A Collaborative National Center for Fusion & Plasma Research

Plasma astrophysics

Subscribe to RSS - Plasma astrophysics

A field of physics that is growing in interest worldwide that tackles such astrophysical phenomena as the source of violent space weather and the formation of stars.

PPPL scientists unveil their latest results at the 57th Annual Meeting of the American Physical Society Division of Plasma Physics

More than 1,750 researchers from around the world, including scientists from the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), have gathered in Savannah, Georgia, this week for the 57th Annual Meeting of the American Physical Society’s Division of Plasma Physics. Researchers at the five-day conference, which ends Nov. 20, will attend nine half-day sessions featuring nearly 1,000 talks on subjects ranging from space and astrophysical plasmas to the challenges of producing magnetic fusion energy.

PPPL physicists find clue to formation of magnetic fields around stars and galaxies

An enduring astronomical mystery is how stars and galaxies acquire their magnetic fields. Physicists Jonathan Squire and Amitava Bhattacharjee at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have found a clue to the answer in the collective behavior of small magnetic disturbances. In a paper published in October in Physical Review Letters, the scientists report that small magnetic perturbations can combine to form large-scale magnetic fields just like those found throughout the universe. This research was funded by the DOE Office of Science.

PPPL physicists find clue to formation of magnetic fields around stars and galaxies

An enduring astronomical mystery is how stars and galaxies acquire their magnetic fields. Physicists Jonathan Squire and Amitava Bhattacharjee at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have found a clue to the answer in the collective behavior of small magnetic disturbances. In a paper published in October in Physical Review Letters, the scientists report that small magnetic perturbations can combine to form large-scale magnetic fields just like those found throughout the universe. This research was funded by the DOE Office of Science.

COLLOQUIUM: New Horizons at Pluto

Pluto and its five known moons have been transformed from mysterious, barely resolved or unresolved points of light, only dimly viewed from very far away, to astonishing worlds of unimagined complexity by the recent visit of the small interplanetary probe called New Horizons. Pluto, with its icy plains, mountains, flowing glaciers, and hazy atmosphere, and Charon, only half as large but dramatically different, are revealed in amazing detail by the instruments on New Horizons.

COLLOQUIUM: Seeing the Big Bang More Clearly: The Evolution of Observational Techniques in CMB Studies

Since 2015 marks the fiftieth anniversary of the discovery of the cosmic microwave background (CMB), I will begin by analyzing the very early experiments that established the properties of the CMB.  What experimental problems did we face, and how did we overcome them?  As CMB measurements grew more sensitive, new sources of systematic error and new foregrounds emerged.  I'll describe the techniques CMB observers have evolved over the years to cope with them.

 

COLLOQUIUM: Toward a Better Understanding of the Solar Atmosphere: Combining Observations and Numerical Modeling

The study of the Sun, our nearest star, is making rapid progress, through a combination of a host of new space-based and ground-based observatories coming online and major advances in numerical simulations that incorporate increasingly complex physical mechanisms. I will provide an overview of some recent exciting discoveries that highlight the synergy between numerical modeling and observations with the  Interface Region Imaging Spectrograph (IRIS), Solar Dynamics Observatory (SDO) and Hinode spacecraft. Some of the topics I will discuss include: 1.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2016 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000