A Collaborative National Center for Fusion & Plasma Research

Plasma physics

Subscribe to RSS - Plasma physics

The study of plasma, a partially-ionized gas that is electrically conductive and able to be confined within a magnetic field, and how it releases energy.

PPPL extends system for suppressing instabilities to long-pulse experiments on KSTAR

PPPL collaborations have been instrumental in developing a system to suppress instabilities that could degrade the performance of a fusion plasma. PPPL has built and installed such a system on the DIII-D tokamak that General Atomics operates for the U.S. Department of Energy in San Diego and on the Korea Superconducting Tokamak Advanced Research (KSTAR) facility in South Korea —  and now is revising the KSTAR design to operate during extended plasma experiments.

PPPL extends system for suppressing instabilities to long-pulse experiments on KSTAR

PPPL collaborations have been instrumental in developing a system to suppress instabilities that could degrade the performance of a fusion plasma. PPPL has built and installed such a system on the DIII-D tokamak that General Atomics operates for the U.S. Department of Energy in San Diego and on the Korea Superconducting Tokamak Advanced Research (KSTAR) facility in South Korea —  and now is revising the KSTAR design to operate during extended plasma experiments.

PPPL launches a $4.3 million project to expand research on magnetic reconnection

PPPL is developing a new and more powerful version of its world-leading Magnetic Reconnection Experiment (MRX), which recreates one of the most common but least understood phenomena in the universe. This phenomenon, in which the magnetic field lines in plasma snap apart and violently reconnect, occurs throughout the cosmos and gives rise to the northern lights, solar flares and geomagnetic storms that can disrupt cell-phone service and black out power grids.

PPPL launches a $4.3 million project to expand research on magnetic reconnection

PPPL is developing a new and more powerful version of its world-leading Magnetic Reconnection Experiment (MRX), which recreates one of the most common but least understood phenomena in the universe. This phenomenon, in which the magnetic field lines in plasma snap apart and violently reconnect, occurs throughout the cosmos and gives rise to the northern lights, solar flares and geomagnetic storms that can disrupt cell-phone service and black out power grids.

Solution to plasma-etching puzzle could mean more powerful microchips

Research conducted by PPPL in collaboration with the University of Alberta provides a key step toward the development of ever-more powerful computer chips. The researchers discovered the physics behind a mysterious process that gives chipmakers unprecedented control of a recent plasma-based technique for etching transistors on integrated circuits, or chips. This discovery could help to maintain Moore’s Law, which observes that the number of transistors on integrated circuits doubles nearly every two years

Solution to plasma-etching puzzle could mean more powerful microchips

Research conducted by PPPL in collaboration with the University of Alberta provides a key step toward the development of ever-more powerful computer chips. The researchers discovered the physics behind a mysterious process that gives chipmakers unprecedented control of a recent plasma-based technique for etching transistors on integrated circuits, or chips. This discovery could help to maintain Moore’s Law, which observes that the number of transistors on integrated circuits doubles nearly every two years

Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas

Researchers led by scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world’s fastest supercomputers. The increased awards are designed to advance the development of nuclear fusion as a clean and abundant source of energy for generating electricity.

Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas

Researchers led by scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world’s fastest supercomputers. The increased awards are designed to advance the development of nuclear fusion as a clean and abundant source of energy for generating electricity.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram

PPPL is ISO-14001:2004 certified

© 2014 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000