A Collaborative National Center for Fusion & Plasma Research

Plasma astrophysics

Subscribe to RSS - Plasma astrophysics

A field of physics that is growing in interest worldwide that tackles such astrophysical phenomena as the source of violent space weather and the formation of stars.

COLLOQUIUM: On Tracing the Origins of the Solar Wind

The Sun emits a constant flow of particles from its surface. Mainly composed of Protons and electrons, and dragging with it magnetic fields, this Solar Wind expands outwards from the sun, interacting with planets and spacecraft alike. Since the 1960s, in situ observations have shown that the solar wind is comprised of two distinct states: slow (300550 km/s) and fast (600800 km/s). Temperature, density, and compositional variations between the two suggest different sources for the fast and slow solar wind.

Princeton and PPPL launch center to study volatile space weather and violent solar storms

Researchers at Princeton University and the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have launched a new center to study the volatile heliosphere — a complex and frequently violent region of space that encompasses the solar system. This region is carved out by the solar wind — charged plasma particles that constantly stream from the sun — and gives rise to space weather that can disrupt cell phone service, damage satellites and knock out power grids.

Celebrating Lyman Spitzer, the father of PPPL and the Hubble Space Telescope

Princeton astrophysicist Lyman Spitzer Jr. (1914-1997) was among the 20th Century’s most visionary scientists. His major influences range from founding the Princeton Plasma Physics Laboratory (PPPL) and its quest for fusion energy, to inspiring the development of the Hubble Space Telescope and its images of the far corners of the universe.

Big Bang or Big Bounce?

Was the event that occurred 13.7 billion years ago a big bang – the beginning of space and time – or a big bang bounce – a transition from contraction to expansion?  This talk will explain how the two possibilities lead to very different pictures of the origin, evolution and future of the universe and how recent and near future observations may resolve which picture is correct.  

COLLOQUIUM: The Chorus of the Magnetosphere

Whistler-mode chorus waves were first reported in the early 1950’s and so-named due to the resemblance of their sound to a ‘rookery of birds at dawn’, when played through a loudspeaker.  In the ensuing decades, as better observations and more accurate theory began to emerge, a coherent and fascinating picture began to emerge of chorus playing a key role in the dynamics of the inner magnetosphere.

Worldwide conference on plasma science coming to Princeton area

More than 350 participants from around the world will gather in Plainsboro, N.J., on September 30 for the 66th Annual Gaseous Electronics Conference (GEC). The week-long event will bring together physicists from numerous plasma science disciplines for workshops, panels and poster sessions on topics ranging from basic research to uses for plasma in microchip etching, nano- material manufacturing and other technologies.

COLLOQUIUM: The Formation of Stellar Groups

Stars do not form singly, but in groups. Within the plane of the Milky Way Galaxy, we have systems ranging in population from 100 to 10,000 members. Their origin is still poorly understood, and many basic questions remain.  How do local conditions in the interstellar medium lead to one type of group rather than another? Why do the most populous and massive groups disperse after a few million years,  while comparatively unimpressive systems of a few hundred stars remain intact for up to a billion years?

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram

PPPL is ISO-14001:2004 certified

Princeton University Institutional Compliance Program

© 2014 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000