
depths > 100s nm.

• Ideally for ultra-shallow
junctions (20-50 nm),
dopant ions should have
energies < 500 eV.

• Difficult to scale beam
implantation to low
energies and high
currents.

• High power use (coils
for magnets).

Leonard Rubin and John Poate
“Industrial Physicist”
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PULSED PLASMA
DOPING (PLAD)

Plasma region

Si-Wafer Pulsed Bias

Cathode

Anode

Sheath

• PLAD is a pulsed plasma
technique for low energy ion
implantation.

• The substrate is pulsed negative
to the desired implant voltage.

• Ions are extracted from the
plasma, accelerated across the
sheath and implanted into the
wafer.

• High throughput at low energies.

• Small footprint of tool…energy
efficient…how to optimize?

Ref: VSEA ICOPS 2002

PPPL_0208
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PLASMA ION IMPLANTATION REACTOR GEOMETRY

•  Inductively Coupled Plasma
(ICP) with pulsed DC biasing.

•  Ar/NF3 (surrogate for Ar/BF3)

•  10 mTorr, 500 W, 100 sccm,
100s-1000s V bias

PPPL_0208

• Pulsed dc bias
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   Ar/NF3: ELECTRIC FIELD, Te, [e]

• Off axis power deposition
produces non-uniform plasma.

• 10 mTorr, 500 W, -1000 V pulse, 100
sccm, Ar/NF3 = 0.8/0.2, t=250 μs

PPPL_0208
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NF2
+ DENSITY

• Plasma density peaks near the coils – sheath thinner on the
outside of the substrate.  Note pulsation due to negative ion-
positive ion transport.

• 10 mTorr, 500 W, pulsed DC, 100 sccm, Ar/NF3 = 0.8/0.2

ANIMATION SLIDE

• 1,000 V; Max: 1.4 x 1010 cm-

3
• 10,000 V; Max: 1.4 x 1010 cm-3

PPPL_0208



Iowa State University
Optical and Discharge Physics

ION ENERGY ANGULAR
DISTRIBUTION:

PULSED DC BIAS

• IEAD peaks near applied
dc bias voltage.

• Angular distribution
narrows with bias on;
broad without bias.

• Longer “tail” with bias due
to sheath thickening and
electron impact ionization
in sheath.

• Asymmetry results from

sheath structure.

• Ionization by Beam Electrons

• 1000 V

PPPL_0208
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IEAD: STANDARD REACTOR DESIGN

• Off axis ion source and propagation of
sheath into bulk plasma produces
gradient to sheath and asymmetric IEAD.

• 10 mTorr, 500 W, -10,000 V pulsed
DC, 100 sccm, Ar/NF3=0.8/0.2

• NF2
+ Density

ANIMATION SLIDE-GIF

PPPL_0208
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IEAD: REACTOR FOCUS RING

• Raised focus ring raises sheath edge and
lessens the gradient. IEADs become more
symmetric.

• 10 mTorr, 500 W, -10,000 V pulsed
DC, 100 sccm, Ar/NF3=0.8/0.2

• NF2
+ Density

PPPL_0208



EQUIPMENT DESIGN MATTERS:

PENETRATION OF PLASMA INTO

SMALL GAPS

PPPL_0208
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PLASMA PENETRATION 

INTO WAFER FOCUS RING GAP

• Wafers are beveled at edge with small gap
(< 500 μm) between wafer and focus ring

for mechanical clearance.

• Penetration of plasma into gap produces
particles and contaminating films.

• How large can gap be without having
significant plasma penetration?

http://www.micromagazine.com

/archive/00/10/simpson.html

• PVD penetration
persists after CMP

PPPL_0208



Ar/CF4 CCP FOR
SiO2 Etching
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• Dielectric etching
performed in
polymerizing
capacitively coupled
plasmas.

• Typical plasma
densities are 1010-1011

cm-3.

• Ar/CF4 = 97/03, 10
MHZ, 90 mTorr, 300V,
300 sccm

MIN                                                           MAX
Log scale

[Ar+]

[CF3
+]

[CF3
-]

[F-]

PPPL_0208



Iowa State University
Optical and Discharge Physics

MIN                                                           MAX
Log scale

• Electron penetration into gaps in anode portion of cycle is
nominal due to surface charging and sheath formation.

• Ar/CF4 = 97/03, 10 MHz, 90 mTorr, 300 V, 300 sccm

ELECTRON PENETRATION INTO GAP

• 1.0 mm Gap • 0.25 mm Gap

Animation Slide

PPPL_0208
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MIN                                                           MAX
Log scale

• Ions penetrate into larger gap throughout the rf cycle provided
size is commensurate with sheath width. Smaller gap receives
only nominal flux.

