A Collaborative National Center for Fusion & Plasma Research

Surface science

Subscribe to RSS - Surface science

The study of the chemical and physical processes that occur in the interface between two phases of matter, such as solid to liquid or liquid to gas.

Simulation demonstrates how exposure to plasma makes carbon nanotubes grow

At the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), research performed with collaborators from Princeton University and the Institute for Advanced Computational Science at the State University of New York at Stony Brook has shown how plasma causes exceptionally strong, microscopic structures known as carbon nanotubes to grow. Such tubes, measured in billionths of a meter, are found in everything from electrodes to dental implants and have many advantageous properties.

Simulation demonstrates how exposure to plasma makes carbon nanotubes grow

At the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), research performed with collaborators from Princeton University and the Institute for Advanced Computational Science at the State University of New York at Stony Brook has shown how plasma causes exceptionally strong, microscopic structures known as carbon nanotubes to grow. Such tubes, measured in billionths of a meter, are found in everything from electrodes to dental implants and have many advantageous properties.

Scientists at PPPL further understanding of a process that causes heat loss in fusion devices

Everyone knows that the game of billiards involves balls careening off the sides of a pool table — but few people may know that the same principle applies to fusion reactions. How charged particles like electrons and atomic nuclei that make up plasma interact with the walls of doughnut-shaped devices known as tokamaks helps determine how efficiently fusion reactions occur. Specifically, in a phenomenon known as secondary electron emission (SEE), electrons strike the surface of the wall, causing other electrons to be emitted.

PPPL researchers successfully test new device that analyzes the surfaces of tokamak components within a vacuum

Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have successfully tested a new device that will lead to a better understanding of the interactions between ultrahot plasma contained within fusion facilities and the materials inside those facilities. The measurement tool, known as the Materials Analysis Particle Probe (MAPP), was built by a consortium that includes Princeton University and the University of Illinois at Urbana-Champaign (U. of I.). 

PPPL researchers successfully test new device that analyzes the surfaces of tokamak components within a vacuum

Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have successfully tested a new device that will lead to a better understanding of the interactions between ultrahot plasma contained within fusion facilities and the materials inside those facilities. The measurement tool, known as the Materials Analysis Particle Probe (MAPP), was built by a consortium that includes Princeton University and the University of Illinois at Urbana-Champaign (U. of I.).

Physicist Tyler Abrams models lithium erosion in tokamaks

The world of fusion energy is a world of extremes. For instance, the center of the ultrahot plasma contained within the walls of doughnut-shaped fusion machines known as tokamaks can reach temperatures well above the 15 million degrees Celsius core of the sun. And even though the portion of the plasma closer to the tokamak's inner walls is 10 to 20 times cooler, it still has enough energy to erode the layer of liquid lithium that may be used to coat components that face the plasma in future tokamaks.

Laboratory Director Stewart Prager heralds start of new era with NSTX-U and looks to future projects in “State of the Laboratory” address

The completion of the $94 million National Spherical Torus-Upgrade (NSTX-U) will usher in a decade of research that will lead to vital results for the international and national fusion programs and could lead the way to a next-step fusion facility, Princeton Plasma Physics Laboratory Director Stewart Prager told staff members in his annual “State of the Laboratory” address on Oct. 5.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000