A Collaborative National Center for Fusion & Plasma Research

Surface science

Subscribe to RSS - Surface science

The study of the chemical and physical processes that occur in the interface between two phases of matter, such as solid to liquid or liquid to gas.

PPPL researchers successfully test new device that analyzes the surfaces of tokamak components within a vacuum

Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have successfully tested a new device that will lead to a better understanding of the interactions between ultrahot plasma contained within fusion facilities and the materials inside those facilities. The measurement tool, known as the Materials Analysis Particle Probe (MAPP), was built by a consortium that includes Princeton University and the University of Illinois at Urbana-Champaign (U. of I.). 

PPPL researchers successfully test new device that analyzes the surfaces of tokamak components within a vacuum

Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have successfully tested a new device that will lead to a better understanding of the interactions between ultrahot plasma contained within fusion facilities and the materials inside those facilities. The measurement tool, known as the Materials Analysis Particle Probe (MAPP), was built by a consortium that includes Princeton University and the University of Illinois at Urbana-Champaign (U. of I.).

Physicist Tyler Abrams models lithium erosion in tokamaks

The world of fusion energy is a world of extremes. For instance, the center of the ultrahot plasma contained within the walls of doughnut-shaped fusion machines known as tokamaks can reach temperatures well above the 15 million degrees Celsius core of the sun. And even though the portion of the plasma closer to the tokamak's inner walls is 10 to 20 times cooler, it still has enough energy to erode the layer of liquid lithium that may be used to coat components that face the plasma in future tokamaks.

Laboratory Director Stewart Prager heralds start of new era with NSTX-U and looks to future projects in “State of the Laboratory” address

The completion of the $94 million National Spherical Torus-Upgrade (NSTX-U) will usher in a decade of research that will lead to vital results for the international and national fusion programs and could lead the way to a next-step fusion facility, Princeton Plasma Physics Laboratory Director Stewart Prager told staff members in his annual “State of the Laboratory” address on Oct. 5.

Synthetic muscle experiment will likely return to Earth in March

A synthetic muscle experiment on board the International Space Station (ISS) that was developed with the help of PPPL scientists is now tentatively scheduled to return to earth in March of 2016 on a new SpaceX-10 rocket. It would be returning eight months later than originally planned after an unmanned SpaceX Falcon 9 rocket headed for the ISS exploded a few minutes after liftoff in late June.

Laboratory Director Stewart Prager heralds start of new era with NSTX-U and looks to future projects in “State of the Laboratory” address

The completion of the $94 million National Spherical Torus-Upgrade (NSTX-U) will usher in a decade of research that will lead to vital results for the international and national fusion programs and could lead the way to a next-step fusion facility, Princeton Plasma Physics Laboratory Director Stewart Prager told staff members in his annual “State of the Laboratory” address on Oct. 5.

Bruce E Koel

Bruce Koel is professor of chemical and biological engi- neering at Princeton University. He is associated faculty in Chemistry, the Princeton Institute for the Science and Technology of Materials (PRISM), The Department of Mechanical and Aerospace Engineering, the Andlinger Center for Energy and the Environment, and a collaborator on the National Spherical Torus Experiment - Upgrade at PPPL. Koel is a fellow of the American Association for the Advancement of Science, the American Physical Society and the American Vacuum Society. 

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2016 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000