• Ar/CF4 = 97/03, 10 MHz, 90 mTorr, 300 V, 300 sccm

Ar+ PENETRATION INTO GAP

• 1.0 mm Gap • 0.25 mm Gap

Animation Slide

PPPL_0208
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ION PENETRATION vs GAP SIZE vs
DEBYE LENGTH

• Ion penetration into gap
depends on size of gap relative
to sheath thickness.

• Gap  sheath thickness allows
penetration.

• High plasma density tools
produce smaller sheaths and
more penetration.

• Ar/CF4 = 97/03, 10 MHz, 90
mTorr, 300 V, 300 sccm
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ION ENERGY AND ANGULAR DISTRIBUTIONS

• IEADs differ significantly on
different surfaces in gap.

MIN                                                           MAX
Log scale

PPPL_0208
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MIN                                                           MAX
Log scale

• / o= 4

• / o= 20

CAPACITANCE OF FOCUS
RING: IEAD

• Penetration
of potential
into focus
ring with low
capacitance
produces
lateral E-
field.

• IEAD on
substrate is
asymmetric.

PPPL_0208



ATMOSPHERIC PRESSURE PLASMA

FUNCTIONALIZATION OF POLYMERS
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FUNCTIONALIZATION OF POLYMER SURFACES

• Functionalization occurs by chemical interaction of plasma

produced species - ions, radicals and photons with the surface.

• Example: H abstraction by O atom
enables affixing O atoms as a peroxy site.

• Increase surface energy  increase

wettability.

• Process treats the top few layers.

Courtesy: http://www.polymer-surface.com Iowa State University
Optical and Discharge Physics

(a)
(b)

(c)
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FUNCTIONAL GROUPS ON POLYPROPYLENE

• Ratio of O, OH, O2 and O3

fluxes determine surface
composition.

• Magnitude of fluxes and
residence time determines
importance of surface-
surface reactions.

PPPL_0208



• Pulsed atmospheric corona
discharges treat commodity
polymers [e.g., poly-propylene
(PP)]

• Low cost, high volume, low
value…with potential for low
cost, high volume, high value.

Iowa State University
Optical and Discharge Physics

CORONA DISCHARGE
TREATERS

• Streamers 10s – 100s μm

(Ref: Enercon)

• Tantec, Inc.

PPPL_0208
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• Polymer surfaces are continuously treated at web speeds of a
few m/s with residence times in plasma of up to a few ms.

• Non-air gas mixtures are often “forced flowed” through gap
to customize radicals to surface.

FORCED GAS FLOW AND WEB MOVEMENT

Gas Flow

PPPL_0208



FORCED GAS FLOW AND WEB MOVEMENT

2 mm

10 cm

• - 5 kV, 1 atm,  He/O2/H2O=89/10/1
•  Inter-electrode gap: 2 mm

Web Motion

• Gas flow: 0 – 30 slpm (many m/s)
• Web speed: 0-8 m/s

Iowa State University
Optical and Discharge Physics

• Translate surface mesh points to account for web motion.

PPPL_0208



REPETITIVELY PULSED DISCHARGES – [e]

Iowa State University
Optical and Discharge Physics

0.01                                                    100
log scale

• 1014 cm-3

• Electron avalanche
from the powered
electrode.

• The pulse duration a
few ns

• Terminated by
charging of
dielectric.

• Peak [e] of a few
1014 cm-3.

•  He/O2/H2O=89/10/1, -5 kV, 10 kHz, 1 atm Animation Slide-GIF
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POST-PULSE REACTANT
DENSITIES

Iowa State University
Optical and Discharge Physics

• Important radicals are
those containing O atoms.

• Post pulse radical
densities:

    [OH]  1014  cm-3

    [O]     1015 cm-3

•  He/O2/H2O=89/10/1, -
5 kV, 10 kHz, 1 atm

PPPL_0208
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• O atoms are generated by electron impact with every pulse.

• Rapid reactions to form ozone (O + O2 + M  O3 + M) deplete the
O atoms within 10s μs of discharge pulse.

• Little change in O atom distribution with and without gas flow.

•   He/O2/H2O=89/10/1
•  10 kHz, 0 or 30 slpm, 1 atm.

0.001                                                    1
log scale

• Without forced flow • [O] 1015 cm-3

Animation Slide-GIF

[O] – WITHOUT AND WITH FORCED GAS FLOW

• With forced flow Flow

PPPL_0208
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• O3 is relatively unreactive and accumulates from pulse to pulse.

