A Collaborative National Center for Fusion & Plasma Research

Plasma physics

Subscribe to RSS - Plasma physics

The study of plasma, a partially-ionized gas that is electrically conductive and able to be confined within a magnetic field, and how it releases energy.

Simulations by PPPL physicists suggest that external magnetic fields can calm plasma instabilities

Physicists led by Gerrit Kramer at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have conducted simulations that suggest that applying magnetic fields to fusion plasmas can control instabilities known as Alfvén waves that can reduce the efficiency of fusion reactions. Such instabilities can cause quickly moving charged particles called "fast ions" to escape from the core of the plasma, which is corralled within machines known as tokamaks. 

PPPL wins contract for plasma-materials interaction studies on EAST tokamak

sma-materials interaction (PMI)on the Experimental Advanced Superconducting Tokamak (EAST) in China. The centerpiece of the PPPL role in this project is the optimization of lithium delivery systems. The tests will be designed to optimize the production of long-pulse plasmas that last from 30 seconds to more than one minute. This project is supported by Fusion Energy Sciences in the DOE Office of Science.

PPPL wins contract for plasma-materials interaction studies on EAST tokamak

The U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has been named principal investigator for a multi-institutional project to study plasma-materials interaction (PMI)on the Experimental Advanced Superconducting Tokamak (EAST) in China. The centerpiece of the PPPL role in this project is the optimization of lithium delivery systems. The tests will be designed to optimize the production of long-pulse plasmas that last from 30 seconds to more than one minute. This project is supported by Fusion Energy Sciences in the DOE Office of Science.

New books by PPPL physicists Hutch Neilson and Amitava Bhattacharjee highlight magnetic fusion energy and plasma physics

Magnetic fusion energy and the plasma physics that underlies it are the topics of ambitious new books by Hutch Neilson, head of the Advanced Projects Department at PPPL, and Amitava Bhattacharjee, head of the Theory Department at the Laboratory. The books describe where research on magnetic fusion energy comes from and where it is going, and provide a basic understanding of the physics of plasma, the fourth state of matter that makes up 99 percent of the visible universe.

New books by PPPL physicists Hutch Neilson and Amitava Bhattacharjee highlight magnetic fusion energy and plasma physics

Magnetic fusion energy and the plasma physics that underlies it are the topics of ambitious new books by Hutch Neilson, head of the Advanced Projects Department at PPPL, and Amitava Bhattacharjee, head of the Theory Department at the Laboratory. The books describe where research on magnetic fusion energy comes from and where it is going, and provide a basic understanding of the physics of plasma, the fourth state of matter that makes up 99 percent of the visible universe.

PPPL researchers combine quantum mechanics and Einstein’s theory of special relativity to clear up puzzles in plasma physics

Among the intriguing issues in plasma physics are those surrounding X-ray pulsars — collapsed stars that orbit around a cosmic companion and beam light at regular intervals, like lighthouses in the sky.  Physicists want to know the strength of the magnetic field and density of the plasma that surrounds these pulsars, which can be millions of times greater than the density of plasma in stars like the sun.

PPPL researchers combine quantum mechanics and Einstein’s theory of special relativity to clear up puzzles in plasma physics

Among the intriguing issues in plasma physics are those surrounding X-ray pulsars — collapsed stars that orbit around a cosmic companion and beam light at regular intervals, like lighthouses in the sky.  Physicists want to know the strength of the magnetic field and density of the plasma that surrounds these pulsars, which can be millions of times greater than the density of plasma in stars like the sun.

PPPL and Princeton join high-performance software project

Princeton University and the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) are participating in the accelerated development of a modern high-performance computing code, or software package. Supporting this development is the Intel Parallel Computing Center (IPCC) Program, which provides funding to universities and laboratories to improve high-performance software capabilities for a wide range of disciplines.

PPPL and Princeton join high-performance software project

Princeton University and the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) are participating in the accelerated development of a modern high-performance computing code, or software package. Supporting this development is the Intel Parallel Computing Center (IPCC) Program, which provides funding to universities and laboratories to improve high-performance software capabilities for a wide range of disciplines.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2016 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000