A Collaborative National Center for Fusion & Plasma Research

ITER

Subscribe to RSS - ITER

ITER is a large international fusion experiment aimed at demonstrating the scientific and technological feasibility of fusion energy.

ITER (Latin for "the way") will play a critical role advancing the worldwide availability of energy from fusion — the power source of the sun and the stars.

To produce practical amounts of fusion power on earth, heavy forms of hydrogen are joined together at high temperature with an accompanying production of heat energy. The fuel must be held at a temperature of over 100 million degrees Celsius. At these high temperatures, the electrons are detached from the nuclei of the atoms, in a state of matter called plasma.

First results of NSTX-U research operations presented at the International Atomic Energy Agency Conference in Kyoto, Japan

Researchers from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratories (PPPL) and collaborating institutions presented results from research on the National Spherical Torus Experiment Upgrade (NSTX-U) last week at the 26th International Atomic Energy Agency Conference (IAEA) in Kyoto, Japan. The four-year upgrade doubled the magnetic field strength, plasma current and heating power capability of the predecessor facility and made the NSTX-U the most powerful fusion facility of its kind.

Major next steps proposed for development of fusion energy based on the spherical tokamak design

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility — or “bottle” — that will provide the next steps in the development of fusion reactors. Leading candidates include spherical tokamaks, compact machines that are shaped like cored apples, compared with the doughnut-like shape of conventional tokamaks.  The spherical design produces high-pressure plasmas — essential ingredients for fusion reactions — with relatively low and cost-effective magnetic fields.

PPPL and Princeton help lead a new center to understand and mitigate runaway electrons that pose a challenge for ITER

Runaway electrons, a searing, laser-like beam of electric current released by plasma disruptions, could damage the interior walls of future tokamaks the size of ITER, the international fusion experiment under construction in France. To help overcome this challenge, leading experts in the field have launched a multi-institutional center to find ways to prevent or mitigate such events.

PPPL and Princeton help lead a new center to understand and mitigate runaway electrons that pose a challenge for ITER

Runaway electrons, a searing, laser-like beam of electric current released by plasma disruptions, could damage the interior walls of future tokamaks the size of ITER, the international fusion experiment under construction in France. To help overcome this challenge, leading experts in the field have launched a multi-institutional center to find ways to prevent or mitigate such events.

PPPL and Princeton join high-performance software project

Princeton University and the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) are participating in the accelerated development of a modern high-performance computing code, or software package. Supporting this development is the Intel Parallel Computing Center (IPCC) Program, which provides funding to universities and laboratories to improve high-performance software capabilities for a wide range of disciplines.

PPPL and Princeton join high-performance software project

Princeton University and the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) are participating in the accelerated development of a modern high-performance computing code, or software package. Supporting this development is the Intel Parallel Computing Center (IPCC) Program, which provides funding to universities and laboratories to improve high-performance software capabilities for a wide range of disciplines.

COLLOQUIUM: Functional Capabilities and Design of the ITER EC H&CD System

A 24MW Electron Cyclotron (EC) system operating at 170 GHz and 3600 s pulse length is to be installed on ITER. The EC plant shall deliver 20MW of this power to the plasma for Heating and Current Drive (H&CD) applications. The EC system is designed for plasma initiation, central heating, current drive, current profile tailoring, and Magneto-hydrodynamic control (in particular, sawteeth and Neo-classical Tearing Mode) in the flat-top phase of the plasma. This talk will review the technical design and the functionalities of the EC system.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000