• Without forced flow, diffusion distributes O3 up- and downstream.

• With forced flow, a plume of O3 extends downstream.

•   He/O2/H2O=89/10/1
•  10 kHz, 0 or 30 slpm, 1 atm.

0.001                                                    1
log scale

• Without forced flow • [O3] 3 x 1014 cm-3

Animation Slide-GIF

[O3] – WITHOUT AND WITH FORCED GAS FLOW

• With forced flow Flow

PPPL_0208
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• OH has an intermediate reactivity between O and O3.

• Some modest accumulation occurs with a small plume
downstream with forced flow.

•   He/O2/H2O=89/10/1
•  10 kHz, 0 or 30 slpm, 1 atm.

0.001                                                    1
log scale

• Without forced flow • [OH] 1014 cm-3

Animation Slide-GIF

[OH] – WITHOUT AND WITH FORCED GAS FLOW

• With forced flow Flow

PPPL_0208
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• Alkyl sites (R•) are produced by H

abstraction by O and OH.

            RH + O  R• + OH

• Alkyl sites are consumed by being
passivated by O2 to form peroxy
sites (R-OO•)

             R• + O2  R-OO•

• Peroxy groups are relatively
unreactive and accumulate pulse
to pulse.

Animation Slide-GIFPPPL_0208

ALKYL, PEROXY COVERAGE
(NO FLOW, NO MOTION)

• - 5 kV, 1 atm, He/O2/H2O=89/10/1,
10 kHz, 0.022 s



•  1 atm, He/O2/H2O=89/10/1,

10 kHz, 0.022 s, 30 slpm

Iowa State University
Optical and Discharge Physics

ALKYL, PEROXY COVERAGE
WITH FLOW

• Alkyl (R•) sites are still rapidly

produced and passivated with
each pulse.

  (O, OH) + R-H  R• + (OH, H2O)

• The plume of OH radicals
downstream produce a tail of
R• sites.

• Peroxy sites accumulate
downstream.

              O2 + R•  R-OO•

Animation Slide-GIF

Flow
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•  1 atm, He/O2/H2O=89/10/1,

10 kHz, 0.022 s, 30 slpm

Iowa State University
Optical and Discharge Physics

SURFACE COVERAGES WITH FLOW

• With stationary web,
repetitive treatment of same
sites produce large
densities peroxy groups.

• Other groups are “etched
away” by continual flux of O
and OH radicals.

Flow

PPPL_0208



• 1 atm, He/O2/H2O=89/10/1,

10 kHz, 0.022 s, 4 m/s

Iowa State University
Optical and Discharge Physics

ALKYL, PEROXY COVERAGE
WITH WEB MOTION

• The rate of alkyl (R•)

passivation is fast compared
to web motion. Little R• moves

downstream.

• Peroxy (R-OO•) sites being

long lived, move with the web
downstream.

• Web speed 4 m/s (no flow)

Animation Slide-GIF

Web
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•  1 atm, He/O2/H2O=89/10/1,

10 kHz, 0.022 s, 30 slpm Iowa State University
Optical and Discharge Physics

SURFACE COVERAGES WITH FLOW AND WEB MOTION

• With flow and motion in
same direction, sites move
“under plume” of radicals.

• Effectively larger fluence
increases radical processes.

    Ratio of Peroxy/Carbonyl

           Flow-no motion: 6

           Motion-no flow:  1.7

Motion-flow      2.8

• Flow, web-speed motion
provides control over
functional groups.

WebFlow

PPPL_0208
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• Tissue engineering requires
“scaffolding” having nooks and
crannies 10s -1000s μm in which

cells adhere and grow.

• Scaffolding is functionalized to
enhance cell adhesion or prevent
unwanted cells from adhering.

•Can a now very expensive process
be “cheapened” by using
commodity plasma technologies?

• E. Sachlos, European Cells and

Materials v5, 29 (2003)

PLASMA FUNCTIONALIZATION
OF TISSUE SCAFFOLDING

PPPL_0208
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• As avalanche approaches
surface, electrons
penetrate into features.

• Charging of surface
causes electrons to
“bounce” off surface.

• Positive Ions penetrate
only slowly into features.

• Ions peak at tips of
features where charging
produces cathode like
conditions.

SURFACE INTERACTIONS: ELECTRON, IONS

min max

Electrons

Positive Ions

Animation Slide-GIF

• -15 kV, 760 Torr

PPPL_0208



Iowa State University
Optical and Discharge Physics

CONTROLLING FLUX OF
OZONE TO SURFACE 

• Varying the amount O2 in gas
mixture enables control over
functional groups.

• Ratio of O, OH and O3 depend on
O2 fraction.

