A Collaborative National Center for Fusion & Plasma Research

Tokamaks

Subscribe to RSS - Tokamaks

A nuclear fusion reactor in which a magnetic field keeps charged, hot plasma moving in a doughnut-shaped vacuum container.

First results of NSTX-U research operations presented at the International Atomic Energy Agency Conference in Kyoto, Japan

Researchers from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratories (PPPL) and collaborating institutions presented results from research on the National Spherical Torus Experiment Upgrade (NSTX-U) last week at the 26th International Atomic Energy Agency Conference (IAEA) in Kyoto, Japan. The four-year upgrade doubled the magnetic field strength, plasma current and heating power capability of the predecessor facility and made the NSTX-U the most powerful fusion facility of its kind.

Steven Sabbagh leads study to predict and avoid disruptions on KSTAR plasmas

Steven Sabbagh, a senior research scientist at Columbia University on long-term assignment to the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), has been named lead principal investigator for a multi-institutional project on the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. The three-year, $3.3 million collaboration will study methods of predicting and avoiding disruptions on KSTAR, a long-pulse tokamak that produces plasmas that can last from 30 seconds to a design value of more than five minutes.

Steven Sabbagh leads study to predict and avoid disruptions on KSTAR plasmas

Steven Sabbagh, a senior research scientist at Columbia University on long-term assignment to the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), has been named lead principal investigator for a multi-institutional project on the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. The three-year, $3.3 million collaboration will study methods of predicting and avoiding disruptions on KSTAR, a long-pulse tokamak that produces plasmas that can last from 30 seconds to a design value of more than five minutes.

PPPL researchers successfully test new device that analyzes the surfaces of tokamak components within a vacuum

Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have successfully tested a new device that will lead to a better understanding of the interactions between ultrahot plasma contained within fusion facilities and the materials inside those facilities. The measurement tool, known as the Materials Analysis Particle Probe (MAPP), was built by a consortium that includes Princeton University and the University of Illinois at Urbana-Champaign (U. of I.). 

PPPL researchers successfully test new device that analyzes the surfaces of tokamak components within a vacuum

Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have successfully tested a new device that will lead to a better understanding of the interactions between ultrahot plasma contained within fusion facilities and the materials inside those facilities. The measurement tool, known as the Materials Analysis Particle Probe (MAPP), was built by a consortium that includes Princeton University and the University of Illinois at Urbana-Champaign (U. of I.).

Major next steps proposed for development of fusion energy based on the spherical tokamak design

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility — or “bottle” — that will provide the next steps in the development of fusion reactors. Leading candidates include spherical tokamaks, compact machines that are shaped like cored apples, compared with the doughnut-like shape of conventional tokamaks.  The spherical design produces high-pressure plasmas — essential ingredients for fusion reactions — with relatively low and cost-effective magnetic fields.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2016 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000