A Collaborative National Center for Fusion & Plasma Research

Plasma physics

Subscribe to RSS - Plasma physics

The study of plasma, a partially-ionized gas that is electrically conductive and able to be confined within a magnetic field, and how it releases energy.

Exploring Plasma Science Advances from Fusion Findings to Astrophysical Achievements

The latest advances in plasma physics were the focus of more than 1,000 scientists from around the world who gathered in Providence, R.I., from Oct. 29 through Nov. 2 for the 54th Annual Meeting of the American Physical Society’s Division of Plasma Physics (APS-DPP). Papers, posters and presentations ranged from fusion plasma discoveries applicable to ITER, to research on 3D magnetic fields and antimatter. In all, more than 1,800 papers were discussed during the week-long event.

Praise and suggestions for fusion research from a utility industry think tank

Research to develop fusion energy has shown “significant progress” in many areas, according to a new report from the Electric Power Research Institute (EPRI), a think tank whose members represent some 90 percent of the electricity produced in the United States. At the same time, the report said that a commercial fusion power plant is at least 30 years away, and called for more research on the engineering challenges.

French landmark decree authorizes ITER construction

The French government has capped more than two years of review by issuing a license for the construction of ITER, the international fusion project that the European Union, the United States and five other countries are building in Cadarache, France, to demonstrate the feasibility of fusion energy. French Prime Minister Jean-Marc Ayrault signed the decree authorizing the license on Nov. 10, 2012. The move confirms the safety of the ITER project and clears the way for its construction.

Robert J Goldston

Goldston is a Professor of Astrophysical Sciences at Princeton University and an international leader in the fields of plasma physics and magnetic fusion energy. He is the author of 220 papers in journals and conference proceedings, and in 1995 co-authored with Paul Rutherford the textbook "Introduction to Plasma Physics." He is a contributing author to five other books. In 1988 he was awarded the American Physical Society Prize for Excellence in Plasma Physics. Goldston is a Fellow of the American Physical Society. From 1997 to 2009, he served as Director of the U.S.

Ahmed Diallo

Ahmed Diallo is deputy boundary group leader for the National Spherical Torus Experiment (NSTX). Diallo has contributed to the upgrade of the Thomson scattering diagnostic system in preparation for the NSTX upgrade, and has participated in the operation of the NSTX and the Thomson scattering system prior to their upgrades. He has   more than 10 years of experience in laser-aided plasma diagnostics, has authored many scientific papers and given more than 10 talks, including four invited talks at international conferences and workshops.

Stewart Prager

Stewart Prager is the sixth director of PPPL. He joined the Laboratory in 2009 after a long career at the University of Wisconsin in Madison. At Wisconsin, he led research on the “Madison Symmetric Torus” (MST) experiment and headed a center that studied plasmas in both the laboratory and the cosmos. He also co-discovered the “bootstrap current” there—a key finding that has influenced the design of today’s tokamaks. He earned his PhD in plasma physics from Columbia University.

Stefan Gerhardt

Stefan Gerhardt leads the Advanced Scenarios and Control research group in the NSTX organization. He operates numerous diagnostics on NSTX, along with designing plasma control schemes and running physics experiments. He has previously worked on a wide variety of fusion machines, including spherical tokamaks, stellarators, and field reversed configurations.

Michael C Zarnstorff

Michael Zarnstorff is the deputy director of research for PPPL where he supervises research that ranges from testing ideas for harnessing fusion to developing rockets for space flight. His job encompasses keeping projects aligned with DOE goals and envisioning new research opportunities for PPPL. An award-winning physicist and a co-discoverer of the bootstrap current, he joined PPPL in 1984 and has been deputy director for research since 2009. He earned his PhD in plasma physics from the University of Wisconsin.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram

PPPL is ISO-14001:2004 certified

© 2014 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000