A Collaborative National Center for Fusion & Plasma Research

Magnetic reconnection

Subscribe to RSS - Magnetic reconnection

Magnetic reconnection (henceforth called "reconnection") refers to the breaking and reconnecting of oppositely directed magnetic field lines in a plasma. In the process, magnetic field energy is converted to plasma kinetic and thermal energy.

Physicist Fatima Ebrahimi conducts computer simulations that indicate the efficiency of an innovative fusion start-up technique

Physicist Fatima Ebrahimi at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University has for the first time performed computer simulations indicating the efficiency of a start-up technique for doughnut-shaped fusion machines known as tokamaks. The simulations show that the technique, known as coaxial helicity injection (CHI), could also benefit tokamaks that use superconducting magnets. The research was published in March 2016, in Nuclear Fusion, and was supported by the DOE's Office of Science. 

Physicist Fatima Ebrahimi conducts computer simulations that indicate the efficiency of an innovative fusion start-up technique

Physicist Fatima Ebrahimi at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University has for the first time performed computer simulations indicating the efficiency of a start-up technique for doughnut-shaped fusion machines known as tokamaks. The simulations show that the technique, known as coaxial helicity injection (CHI), could also benefit tokamaks that use superconducting magnets. The research was published in March 2016, in Nuclear Fusion, and was supported by the DOE's Office of Science. 

PPPL team wins 80 million processor hours on nation's fastest supercomputer

The U.S Department of Energy (DOE) has awarded a total of 80 million processor hours on the fastest supercomputer in the nation to an astrophysical project based at the DOE’s Princeton Plasma Physics Laboratory (PPPL). The grants will enable researchers led by Amitava Bhattacharjee, head of the Theory Department at PPPL, and physicist Will Fox to study the dynamics of magnetic fields in the high-energy density plasmas that lasers create. Such plasmas can closely approximate those that occur in some astrophysical objects.

PPPL team wins 80 million processor hours on nation's fastest supercomputer

The U.S Department of Energy (DOE) has awarded a total of 80 million processor hours on the fastest supercomputer in the nation to an astrophysical project based at the DOE’s Princeton Plasma Physics Laboratory (PPPL). The grants will enable researchers led by Amitava Bhattacharjee, head of the Theory Department at PPPL, and physicist Will Fox to study the dynamics of magnetic fields in the high-energy density plasmas that lasers create. Such plasmas can closely approximate those that occur in some astrophysical objects.

PPPL engineers complete the design of Wendelstein 7-X scraper unit

Engineers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have finished designing a novel component for the Wendelstein 7-X (W7-X) stellarator, which recently opened at the Max Planck Institute of Plasma Physics (IPP) in Griefswald, Germany. Known as a "test divertor unit (TDU) scraper element," the component intercepts some of the heat flowing towards the divertor — a part of the machine that collects heat and particles as they escape from the plasma before they hit the stellarator wall or degrade the plasma's performance.

PPPL engineers complete the design of Wendelstein 7-X scraper unit

Engineers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have finished designing a novel component for the Wendelstein 7-X (W7-X) stellarator, which recently opened at the Max Planck Institute of Plasma Physics (IPP) in Griefswald, Germany. Known as a "test divertor unit (TDU) scraper element," the component intercepts some of the heat flowing towards the divertor — a part of the machine that collects heat and particles as they escape from the plasma before they hit the stellarator wall or degrade the plasma's performance.

PPPL physicists simulate innovative method for starting up tokamaks without using a solenoid

Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have produced self-consistent computer simulations that capture the evolution of an electric current inside fusion plasma without using a central electromagnet, or solenoid. The simulations of the process, known as non-inductive current ramp-up, were performed using TRANSP, the gold-standard code developed at PPPL. The results were published in October 2015 in Nuclear Fusion. The research was supported by the DOE Office of Science.

PPPL scientists unveil their latest results at the 57th Annual Meeting of the American Physical Society Division of Plasma Physics

More than 1,750 researchers from around the world, including scientists from the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), have gathered in Savannah, Georgia, this week for the 57th Annual Meeting of the American Physical Society’s Division of Plasma Physics. Researchers at the five-day conference, which ends Nov. 20, will attend nine half-day sessions featuring nearly 1,000 talks on subjects ranging from space and astrophysical plasmas to the challenges of producing magnetic fusion energy.

Laboratory Director Stewart Prager heralds start of new era with NSTX-U and looks to future projects in “State of the Laboratory” address

The completion of the $94 million National Spherical Torus-Upgrade (NSTX-U) will usher in a decade of research that will lead to vital results for the international and national fusion programs and could lead the way to a next-step fusion facility, Princeton Plasma Physics Laboratory Director Stewart Prager told staff members in his annual “State of the Laboratory” address on Oct. 5.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2016 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000