A Collaborative National Center for Fusion & Plasma Research

Nuclear energy

Subscribe to RSS - Nuclear energy

Energy that originates from the splitting of uranium atoms in a process called fission. This is distinct from a process called fusion where energy is released when atomic nuclei combine or fuse.

Princeton graduate student Imène Goumiri creates computer program that helps stabilize fusion plasmas

Imène Goumiri, a Princeton University graduate student, has worked with physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) to simulate a method for limiting instabilities that reduce the performance of fusion plasmas. The more instabilities there are, the less efficiently doughnut-shaped fusion facilities called tokamaks operate. The journal Nuclear Fusion published results of this research in February 2016.

Princeton graduate student Imène Goumiri creates computer program that helps stabilize fusion plasmas

Imène Goumiri, a Princeton University graduate student, has worked with physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) to simulate a method for limiting instabilities that reduce the performance of fusion plasmas. The more instabilities there are, the less efficiently doughnut-shaped fusion facilities called tokamaks operate. The journal Nuclear Fusion published results of this research in February 2016.

PPPL scientists help test innovative device to improve efficiency of tokamaks

Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have helped design and test a component that could improve the performance of doughnut-shaped fusion facilities known as tokamaks. Called a "liquid lithium limiter," the device has circulated the protective liquid metal within the walls of China's Experimental Advanced Superconducting Tokamak (EAST) and kept the plasma from cooling down and halting fusion reactions. The journal Nuclear Fusion published results of the experiment in March 2016. The research was supported by the DOE Office of Science.

PPPL scientists help test innovative device to improve efficiency of tokamaks

Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have helped design and test a component that could improve the performance of doughnut-shaped fusion facilities known as tokamaks. Called a "liquid lithium limiter," the device has circulated the protective liquid metal within the walls of China's Experimental Advanced Superconducting Tokamak (EAST) and kept the plasma from cooling down and halting fusion reactions. The journal Nuclear Fusion published results of the experiment in March 2016. The research was supported by the DOE Office of Science.

Physicist Tyler Abrams models lithium erosion in tokamaks

The world of fusion energy is a world of extremes. For instance, the center of the ultrahot plasma contained within the walls of doughnut-shaped fusion machines known as tokamaks can reach temperatures well above the 15 million degrees Celsius core of the sun. And even though the portion of the plasma closer to the tokamak's inner walls is 10 to 20 times cooler, it still has enough energy to erode the layer of liquid lithium that may be used to coat components that face the plasma in future tokamaks.

PPPL engineers design and build state-of-the-art controller for AC to DC converter that manages plasma in upgraded fusion machine

The electric current that powers fusion experiments requires superb control. Without it, the magnetic coils the current drives cannot contain and shape the plasma that fuels experiments in doughnut-shaped tokamaks correctly.

PPPL engineers design and build state-of-the-art controller for AC to DC converter that manages plasma in upgraded fusion machine

The electric current that powers fusion experiments requires superb control. Without it, the magnetic coils the current drives cannot contain and shape the plasma that fuels experiments in doughnut-shaped tokamaks correctly.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2016 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000