A Collaborative National Center for Fusion & Plasma Research

Plasma physics

Subscribe to RSS - Plasma physics

The study of plasma, a partially-ionized gas that is electrically conductive and able to be confined within a magnetic field, and how it releases energy.

A better way to simulate accretion of the supermassive black hole at the center of the Milky Way is developed by PPPL and Princeton scientists

cientists at Princeton University and the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed a rigorous new method for modeling the accretion disk that feeds the supermassive black hole at the center of our Milky Way galaxy. The paper, published online in December in the journal Physical Review Letters, provides a much-needed foundation for simulation of the extraordinary processes involved. 

PPPL’s Ronald E. Hatcher Science on Saturday Lecture Series kicks off Jan. 14 with a banquet of cutting-edge science

The U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) will once again offer a wide variety of cutting-edge science talks as it kicks off its popular Ronald E. Hatcher Science on Saturday Lecture Series for high school students and science lovers of all ages on Saturday, Jan. 14, at 9:30 a.m. at the Laboratory, 100 Stellarator Road, Princeton, New Jersey.

A better way to simulate accretion of the supermassive black hole at the center of the Milky Way is developed by PPPL and Princeton scientists

Scientists at Princeton University and the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed a rigorous new method for modeling the accretion disk that feeds the supermassive black hole at the center of our Milky Way galaxy. The paper, published online in December in the journal Physical Review Letters, provides a much-needed foundation for simulation of the extraordinary processes involved. 

Scientists develop a path toward improved high-energy accelerators

Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), in collaboration with researchers in South Korea and Germany, have developed a theoretical framework for improving the stability and intensity of particle accelerator beams. Scientists use the high-energy beams, which must be stable and intense to work effectively, to unlock the ultimate structure of matter.  Physicians use medical accelerators to produce beams that can zap cancer cells.

Magnetic reconnection research sheds light on explosive phenomena in astrophysics and fusion experiments

Scientists are closer than ever to unraveling a process called magnetic reconnection that triggers explosive phenomena throughout the universe.  Solar flares, northern lights and geomagnetic storms that can disrupt cell phone service and black out power grids are all set off by magnetic field lines that converge, break apart and violently reconnect in ways that are not fully understood.

Magnetic reconnection research sheds light on explosive phenomena in astrophysics and fusion experiments

Scientists are closer than ever to unraveling a process called magnetic reconnection that triggers explosive phenomena throughout the universe.  Solar flares, northern lights and geomagnetic storms that can disrupt cell phone service and black out power grids are all set off by magnetic field lines that converge, break apart and violently reconnect in ways that are not fully understood.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000