A Collaborative National Center for Fusion & Plasma Research

Nuclear energy

Subscribe to RSS - Nuclear energy

Energy that originates from the splitting of uranium atoms in a process called fission. This is distinct from a process called fusion where energy is released when atomic nuclei combine or fuse.

Stewart Prager honored with FPA Distinguished Career Award

Stewart Prager, physicist and long-time fusion energy scientist who was director of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) from 2009 to 2016, has been honored with a 2017 Distinguished Career Award from Fusion Power Associates (FPA). Prager, a leading contributor to the advancement of plasma physics and fusion science, received the award at the 38th annual meeting of FPA held Dec. 6-7 in Washington, D.C.

Stewart Prager honored with FPA Distinguished Career Award

Stewart Prager, physicist and long-time fusion energy scientist who was director of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) from 2009 to 2016, has been honored with a 2017 Distinguished Career Award from Fusion Power Associates (FPA). Prager, a leading contributor to the advancement of plasma physics and fusion science, received the award at the 38th annual meeting of FPA held Dec. 6-7 in Washington, D.C.

PPPL honors Grierson and Greenough for distinguished research and engineering achievements

A breakthrough in the development of fusion diagnostics and the creative use of radio frequency waves to heat the plasma that fuels fusion reactions earned the 2017 outstanding research and engineering awards from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). Physicist Brian Grierson and engineer Nevell Greenough received the honors from PPPL Interim Director Richard Hawryluk at a ceremony November 7 for their exceptional achievements.

Reaching new heights: Physicists improve the vertical stability of superconducting Korean fusion device

A major challenge facing the development of fusion energy is maintaining the ultra-hot plasma that fuels fusion reactions in a steady state, or sustainable, form using superconducting magnetic coils to avoid the tremendous power requirement of copper coils. While superconductors can allow a fusion reactor to operate indefinitely, controlling the plasma with superconductors presents a challenge because engineering constraints limit how quickly such magnetic coils can adjust when compared to copper coils that do not have the same constraints.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000