A Collaborative National Center for Fusion & Plasma Research

NSTX-U

Subscribe to RSS - NSTX-U

The National Spherical Torus Experiment (NSTX), which is undergoing a $94 million upgrade that will make it the most powerful experimental fusion facility, or tokamak, of its type in the world when work is completed in 2015. Experiments will test the ability of the upgraded spherical facility to maintain a high-performance plasma under conditions of extreme heat and power. Results could strongly influence the design of future fusion reactors.

PPPL honors Grierson and Greenough for distinguished research and engineering achievements

A breakthrough in the development of fusion diagnostics and the creative use of radio frequency waves to heat the plasma that fuels fusion reactions earned the 2017 outstanding research and engineering awards from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). Physicist Brian Grierson and engineer Nevell Greenough received the honors from PPPL Interim Director Richard Hawryluk at a ceremony November 7 for their exceptional achievements.

PPPL honors Grierson and Greenough for distinguished research and engineering achievements

A breakthrough in the development of fusion diagnostics and the creative use of radio frequency waves to heat the plasma that fuels fusion reactions earned the 2017 outstanding research and engineering awards from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). Physicist Brian Grierson and engineer Nevell Greenough received the honors from PPPL Interim Director Richard Hawryluk at a ceremony November 7 for their exceptional achievements.

PPPL takes detailed look at 2-D structure of turbulence in tokamaks

A key hurdle for fusion researchers is understanding turbulence, the ripples and eddies that can cause the superhot plasma that fuels fusion reactions to leak heat and particles and keep fusion from taking place. Comprehending and reducing turbulence will facilitate the development of fusion as a safe, clean and abundant source of energy for generating electricity from power plants around the world.

PPPL has a new interim director and is moving ahead with construction of prototype magnets

Rich Hawryluk has been appointed interim director of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) while an international search for a permanent director moves forward, Princeton University Vice President for PPPL David McComas announced recently. Hawryluk, who has been heading the NSTX-U Recovery Planning Project, is an internationally-known physicist and a former deputy director of PPPL. 

Discovered: A quick and easy way to shut down instabilities in fusion devices

Scientists have discovered a remarkably simple way to suppress a common instability that can halt fusion reactions and damage the walls of reactors built to create a “star in a jar.” The findings, published in June in the journal Physical Review Letters, stem from experiments performed on the National Spherical Torus Experiment-Upgrade (NSTX-U), at the Department of Energy’s Princeton Plasma Physics Laboratory (PPPL).

New model of plasma stability could help researchers predict and avoid disruptions in fusion machines

Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have helped develop a new computer model of plasma stability in doughnut-shaped fusion machines known as tokamaks. The new model incorporates recent findings gathered from related research efforts and simplifies the physics involved so computers can process the program more quickly. The model could help scientists predict when a plasma might become unstable and then avoid the underlying conditions. 

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000