A Collaborative National Center for Fusion & Plasma Research

Stellarators

Subscribe to RSS - Stellarators

Figure-eight shaped tubes that confine hot plasma with external magnetic fields, developed by Lyman Spitzer in 1950 at the lab that became the PPPL.

PPPL and Max Planck physicists confirm the precision of magnetic fields in the most advanced stellarator in the world

Physicist Sam Lazerson of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has teamed with German scientists to confirm that the Wendelstein 7-X (W7-X) fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.

PPPL and Max Planck physicists confirm the precision of magnetic fields in the most advanced stellarator in the world

Physicist Sam Lazerson of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has teamed with German scientists to confirm that the Wendelstein 7-X (W7-X) fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.

Students do cool summer research projects in one of the hottest spots

More than 40 college students pursuing careers in physics, engineering and computer science are spending their summer at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory working with scientists and engineers on hands-on research projects.  Here they talk about the cool science they did at the Lab, which is devoted to fusion energy and plasma science research.

DOE’s Ed Synakowski traces key discoveries in the quest for fusion energy

The path to creating sustainable fusion energy as a clean, abundant and affordable source of electric energy has been filled with “aha moments” that have led to a point in history when the international fusion experiment, ITER, is poised to produce more fusion energy than it uses when it is completed in 15 to 20 years, said Ed Synakowski, associate director of Science for Fusion Energy Sciences at the U.S. Department of Energy (DOE).

PPPL, Princeton University physicists join German Chancellor Angela Merkel at Wendelstein 7-X celebration

Princeton Plasma Physics Laboratory (PPPL) physicists collaborating on the Wendelstein 7-X (W 7-X) stellarator fusion energy device in Greifswald, Germany, were on hand for the Feb. 3 celebration when German Chancellor Angela Merkel pushed a button to produce a hydrogen-fueled superhot gas called a plasma. The occasion officially recognized a device that is the largest and most advanced fusion experiment of its kind in the world.

Top-5 Achievements at the Princeton Plasma Physics Laboratory in 2015

From launching the most powerful spherical tokamak on Earth to discovering a mechanism that halts solar eruptions, scientists at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory advanced the boundaries of clean energy and plasma science research in 2015. Here, in no particular order, are our picks for the Top-5 developments of the year:

PPPL engineers complete the design of Wendelstein 7-X scraper unit

Engineers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have finished designing a novel component for the Wendelstein 7-X (W7-X) stellarator, which recently opened at the Max Planck Institute of Plasma Physics (IPP) in Griefswald, Germany. Known as a "test divertor unit (TDU) scraper element," the component intercepts some of the heat flowing towards the divertor — a part of the machine that collects heat and particles as they escape from the plasma before they hit the stellarator wall or degrade the plasma's performance.

PPPL engineers complete the design of Wendelstein 7-X scraper unit

Engineers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have finished designing a novel component for the Wendelstein 7-X (W7-X) stellarator, which recently opened at the Max Planck Institute of Plasma Physics (IPP) in Griefswald, Germany. Known as a "test divertor unit (TDU) scraper element," the component intercepts some of the heat flowing towards the divertor — a part of the machine that collects heat and particles as they escape from the plasma before they hit the stellarator wall or degrade the plasma's performance.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2016 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000