A Collaborative National Center for Fusion & Plasma Research

Tokamaks

Subscribe to RSS - Tokamaks

A nuclear fusion reactor in which a magnetic field keeps charged, hot plasma moving in a doughnut-shaped vacuum container.

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

Physicist Fatima Ebrahimi at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has published a paper showing that magnetic reconnection — the process in which magnetic field lines snap together and release energy — can be triggered by motion in nearby magnetic fields. By running computer simulations, Ebrahimi gathered evidence indicating that the wiggling of atomic particles and magnetic fields within electrically charged gas known as plasma can spark the onset of reconnection, a process that, when it occurs on the sun, can spew plasma into space. 

Top 10 PPPL stories that you shouldn’t miss

The past year saw many firsts in experimental and theoretical research at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL). Here, in no particular order, are 10 of the Laboratory’s top findings in 2016, from the first results on the National Spherical Torus Experiment-Upgrade to a new use for Einstein’s theory of special relativity to modeling the disk that feeds the supermassive black hole at the center of our galaxy.

1. First results of the National Spherical Torus Experiment-Upgrade (NSTX-U)

COLLOQUIUM: Motivations for Spherical Torus research and initial results from NSTX Upgrade

The Spherical Torus/Tokamak (ST) is being explored as a possible means of accelerating the development of magnetic fusion energy.  The ST offers access to a higher ratio of plasma pressure to magnetic field pressure and extends toroidal confinement physics understanding including support for ITER burning plasma physics.  The ST may also provide an attractive configuration for fusion applications including plasma-material-interface solution development, fusion nuclear component testing, and a net-electricity producing Pilot Plant.  The NSTX Upgrade (NSTX-U) facility at PPPL supports all of t

Valeria Riccardo

Valeria Riccardo is PPPL’s head of engineering, the largest department at PPPL. She worked for more than 20 years at the Culham Centre for Fusion Energy in Oxfordshire, England, which operates the Joint European Torus (JET) and the Mega Amp Spherical Tokamak (MAST) facility, a sister facility to PPPL. As chief engineer at the Culham Center for ve years, she was responsible for ensuring that the consequences of any design, installation and operation decision were understood.

PPPL’s Ronald E. Hatcher Science on Saturday Lecture Series kicks off Jan. 14 with a banquet of cutting-edge science

The U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) will once again offer a wide variety of cutting-edge science talks as it kicks off its popular Ronald E. Hatcher Science on Saturday Lecture Series for high school students and science lovers of all ages on Saturday, Jan. 14, at 9:30 a.m. at the Laboratory, 100 Stellarator Road, Princeton, New Jersey.

PPPL senior physicist Wei-li Lee honored at week-long symposium

Physicists from around the world gathered at the University of California, Irvine this past summer for a symposium in honor of Wei-li Lee, a senior physicist at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL). The week-long event, held from July 18-22, focused on gyrokinetic simulation — a technique Lee invented in the 1980s to model the behavior of particles within plasma, the ultrahot gas composed of electrons and atomic nuclei that fuels fusion reactions.

PPPL senior physicist Wei-li Lee honored at week-long symposium

Physicists from around the world gathered at the University of California, Irvine this past summer for a symposium in honor of Wei-li Lee, a senior physicist at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL). The week-long event, held from July 18-22, focused on gyrokinetic simulation — a technique Lee invented in the 1980s to model the behavior of particles within plasma, the ultrahot gas composed of electrons and atomic nuclei that fuels fusion reactions.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000