• By straddling reaction and
transport limited regimes,
uniform coverages can be
obtained.

• He/O2/H2O = 99-X /X/1

PPPL_0208



FUTURE SCIENCE CHALLENGES:

PLASMA 2010
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• In 2005, the National Academies
convened the Plasma 2010 Committee.

• Assess achievements of plasma
science over past decade.

• Identify opportunities and science
challenges.

• Offer guidance to address
challenges and realize opportunities.

• “Plasma Science: Advancing

Knowledge in the National Interest”

National Academies Press
http://www.nap.edu

DECADAL STUDY:  PLASMA 2010

Iowa State University
Optical and Discharge PhysicsPPPL_0208



SCIENTIFIC OPPORTUNITIES: ORGANICS

• Basic interactions of plasmas with organic materials and living

tissue

• Now unclear which species and conditions
are beneficial to biological and biologically
compatible materials.

• Understand the behavior of biologically
compatible materials and living tissue in
contact with plasmas.

• Lessons can be learned from the
development of plasmas for semiconductor
processing.

• Example: Plasma wound sterilization

Iowa State University
Optical and Discharge PhysicsPPPL_0208



SCIENTIFIC OPPORTUNITIES: MICROPLASMAS

• Interaction of high-density

(micro) plasmas with

surfaces

• Microplasmas have very high
charged particle densities.

• Electrons may merge with
electrons in the confining
materials.

• Solid-to-gas continuum...
quantum effects may become
important.

Iowa State University
Optical and Discharge PhysicsPPPL_0208



SCIENTIFIC OPPORTUNITIES: CHAOTIC BEHAVIOR

• Methods to describe the behavior of plasmas that contain

chaotic and stochastic processes.

• Low-temperature plasmas multi-scale.

• Many promising applications are
inherently stochastic requiring
unification of scales.

• Opportune time to develop general
computational and diagnostic
methods to treat complex, stochastic,
multi-scale processes.

• Example: Plasma surgical instrument

Iowa State University
Optical and Discharge PhysicsPPPL_0208



CHAOTIC BEHAVIOR IN HIGH PRESSURE

DISCHARGES
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STREAMER BRANCHING AND CHAOS

• Origins of branching of
streamers in  high pressure
gases and liquids are not
understood.

• Branching is universal but
chaotic- now unpredictable.

• Very large potential for
science and technology
advances

• Generally accepted that
discharges in liquids
propagate through a gas
phase…initiated by
bubbles?

Iowa State University
Optical and Discharge Physics

• M. A. Malik, Y. TPS 33, 491 (2005)
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BUBBLE THEORY OF PROPAGATION

• Microscopic bubbles in liquid (naturally occurring).

• Ionizing radiation from plasma seeds electrons and ions inside
bubble -- Large E/N inside bubble avalanches to streamer

• Vaporization of liquid by new streamers extend gas bubbles.

Iowa State University
Optical and Discharge PhysicsPPPL_0208
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PHOTO-IONIZATION
AND [e] DENSITY: NO BUBBLES

Animation Slide

MIN                                                           MAX
Log scale

• Randomly placed “bubbles” in
humid air positive corona.

• N2/O2/H2O = 79.5/19.5/1, 760 Torr
• 40 μm 150 Torr bubbles.

• Ionizing radiation from N2* tracked
using Greens function propagator.

• Without bubbles, photo-ionization
seeds electrons ahead of streamer.

• E/N is only large enough at head of
streamer to avalanche.

• A single streamer propagates.

• 2-3 ns.

[e] cm-3

1.1 x 1022

Photoionization
s-1cm-3

2.1 x 1014

PPPL_0208
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• Photo-ionization inside bubbles is
reduced by pressure difference.

• Large E/N in bubbles avalanches
plasma density.

• Large space charge at opposite
sides of bubble launch positive and
negative streamers.

• 2-3 ns

1.4 x 1022 1.5 x 1015

[e] cm-3Photoionization
s-1cm-3

Animation Slide

MIN                                                           MAX
Log scale

PPPL_0208

PHOTO-IONIZATION
AND [e] DENSITY: BUBBLES



CONCLUDING REMARKS

• Plasma materials processing has an extraordinary diverse range of
applications.

• The unique ability to control the energy and variety of reactant
fluxes enables customization of high value materials – or using
commodity processes to create high value.

• The coming decade will see increasing use of plasmas for biological
applications, from the treatment of biocompatible surfaces and
living tissue, to surgical instruments.

• The close connectivity to commercial applications makes one pause
to consider economics.

Iowa State University
Optical and Discharge PhysicsPPPL_0208


