A Collaborative National Center for Fusion & Plasma Research

Stellarators

Subscribe to RSS - Stellarators

Figure-eight shaped tubes that confine hot plasma with external magnetic fields, developed by Lyman Spitzer in 1950 at the lab that became the PPPL.

The blob that ate the tokamak: Physicists gain understanding of how bubbles at the edge of plasmas can drain heat and reduce fusion reaction efficiency

To fuse hydrogen atoms into helium, doughnut-shaped devices called tokamaks must maintain the heat of the ultrahot plasma they control. But like boiling water, plasma has blobs, or bubbles, that percolate within the plasma edge, reducing the performance of the plasma by taking away heat that sustains the fusion reactions.

The blob that ate the tokamak: Physicists gain understanding of how bubbles at the edge of plasmas can drain heat and reduce fusion reaction efficiency

To fuse hydrogen atoms into helium, doughnut-shaped devices called tokamaks must maintain the heat of the ultrahot plasma they control. But like boiling water, plasma has blobs, or bubbles, that percolate within the plasma edge, reducing the performance of the plasma by taking away heat that sustains the fusion reactions.

Top 10 PPPL stories that you shouldn’t miss

The past year saw many firsts in experimental and theoretical research at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL). Here, in no particular order, are 10 of the Laboratory’s top findings in 2016, from the first results on the National Spherical Torus Experiment-Upgrade to a new use for Einstein’s theory of special relativity to modeling the disk that feeds the supermassive black hole at the center of our galaxy.

1. First results of the National Spherical Torus Experiment-Upgrade (NSTX-U)

PPPL and Max Planck physicists confirm the precision of magnetic fields in the most advanced stellarator in the world

Physicist Sam Lazerson of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has teamed with German scientists to confirm that the Wendelstein 7-X (W7-X) fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.

PPPL and Max Planck physicists confirm the precision of magnetic fields in the most advanced stellarator in the world

Physicist Sam Lazerson of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has teamed with German scientists to confirm that the Wendelstein 7-X (W7-X) fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.

Students do cool summer research projects in one of the hottest spots

More than 40 college students pursuing careers in physics, engineering and computer science are spending their summer at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory working with scientists and engineers on hands-on research projects.  Here they talk about the cool science they did at the Lab, which is devoted to fusion energy and plasma science research.

COLLOQUIUM: Wendelstein 7-X: Highlights from the First Operational Phase of the New Optimized Stellarator

On December 10, 2015, the superconducting optimised stellarator “Wendelstein 7-X” was switched on and created its first plasma. Over the ten-week commissioning phase that followed, a wealth of data was collected and the first experiments conducted. In this presentation, some highlights of the plasma physics program, including some unexpected results, will be reported and the performance and capabilities of the new machine will be summarized. Finally, plans for the future of the device and progress towards steady-state operation will be outlined.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000